Solution to problem 29 in Julia
This commit is contained in:
parent
9669a4cf17
commit
116f80ac29
38
src/Julia/Problem029.jl
Normal file
38
src/Julia/Problem029.jl
Normal file
@ -0,0 +1,38 @@
|
||||
#=
|
||||
Created on 23 Aug 2021
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 29 of Project Euler
|
||||
https://projecteuler.net/problem=29
|
||||
=#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function Problem29()
|
||||
#=
|
||||
Consider all integer combinations of ab for 2 ≤ a ≤ 5 and 2 ≤ b ≤ 5:
|
||||
|
||||
2^2=4, 2^3=8, 2^4=16, 2^5=32
|
||||
3^2=9, 3^3=27, 3^4=81, 3^5=243
|
||||
4^2=16, 4^3=64, 4^4=256, 4^5=1024
|
||||
5^2=25, 5^3=125, 5^4=625, 5^5=3125
|
||||
|
||||
If they are then placed in numerical order, with any repeats removed, we
|
||||
get the following sequence of 15 distinct terms:
|
||||
|
||||
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
|
||||
|
||||
How many distinct terms are in the sequence generated by ab for 2≤a≤100
|
||||
and 2≤b≤100?
|
||||
=#
|
||||
terms = Set(big(a)^b for a in 2:100, b in 2:100)
|
||||
return length(terms)
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 29:")
|
||||
@btime Problem29()
|
||||
println("")
|
||||
println("Result for Problem 29: ", Problem29())
|
Loading…
x
Reference in New Issue
Block a user