From 116f80ac29a49ed6c4f2cdd01661b65056572374 Mon Sep 17 00:00:00 2001 From: daviddoji Date: Mon, 23 Aug 2021 20:07:24 +0200 Subject: [PATCH] Solution to problem 29 in Julia --- src/Julia/Problem029.jl | 38 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 38 insertions(+) create mode 100644 src/Julia/Problem029.jl diff --git a/src/Julia/Problem029.jl b/src/Julia/Problem029.jl new file mode 100644 index 0000000..94c2881 --- /dev/null +++ b/src/Julia/Problem029.jl @@ -0,0 +1,38 @@ +#= +Created on 23 Aug 2021 + +@author: David Doblas Jiménez +@email: daviddoji@pm.me + +Solution for Problem 29 of Project Euler +https://projecteuler.net/problem=29 +=# + +using BenchmarkTools + +function Problem29() + #= + Consider all integer combinations of ab for 2 ≤ a ≤ 5 and 2 ≤ b ≤ 5: + + 2^2=4, 2^3=8, 2^4=16, 2^5=32 + 3^2=9, 3^3=27, 3^4=81, 3^5=243 + 4^2=16, 4^3=64, 4^4=256, 4^5=1024 + 5^2=25, 5^3=125, 5^4=625, 5^5=3125 + + If they are then placed in numerical order, with any repeats removed, we + get the following sequence of 15 distinct terms: + + 4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125 + + How many distinct terms are in the sequence generated by ab for 2≤a≤100 + and 2≤b≤100? + =# + terms = Set(big(a)^b for a in 2:100, b in 2:100) + return length(terms) +end + + +println("Time to evaluate Problem 29:") +@btime Problem29() +println("") +println("Result for Problem 29: ", Problem29())