Solution to problem 28 in Julia
This commit is contained in:
parent
6b2abda602
commit
9669a4cf17
49
src/Julia/Problem028.jl
Normal file
49
src/Julia/Problem028.jl
Normal file
@ -0,0 +1,49 @@
|
||||
#=
|
||||
Created on 23 Aug 2021
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 28 of Project Euler
|
||||
https://projecteuler.net/problem=28
|
||||
=#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function Problem28()
|
||||
#=
|
||||
Starting with the number 1 and moving to the right in a clockwise
|
||||
direction a 5 by 5 spiral is formed as follows:
|
||||
|
||||
21 22 23 24 25
|
||||
20 7 8 9 10
|
||||
19 6 1 2 11
|
||||
18 5 4 3 12
|
||||
17 16 15 14 13
|
||||
|
||||
It can be verified that the sum of the numbers on the diagonals is 101.
|
||||
|
||||
What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral
|
||||
formed in the same way?
|
||||
=#
|
||||
size = 1001 # Must be odd
|
||||
ans = 1 # Special case for size 1
|
||||
step = 0
|
||||
i, cur = 1, 1
|
||||
while step < size-1
|
||||
step = i * 2
|
||||
for j in 1:4
|
||||
cur += step
|
||||
ans += cur
|
||||
end
|
||||
i += 1
|
||||
end
|
||||
|
||||
return ans
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 28:")
|
||||
@btime Problem28()
|
||||
println("")
|
||||
println("Result for Problem 28: ", Problem28())
|
Loading…
x
Reference in New Issue
Block a user