Kalman-and-Bayesian-Filters.../gaussian.py

90 lines
2.6 KiB
Python

import numpy as np
import math
import matplotlib.pyplot as plt
def _to_array(x):
""" returns any of a scalar, matrix, or array as a 1D numpy array
Example:
_to_array(3) == array([3])
"""
try:
x.shape
if type(x) != np.ndarray:
x = np.asarray(x)[0]
return x
except:
return np.array(np.mat(x)).reshape(1)
def _to_cov(x,n):
""" If x is a scalar, returns a covariance matrix generated from it
as the identity matrix multiplied by x. The dimension will be nxn.
If x is already a numpy array then it is returned unchanged.
"""
try:
x.shape
if type(x) != np.ndarray:
x = np.asarray(x)[0]
return x
except:
return np.eye(n) * x
_two_pi = 2*math.pi
def gaussian (x, mean, var):
"""returns normal distribution for x given a gaussian with the specified
mean and variance. All must be scalars
"""
return math.exp((-0.5*(x-mean)**2)/var) / math.sqrt(_two_pi*var)
def multivariate_gaussian (x, mu, cov):
""" This is designed to work the same as scipy.stats.multivariate_normal
which is not available before version 0.14. You may either pass in a
multivariate set of data:
multivariate_gaussian (array([1,1]), array([3,4]), eye(2)*1.4)
multivariate_gaussian (array([1,1,1]), array([3,4,5]), 1.4)
or unidimensional data:
multivariate_gaussian(1, 3, 1.4)
In the multivariate case if cov is a scalar it is interpreted as eye(n)*cov
The function gaussian() implements the 1D (univariate)case, and is much
faster than this function.
"""
# force all to numpy.array type
x = _to_array(x)
mu = _to_array(mu)
n = mu.size
cov = _to_cov (cov, n)
det = np.sqrt(np.prod(np.diag(cov)))
frac = _two_pi**(-n/2.) * (1./det)
fprime = (x - mu)**2
return frac * np.exp(-0.5*np.dot(fprime, 1./np.diag(cov)))
def norm_plot (mean, var):
min_x = mean - var * 1.5
max_x = mean + var * 1.5
xs = np.arange (min_x, max_x, 0.1)
ys = [gaussian (x,23,5) for x in xs]
plt.plot (xs,ys)
if __name__ == '__main__':
from scipy.stats import norm
# test conversion of scalar to covariance matrix
x = multivariate_gaussian(np.array([1,1]), np.array([3,4]), np.eye(2)*1.4)
x2 = multivariate_gaussian(np.array([1,1]), np.array([3,4]), 1.4)
assert x == x2
# test univarate case
rv = norm (loc = 1., scale = np.sqrt(2.3))
x2 = multivariate_gaussian (1.2, 1., 2.3)
x3 = gaussian (1.2, 1., 2.3)
assert rv.pdf(1.2) == x2
assert abs(x2- x3) < 0.00000001
print "all tests passed"