2014-04-28 23:14:43 +02:00
|
|
|
import numpy as np
|
|
|
|
import math
|
2014-04-30 19:52:15 +02:00
|
|
|
import matplotlib.pyplot as plt
|
2014-04-28 23:14:43 +02:00
|
|
|
|
|
|
|
def _to_array(x):
|
|
|
|
""" returns any of a scalar, matrix, or array as a 1D numpy array
|
|
|
|
Example:
|
|
|
|
_to_array(3) == array([3])
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
x.shape
|
|
|
|
if type(x) != np.ndarray:
|
|
|
|
x = np.asarray(x)[0]
|
|
|
|
return x
|
|
|
|
except:
|
|
|
|
return np.array(np.mat(x)).reshape(1)
|
|
|
|
|
|
|
|
def _to_cov(x,n):
|
|
|
|
""" If x is a scalar, returns a covariance matrix generated from it
|
|
|
|
as the identity matrix multiplied by x. The dimension will be nxn.
|
|
|
|
If x is already a numpy array then it is returned unchanged.
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
x.shape
|
|
|
|
if type(x) != np.ndarray:
|
|
|
|
x = np.asarray(x)[0]
|
|
|
|
return x
|
|
|
|
except:
|
|
|
|
return np.eye(n) * x
|
|
|
|
|
|
|
|
_two_pi = 2*math.pi
|
|
|
|
|
|
|
|
def gaussian (x, mean, var):
|
|
|
|
"""returns normal distribution for x given a gaussian with the specified
|
|
|
|
mean and variance. All must be scalars
|
|
|
|
"""
|
|
|
|
return math.exp((-0.5*(x-mean)**2)/var) / math.sqrt(_two_pi*var)
|
|
|
|
|
|
|
|
|
|
|
|
def multivariate_gaussian (x, mu, cov):
|
|
|
|
""" This is designed to work the same as scipy.stats.multivariate_normal
|
|
|
|
which is not available before version 0.14. You may either pass in a
|
|
|
|
multivariate set of data:
|
|
|
|
multivariate_gaussian (array([1,1]), array([3,4]), eye(2)*1.4)
|
|
|
|
multivariate_gaussian (array([1,1,1]), array([3,4,5]), 1.4)
|
|
|
|
or unidimensional data:
|
|
|
|
multivariate_gaussian(1, 3, 1.4)
|
|
|
|
|
|
|
|
In the multivariate case if cov is a scalar it is interpreted as eye(n)*cov
|
|
|
|
|
|
|
|
The function gaussian() implements the 1D (univariate)case, and is much
|
|
|
|
faster than this function.
|
|
|
|
"""
|
|
|
|
|
|
|
|
# force all to numpy.array type
|
|
|
|
x = _to_array(x)
|
|
|
|
mu = _to_array(mu)
|
|
|
|
n = mu.size
|
|
|
|
cov = _to_cov (cov, n)
|
|
|
|
|
|
|
|
det = np.sqrt(np.prod(np.diag(cov)))
|
|
|
|
frac = _two_pi**(-n/2.) * (1./det)
|
|
|
|
fprime = (x - mu)**2
|
|
|
|
return frac * np.exp(-0.5*np.dot(fprime, 1./np.diag(cov)))
|
|
|
|
|
2014-04-30 19:52:15 +02:00
|
|
|
def norm_plot (mean, var):
|
|
|
|
min_x = mean - var * 1.5
|
|
|
|
max_x = mean + var * 1.5
|
|
|
|
|
|
|
|
xs = np.arange (min_x, max_x, 0.1)
|
|
|
|
ys = [gaussian (x,23,5) for x in xs]
|
|
|
|
plt.plot (xs,ys)
|
2014-04-28 23:14:43 +02:00
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
from scipy.stats import norm
|
|
|
|
|
|
|
|
# test conversion of scalar to covariance matrix
|
|
|
|
x = multivariate_gaussian(np.array([1,1]), np.array([3,4]), np.eye(2)*1.4)
|
|
|
|
x2 = multivariate_gaussian(np.array([1,1]), np.array([3,4]), 1.4)
|
|
|
|
assert x == x2
|
|
|
|
|
|
|
|
# test univarate case
|
|
|
|
rv = norm (loc = 1., scale = np.sqrt(2.3))
|
|
|
|
x2 = multivariate_gaussian (1.2, 1., 2.3)
|
|
|
|
x3 = gaussian (1.2, 1., 2.3)
|
|
|
|
|
|
|
|
assert rv.pdf(1.2) == x2
|
|
|
|
assert abs(x2- x3) < 0.00000001
|
|
|
|
print "all tests passed"
|