235 lines
5.5 KiB
Plaintext
235 lines
5.5 KiB
Plaintext
|
|
# Makie.jl
|
|
|
|
## Backends
|
|
Four backends:
|
|
1. `CairoMakie` - SVG
|
|
2. `GLMakie` - 2D/3D/fast interactivity
|
|
3. `WGLMakie` - Same as GLMakie, but in browser
|
|
4. `RPRMakie` - experimental raytracing
|
|
|
|
I will use `GLMakie` or `CairoMakie`. To switch use `CairoMakie.activate!()`
|
|
|
|
## Standard plotting
|
|
|
|
```julia
|
|
f = Figure()
|
|
x = rand(100)
|
|
y = rand(100)
|
|
|
|
scatter(f[1,1],x,y)
|
|
lines(f[1,2],x,y)
|
|
hist(f[2,1],x)
|
|
density!(f[2,1],x) # inplace -> add to current plot
|
|
stem(f[2,2],x)
|
|
```
|
|
|
|
## Layouts for scientific figures
|
|
|
|
Makie has the best layouting tool I have ever used. [full tutorial here](https://docs.makie.org/stable/tutorials/layout-tutorial/)
|
|
|
|
```julia
|
|
f = Figure()
|
|
|
|
# we plan to generate two subfigures (with subplots each) - better to generate two "separate" layouts
|
|
ga = f[1, 1] = GridLayout()
|
|
gb = f[2, 1] = GridLayout()
|
|
|
|
axtop = Axis(ga[1,1])
|
|
axmain = Axis(ga[2, 1], xlabel = "before", ylabel = "after")
|
|
axright = Axis(ga[2, 2])
|
|
|
|
|
|
labels = ["treatment", "placebo", "control"]
|
|
d = randn(3, 100, 2) .+ [1, 3, 5]
|
|
|
|
for (label, col) in zip(labels, eachslice(d, dims = 1))
|
|
scatter!(axmain, col, label = label)
|
|
density!(axtop, col[:, 1])
|
|
density!(axright, col[:, 2], direction = :y)
|
|
end
|
|
|
|
linkyaxes!(axmain, axright)
|
|
linkxaxes!(axmain, axtop)
|
|
hidedecorations!(axtop, grid = false)
|
|
hidedecorations!(axright, grid = false)
|
|
|
|
#--- add a legend
|
|
leg = Legend(ga[1, 2], axmain)
|
|
|
|
# absolute size for now :shrug:
|
|
leg.width =100
|
|
leg.height =100
|
|
|
|
leg.tellwidth = true
|
|
leg.tellheight = true
|
|
|
|
#----
|
|
# second plot
|
|
ax,h = heatmap(gb[1,1],rand(100,10),colorrange = [0,1])
|
|
ax2,h2 = heatmap(gb[1,2],rand(100,10),colorrange = [0,1])
|
|
cb = Colorbar(gb[1,3],h)
|
|
cb.alignmode = Mixed(right=0)
|
|
|
|
#----
|
|
# Labels
|
|
Label(ga[1, 1, TopLeft()], "A1", font = :bold, padding = (0, 0, 5, 0))
|
|
Label(ga[2, 1, TopLeft()], "A2", font = :bold, padding = (0, 0, 5, 0))
|
|
Label(ga[2, 2, TopLeft()], "A3", font = :bold, padding = (0, 0, 5, 0))
|
|
|
|
Label(gb[1, 1, TopLeft()], "B", font = :bold, padding = (0, 0, 5, 0))
|
|
|
|
#---
|
|
# top plot needs more space
|
|
rowsize!(f.layout,2,Relative(0.3))
|
|
|
|
#---
|
|
f
|
|
```
|
|
# Interactivity
|
|
|
|
With Makie.jl, two ways of interactivity:
|
|
|
|
**Observables** - very general way, a little bit more verbose
|
|
|
|
**Pluto.jl Sliders** - very simple, need to redraw plot everytime^[it is technically possible to combine Pluto with Observables, but it is a bit buggy]
|
|
|
|
|
|
## Pluto.jl
|
|
|
|
### Installation / Start
|
|
```julia
|
|
]add Pluto
|
|
Pluto.run()
|
|
```
|
|
::: {.callout-tip}
|
|
If you need remote access, run it via `Pluto.run(host="0.0.0.0")`
|
|
:::
|
|
|
|
### Sliders
|
|
|
|
A slider is defined like this:
|
|
```julia
|
|
@bind yourVarName PlutoUI.Slider(from:to) # from:step:to is optional, step by def 1
|
|
```
|
|
|
|
if you move the slider, `yourVarName` + all cells that depend on that variable are automatically recalculated. Quick & dirty way to generate an interactive plot
|
|
|
|
## Bonus: Makie Interactivity
|
|
|
|
There is another way to get to interactivity. Using `Observables.jl`
|
|
|
|
To provide a simple example of the logic:
|
|
```julia
|
|
using GLMakie
|
|
|
|
x = rand(10_000)
|
|
obs_ix = Observable(1) # index to plot until
|
|
scatter(@lift(x[1:obs_ix])) # non-interactive example # <1>
|
|
|
|
f = Figure()
|
|
obs_sl = GLMakie.Slider(f[2,1],range=1:length(x))
|
|
y = @lift(x[1:$(obs_sl.value)])
|
|
ax,s = scatter(f[1,1],y)
|
|
xlims!(ax,0,length(x))
|
|
|
|
```
|
|
1. `@lift` does the heavy lifting (hrhr) here. It adds a listener to `obs_ix`, whenever that value is changed, the value of the output of `@lift` is changed as well
|
|
## Task 2: Interactivity
|
|
[Click here for the next task](tasks.qmd#2)
|
|
|
|
|
|
|
|
# Grammar of Graphics
|
|
|
|
The grammar of graphics is a convenient way to build common explorative plots.
|
|
|
|
For example:
|
|
|
|
|
|
## For ggplot enthusiasts
|
|
You could use [TidierPlots.jl - a ggplot clone](https://github.com/TidierOrg/TidierPlots.jl)
|
|
|
|
Check out the [AoG/GGplot cheatsheet](../../../../cheatsheets/ggplotAOG.qmd):
|
|
|
|
## AlgebraOfGraphics.jl
|
|
|
|
### Loading data
|
|
```julia
|
|
using GLMakie # backend
|
|
using AlgebraOfGraphics
|
|
using PalmerPenguins, DataFrames # example dataset
|
|
|
|
penguins = dropmissing(DataFrame(PalmerPenguins.load()))
|
|
first(penguins, 6)
|
|
```
|
|
|
|
::: callout-note
|
|
A `tidy dataframe` is a dataframe that follows these three rules:
|
|
|
|
|
|
1. Every column is a variable.
|
|
2. Every row is an observation.
|
|
3. Every cell is a single value.
|
|
|
|
Tidy data make your visualization life much easier as you will see!
|
|
:::
|
|
|
|
|
|
### AoG basics
|
|
|
|
|
|
`data * mapping * visual`
|
|
|
|
```julia
|
|
vis_pen = data(penguins) * mapping(:bill_length_mm, :bill_depth_mm) * visual(Scatter)
|
|
draw(vis_pen)
|
|
```
|
|
|
|
### Adding color
|
|
|
|
```julia
|
|
vis_pencolor = data(penguins) * mapping(:bill_length_mm, :bill_depth_mm, color = :species) * visual(Scatter)
|
|
draw(vis_pencolor)
|
|
|
|
```
|
|
But that is a bit redundant, you can shortcut this, by reusing existing mappings / inputs:
|
|
```julia
|
|
vis_pencolor2 = vis_pen * mapping(color=:species)
|
|
draw(vis_pencolor2)
|
|
|
|
```
|
|
|
|
### Why `Algebra`OfGraphics?
|
|
|
|
Follows some algebraic rules of multiplying out sums
|
|
|
|
`data * mapping * (visual(Scatter)+visual(Lines))`
|
|
|
|
```julia
|
|
|
|
data(penguins) * mapping(:bill_length_mm, :bill_depth_mm) * (visual(Scatter)+visual(Lines)) |> draw
|
|
```
|
|
|
|
### Faceting
|
|
```julia
|
|
data(penguins) * mapping(:bill_length_mm, :bill_depth_mm) * mapping(color = :species, col = :sex) |> draw
|
|
|
|
```
|
|
```julia
|
|
data(penguins) * mapping(:bill_length_mm, :bill_depth_mm) * mapping(color = :species, col = :sex,row=:body_mass_g => x-> x>3500) |> draw
|
|
|
|
```
|
|
|
|
### Linear & Non-linear summaries
|
|
```julia
|
|
data(penguins) * mapping(:bill_length_mm, :bill_depth_mm, color=:species) * (linear() + visual(Scatter)) |> draw
|
|
```
|
|
```julia
|
|
data(penguins) * mapping(:bill_length_mm, :bill_depth_mm, color=:species) * (smooth() + visual(Scatter)) |> draw
|
|
```
|
|
|
|
|
|
## Task 3
|
|
|
|
[Click here for the next task](tasks.qmd#3) |