merge
This commit is contained in:
parent
8b078ed291
commit
0a035acc05
@ -11,7 +11,7 @@
|
||||
| What is ...? | `typeof(obj)` | `type(obj)` | `class(obj)` |
|
||||
| Is it really a ...? | `isa(obj, SomeType)` | `isinstance(obj, SomeType)` | `is(obj, SomeType)` |
|
||||
|
||||
## debugging
|
||||
## debugging {#debugging}
|
||||
|
||||
| | |
|
||||
|------------------------------------|------------------------------------|
|
||||
|
@ -413,5 +413,19 @@ Macros allow to programmers to edit the actual code **before** it is run. We wil
|
||||
a = "123"
|
||||
@show a
|
||||
```
|
||||
|
||||
|
||||
## Debugging
|
||||
XXX
|
||||
|
||||
### Debug messages
|
||||
```julia
|
||||
@debug "my debug message"
|
||||
ENV["JULIA_DEBUG"] = Main
|
||||
ENV["JULIA_DEBUG"] = MyPackage
|
||||
|
||||
```
|
||||
|
||||
### Debugger proper:
|
||||
[Cheatsheet for debugging](../../../cheatsheets/julia.qmd#debugging)
|
||||
|
||||
In most cases, `@run myFunction(1,2,3)` is sufficient.
|
@ -6,10 +6,13 @@
|
||||
"source": [
|
||||
"---\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"jupyter: julia-1.9\n",
|
||||
"---"
|
||||
],
|
||||
"id": "d0dd3b54"
|
||||
"id": "18cb9530"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
@ -26,6 +29,32 @@
|
||||
"\n",
|
||||
"I will use `GLMakie` or `CairoMakie`. To switch use `CairoMakie.activate!()`\n",
|
||||
"\n",
|
||||
"## Standard plotting commands\n"
|
||||
],
|
||||
"id": "d83f21c4"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"f = Figure()\n",
|
||||
"x = rand(100)\n",
|
||||
"y = rand(100)\n",
|
||||
"\n",
|
||||
"scatter(f[1,1],x,y)\n",
|
||||
"lines(f[1,2],x,y)\n",
|
||||
"hist(f[2,1],x)\n",
|
||||
"density!(f[2,1],x) # inplace -> add to current plot\n",
|
||||
"stem(f[2,2],x)"
|
||||
],
|
||||
"id": "811907e9",
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Layouts for scientific figures\n",
|
||||
"\n",
|
||||
"# Pluto.jl for easy interactivity\n",
|
||||
@ -46,7 +75,7 @@
|
||||
"\n",
|
||||
"### Loading data"
|
||||
],
|
||||
"id": "0ca52ae6"
|
||||
"id": "69dda8de"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
@ -59,7 +88,7 @@
|
||||
"penguins = dropmissing(DataFrame(PalmerPenguins.load()))\n",
|
||||
"first(penguins, 6)"
|
||||
],
|
||||
"id": "56b4e637",
|
||||
"id": "334f10aa",
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
@ -82,42 +111,150 @@
|
||||
"### AoG basics\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"`data * mapping * visual`\n",
|
||||
"\n",
|
||||
"```julia\n",
|
||||
"`data * mapping * visual`\n"
|
||||
],
|
||||
"id": "0bfbe711"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
" vis_pen = data(penguins) * mapping(:bill_length_mm, :bill_depth_mm) * visual(Scatter) \n",
|
||||
" draw(vis_pen)\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"### Adding color\n",
|
||||
"\n",
|
||||
"```julia\n",
|
||||
" draw(vis_pen)"
|
||||
],
|
||||
"id": "cc740038",
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Adding color\n"
|
||||
],
|
||||
"id": "3fd4693f"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"vis_pencolor = data(penguins) * mapping(:bill_length_mm, :bill_depth_mm, color = :species) * visual(Scatter)\n",
|
||||
"draw(vis_pencolor)\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"But that is a bit redundant, you can shortcut this, by reusing existing mappings / inputs:\n",
|
||||
"```julia\n",
|
||||
"draw(vis_pencolor)"
|
||||
],
|
||||
"id": "b8e715a3",
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"But that is a bit redundant, you can shortcut this, by reusing existing mappings / inputs:"
|
||||
],
|
||||
"id": "ca61723b"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"vis_pencolor2 = vis_pen * mapping(color=:species)\n",
|
||||
"draw(vis_pencolor2)\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"draw(vis_pencolor2)"
|
||||
],
|
||||
"id": "84f60a09",
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Why `Algebra`OfGraphics?\n",
|
||||
"\n",
|
||||
"Follows some algebraic rules of multiplying out sums\n",
|
||||
"\n",
|
||||
"`data * mapping * visual(Scatter+Lines)`\n",
|
||||
"\n",
|
||||
"```julia\n",
|
||||
"\n",
|
||||
" vis_pen = data(penguins) * mapping(:bill_length_mm, :bill_depth_mm) * visual(Scatter+Lines) \n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"### Faceting\n",
|
||||
"jl plt = penguin_bill * layers * mapping(color = :species, col = :sex)"
|
||||
"`data * mapping * (visual(Scatter)+visual(Lines))`\n"
|
||||
],
|
||||
"id": "3ead8444"
|
||||
"id": "cad8ff41"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"data(penguins) * mapping(:bill_length_mm, :bill_depth_mm) * (visual(Scatter)+visual(Lines)) |> draw"
|
||||
],
|
||||
"id": "84fc3a4e",
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Faceting"
|
||||
],
|
||||
"id": "1b7f38f7"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"data(penguins) * mapping(:bill_length_mm, :bill_depth_mm) * mapping(color = :species, col = :sex) |> draw"
|
||||
],
|
||||
"id": "90ba7bee",
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"data(penguins) * mapping(:bill_length_mm, :bill_depth_mm) * mapping(color = :species, col = :sex,row=:body_mass_g => x-> x>3500) |> draw"
|
||||
],
|
||||
"id": "84d76ff4",
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Linear & Non-linear summaries"
|
||||
],
|
||||
"id": "ed061ded"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"data(penguins) * mapping(:bill_length_mm, :bill_depth_mm, color=:species) * (linear() + visual(Scatter)) |> draw"
|
||||
],
|
||||
"id": "bfaf33f5",
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"data(penguins) * mapping(:bill_length_mm, :bill_depth_mm, color=:species) * (smooth() + visual(Scatter)) |> draw"
|
||||
],
|
||||
"id": "00aaa0bd",
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Interactivity\n",
|
||||
"\n",
|
||||
"With Makie.jl, two ways of interactivity:\n",
|
||||
"\n",
|
||||
"**Observables** - very general way, a little bit more verbose\n",
|
||||
"\n",
|
||||
"**Pluto.jl Sliders** - very simple, need to redraw plot everytime^[it is technically possible t combine Pluto with Observables, but it is a bit buggy] \n"
|
||||
],
|
||||
"id": "fb64ae39"
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
@ -1,7 +1,4 @@
|
||||
---
|
||||
|
||||
jupyter: julia-1.9
|
||||
---
|
||||
# Makie.jl
|
||||
|
||||
## Backends
|
||||
@ -13,9 +10,135 @@ Four backends:
|
||||
|
||||
I will use `GLMakie` or `CairoMakie`. To switch use `CairoMakie.activate!()`
|
||||
|
||||
## Standard plotting
|
||||
|
||||
```julia
|
||||
f = Figure()
|
||||
x = rand(100)
|
||||
y = rand(100)
|
||||
|
||||
scatter(f[1,1],x,y)
|
||||
lines(f[1,2],x,y)
|
||||
hist(f[2,1],x)
|
||||
density!(f[2,1],x) # inplace -> add to current plot
|
||||
stem(f[2,2],x)
|
||||
```
|
||||
|
||||
## Layouts for scientific figures
|
||||
|
||||
# Pluto.jl for easy interactivity
|
||||
Makie has the best layouting tool I have ever used. [full tutorial here](https://docs.makie.org/stable/tutorials/layout-tutorial/)
|
||||
|
||||
```julia
|
||||
f = Figure()
|
||||
|
||||
# we plan to generate two subfigures (with subplots each) - better to generate two "separate" layouts
|
||||
ga = f[1, 1] = GridLayout()
|
||||
gb = f[2, 1] = GridLayout()
|
||||
|
||||
axtop = Axis(ga[1,1])
|
||||
axmain = Axis(ga[2, 1], xlabel = "before", ylabel = "after")
|
||||
axright = Axis(ga[2, 2])
|
||||
|
||||
|
||||
labels = ["treatment", "placebo", "control"]
|
||||
d = randn(3, 100, 2) .+ [1, 3, 5]
|
||||
|
||||
for (label, col) in zip(labels, eachslice(d, dims = 1))
|
||||
scatter!(axmain, col, label = label)
|
||||
density!(axtop, col[:, 1])
|
||||
density!(axright, col[:, 2], direction = :y)
|
||||
end
|
||||
|
||||
linkyaxes!(axmain, axright)
|
||||
linkxaxes!(axmain, axtop)
|
||||
hidedecorations!(axtop, grid = false)
|
||||
hidedecorations!(axright, grid = false)
|
||||
|
||||
#--- add a legend
|
||||
leg = Legend(ga[1, 2], axmain)
|
||||
|
||||
# absolute size for now :shrug:
|
||||
leg.width =100
|
||||
leg.height =100
|
||||
|
||||
leg.tellwidth = true
|
||||
leg.tellheight = true
|
||||
|
||||
#----
|
||||
# second plot
|
||||
ax,h = heatmap(gb[1,1],rand(100,10),colorrange = [0,1])
|
||||
ax2,h2 = heatmap(gb[1,2],rand(100,10),colorrange = [0,1])
|
||||
cb = Colorbar(gb[1,3],h)
|
||||
cb.alignmode = Mixed(right=0)
|
||||
|
||||
#----
|
||||
# Labels
|
||||
Label(ga[1, 1, TopLeft()], "A1", font = :bold, padding = (0, 0, 5, 0))
|
||||
Label(ga[2, 1, TopLeft()], "A2", font = :bold, padding = (0, 0, 5, 0))
|
||||
Label(ga[2, 2, TopLeft()], "A3", font = :bold, padding = (0, 0, 5, 0))
|
||||
|
||||
Label(gb[1, 1, TopLeft()], "B", font = :bold, padding = (0, 0, 5, 0))
|
||||
|
||||
#---
|
||||
# top plot needs more space
|
||||
rowsize!(f.layout,2,Relative(0.3))
|
||||
|
||||
#---
|
||||
f
|
||||
```
|
||||
# Interactivity
|
||||
|
||||
With Makie.jl, two ways of interactivity:
|
||||
|
||||
**Observables** - very general way, a little bit more verbose
|
||||
|
||||
**Pluto.jl Sliders** - very simple, need to redraw plot everytime^[it is technically possible to combine Pluto with Observables, but it is a bit buggy]
|
||||
|
||||
|
||||
## Pluto.jl
|
||||
|
||||
### Installation / Start
|
||||
```julia
|
||||
]add Pluto
|
||||
Pluto.run()
|
||||
```
|
||||
::: {.callout-tip}
|
||||
If you need remote access, run it via `Pluto.run(host="0.0.0.0")`
|
||||
:::
|
||||
|
||||
### Sliders
|
||||
|
||||
A slider is defined like this:
|
||||
```julia
|
||||
@bind yourVarName PlutoUI.Slider(from:to) # from:step:to is optional, step by def 1
|
||||
```
|
||||
|
||||
if you move the slider, `yourVarName` + all cells that depend on that variable are automatically recalculated. Quick & dirty way to generate an interactive plot
|
||||
|
||||
## Bonus: Makie Interactivity
|
||||
|
||||
There is another way to get to interactivity. Using `Observables.jl`
|
||||
|
||||
To provide a simple example of the logic:
|
||||
```julia
|
||||
using GLMakie
|
||||
|
||||
x = rand(10_000)
|
||||
obs_ix = Observable(1) # index to plot until
|
||||
scatter(@lift(x[1:obs_ix])) # non-interactive example # <1>
|
||||
|
||||
f = Figure()
|
||||
obs_sl = GLMakie.Slider(f[2,1],range=1:length(x))
|
||||
y = @lift(x[1:$(obs_sl.value)])
|
||||
ax,s = scatter(f[1,1],y)
|
||||
xlims!(ax,0,length(x))
|
||||
|
||||
```
|
||||
1. `@lift` does the heavy lifting (hrhr) here. It adds a listener to `obs_ix`, whenever that value is changed, the value of the output of `@lift` is changed as well
|
||||
## Task 2: Interactivity
|
||||
[Click here for the next task](tasks.qmd#2)
|
||||
|
||||
|
||||
|
||||
# Grammar of Graphics
|
||||
|
||||
@ -24,15 +147,15 @@ The grammar of graphics is a convenient way to build common explorative plots.
|
||||
For example:
|
||||
|
||||
|
||||
#### For ggplot enthusiasts:
|
||||
## For ggplot enthusiasts
|
||||
You could use [TidierPlots.jl - a ggplot clone](https://github.com/TidierOrg/TidierPlots.jl)
|
||||
|
||||
Check out the [../../../../cheatsheets/ggplotAOG.qmd]:
|
||||
Check out the [AoG/GGplot cheatsheet](../../../../cheatsheets/ggplotAOG.qmd):
|
||||
|
||||
## AlgebraOfGraphics.jl
|
||||
|
||||
### Loading data
|
||||
```{julia}
|
||||
```julia
|
||||
using GLMakie # backend
|
||||
using AlgebraOfGraphics
|
||||
using PalmerPenguins, DataFrames # example dataset
|
||||
@ -58,20 +181,20 @@ Tidy data make your visualization life much easier as you will see!
|
||||
|
||||
`data * mapping * visual`
|
||||
|
||||
```{julia}
|
||||
```julia
|
||||
vis_pen = data(penguins) * mapping(:bill_length_mm, :bill_depth_mm) * visual(Scatter)
|
||||
draw(vis_pen)
|
||||
```
|
||||
|
||||
### Adding color
|
||||
|
||||
```{julia}
|
||||
```julia
|
||||
vis_pencolor = data(penguins) * mapping(:bill_length_mm, :bill_depth_mm, color = :species) * visual(Scatter)
|
||||
draw(vis_pencolor)
|
||||
|
||||
```
|
||||
But that is a bit redundant, you can shortcut this, by reusing existing mappings / inputs:
|
||||
```{julia}
|
||||
```julia
|
||||
vis_pencolor2 = vis_pen * mapping(color=:species)
|
||||
draw(vis_pencolor2)
|
||||
|
||||
@ -83,34 +206,30 @@ Follows some algebraic rules of multiplying out sums
|
||||
|
||||
`data * mapping * (visual(Scatter)+visual(Lines))`
|
||||
|
||||
```{julia}
|
||||
```julia
|
||||
|
||||
data(penguins) * mapping(:bill_length_mm, :bill_depth_mm) * (visual(Scatter)+visual(Lines)) |> draw
|
||||
```
|
||||
|
||||
### Faceting
|
||||
```{julia}
|
||||
```julia
|
||||
data(penguins) * mapping(:bill_length_mm, :bill_depth_mm) * mapping(color = :species, col = :sex) |> draw
|
||||
|
||||
```
|
||||
```{julia}
|
||||
```julia
|
||||
data(penguins) * mapping(:bill_length_mm, :bill_depth_mm) * mapping(color = :species, col = :sex,row=:body_mass_g => x-> x>3500) |> draw
|
||||
|
||||
```
|
||||
|
||||
### Linear & Non-linear summaries
|
||||
```{julia}
|
||||
```julia
|
||||
data(penguins) * mapping(:bill_length_mm, :bill_depth_mm, color=:species) * (linear() + visual(Scatter)) |> draw
|
||||
```
|
||||
```{julia}
|
||||
```julia
|
||||
data(penguins) * mapping(:bill_length_mm, :bill_depth_mm, color=:species) * (smooth() + visual(Scatter)) |> draw
|
||||
```
|
||||
|
||||
|
||||
# Interactivity
|
||||
## Task 3
|
||||
|
||||
With Makie.jl, two ways of interactivity:
|
||||
|
||||
**Observables** - very general way, a little bit more verbose
|
||||
|
||||
**Pluto.jl Sliders** - very simple, need to redraw plot everytime^[it is technically possible t combine Pluto with Observables, but it is a bit buggy]
|
||||
[Click here for the next task](tasks.qmd#3)
|
@ -0,0 +1,161 @@
|
||||
# Setting up Pluto.jl
|
||||
|
||||
Pluto is nice as you can prototype pretty fast.
|
||||
|
||||
::: callout-important
|
||||
Pluto.jl has its own dependency management included!
|
||||
|
||||
If you want to add packages that are not registered, you have to activate your own environment. For example
|
||||
|
||||
```julia
|
||||
using Pkg
|
||||
Pkg.activate(mktempdir())
|
||||
Pkg.add("/path/to/your/package/CoolPackage")
|
||||
Pkg.add(url="https://github.com/username/MyPackage.jl")
|
||||
|
||||
using CoolPackage,MyPackage
|
||||
```
|
||||
|
||||
:::
|
||||
|
||||
To run pluto in the first place use:
|
||||
|
||||
``` julia
|
||||
]add Pluto
|
||||
Pluto.run()
|
||||
```
|
||||
|
||||
|
||||
# Task 1: Visualize some statistic properties {#1}
|
||||
|
||||
## 1. Data
|
||||
|
||||
### Generate 500 normally distributed samples
|
||||
|
||||
::: callout-tip
|
||||
You might want to make your results reproducible by fixing some seeds for the random generators. The two most common random generators used in julia are `Random.MersenneTwister` and `StableRNGs.StableRNG` - For this execrise I would recommend the latter (even though MersenneTwister is much more common to be used), thus run:
|
||||
|
||||
``` julia
|
||||
using StableRNGs
|
||||
randn(StableRNG(1),100)
|
||||
```
|
||||
|
||||
to get 100 random numbers.
|
||||
:::
|
||||
|
||||
Scale the random numbers to fullfill `std(x) ≈ 10`
|
||||
|
||||
### functionize it
|
||||
Next wrap that code in a function `simulate` which takes two arguments, a random seed and the number of samples
|
||||
|
||||
## 2. cumulative mean
|
||||
Calculate the cumulative mean of a single simulation. save it to a variable
|
||||
|
||||
Note that there is no `cummean` function, but clever element-wise division in combination with `cumsum` should lead you there - or you just use a loop :shrug:
|
||||
|
||||
::: {.callout-tip collapse="true"}
|
||||
## click to show solution
|
||||
|
||||
`cumsum(x) ./ 1:length(x)`
|
||||
:::
|
||||
|
||||
## 3. Plotting!
|
||||
Now for your first plot. Use a `scatter` plot to visualize the cummulative mean output, if you do not generate a `Figure()` + `ax = f[1,1] = Axis(f)` manually, you can get it back by the scatter call. `f,ax,s = scatter()`. This is helpful as we later want to extend the `Axis` and `Figure` with other plot elements
|
||||
|
||||
Use `hlines!` to add a horizontal line at your "true" value
|
||||
|
||||
## 4. Subplot
|
||||
### simulate repeatedly
|
||||
Let's simulate 1000x datasets, each with a different seed, and take the mean over all simulated values
|
||||
|
||||
::: {.callout-tip collapse="true"}
|
||||
## click to show tip
|
||||
An easy way to call a function many times is to broadcast it on an array e.g. `1:1000` - you could also use `map` to do it, but I don't think it is as clear :)
|
||||
:::
|
||||
|
||||
|
||||
|
||||
::: {.callout-tip collapse="true"}
|
||||
## click to show solution
|
||||
|
||||
`simulate.(1:1000,nmax)`
|
||||
:::
|
||||
|
||||
### Mean it
|
||||
calculate the mean of each simulation
|
||||
|
||||
::: {.callout-tip collapse="true"}
|
||||
## click to show solution
|
||||
|
||||
```julia
|
||||
using Statistics
|
||||
mean.(simulate.(1:1000,nmax))
|
||||
|
||||
# or
|
||||
sum.(...) ./ nmax
|
||||
```
|
||||
:::
|
||||
|
||||
### Add it as a subplot
|
||||
We want to add a histogram of the 1000 means to the plot.
|
||||
|
||||
1. Add a new Axis to `f[1,2]`
|
||||
2. use it to plot the histogram of the means via `hist!` - don't forget to change the `direction=:x` to flip the histogram
|
||||
3. link the axes using `linkaxes`
|
||||
|
||||
## 5. Prettify it
|
||||
There are some simple tricks to make a plot look nicer:
|
||||
|
||||
- remove the "box" using `hidespines!(ax,:r,:t)
|
||||
- resize the right sub-plot to be smaller `colsize!` and `Relative(X)`
|
||||
- hide the x-grid (type `ax.`+ `TAB` to find all possible attributes)
|
||||
- hide the `xlabels` + `xticks` + `bottomspine` from the right subplot
|
||||
- add two Labels `(A)` and `(B)` to the plot
|
||||
- Bonus: use `color` to color the cummulative sum samples according to how many samples went into that sum. `colormap=:Reds` looks good to me!
|
||||
|
||||
::: {.callout-tip collapse="true"}
|
||||
## Bonus: Click for more fancy labels
|
||||
|
||||
You can create a slightly fancier label by adding a circle around it :)
|
||||
```julia
|
||||
Label(f[1,2,TopLeft()],"B",padding=[0,0,5,0])
|
||||
Label(f[1,2,TopLeft()],"⭕",padding=[0,0,8,0],fontsize=30)
|
||||
```
|
||||
:::
|
||||
|
||||
# Task 2: Interactivity! {#2}
|
||||
|
||||
|
||||
Using the `Pluto.jl` reactive backend, changing a value in some cell will automatically update all other cells - including plots.
|
||||
|
||||
We can use Sliders instead of fixing the parameters of the simulation
|
||||
|
||||
A slider is defined like this:
|
||||
```julia
|
||||
@bind yourVarName PlutoUI.Slider(from:to) # from:step:to is optional, step by def 1
|
||||
```
|
||||
|
||||
## Adding interactivity via sliders
|
||||
|
||||
1. Define a slider that controls the number of samples from 1:500
|
||||
2. Define a second slider that adds a constant offset to all values of the simulation simulation
|
||||
3. make sure to fix the x/y-limits to get a nice looking plot :-)
|
||||
|
||||
:::{.callout-tip collapse="true"}
|
||||
## Bonus: Advanced slider management
|
||||
|
||||
After understanding the slightly awkward syntax, the following gives a nice collection of Sliders, Checkboxes, Widgets etc. with at the same time being drag-and-dropable and in a sidebar. Neat!
|
||||
|
||||
```julia
|
||||
using PlutoExtras
|
||||
|
||||
PlutoExtras.BondTable([
|
||||
PlutoExtras.@BondsList "Sliders" let
|
||||
"name A" = @bind(varA,PlutoUI.Slider(1:500))
|
||||
"name B" = @bind(varB, PlutoUI.Slider(-5:5))
|
||||
end
|
||||
])
|
||||
```
|
||||
:::
|
||||
|
||||
# Task 3: AlgebraOfGraphics
|
Loading…
x
Reference in New Issue
Block a user