python-mastery/Exercises/ex5_3.md
2023-07-16 20:21:00 -05:00

102 lines
2.9 KiB
Markdown

\[ [Index](index.md) | [Exercise 5.2](ex5_2.md) | [Exercise 5.4](ex5_4.md) \]
# Exercise 5.3
*Objectives:*
- Higher order functions
*Files Modified:* `reader.py`
## (a) Using higher-order functions
At the moment, the `reader.py` program consists of two core functions, `csv_as_dicts()` and
`csv_as_instances()`. The code in these two functions is almost identical. For example:
```python
def csv_as_dicts(lines, types, *, headers=None):
'''
Convert lines of CSV data into a list of dictionaries
'''
records = []
rows = csv.reader(lines)
if headers is None:
headers = next(rows)
for row in rows:
record = { name: func(val)
for name, func, val in zip(headers, types, row) }
records.append(record)
return records
def csv_as_instances(lines, cls, *, headers=None):
'''
Convert lines of CSV data into a list of instances
'''
records = []
rows = csv.reader(lines)
if headers is None:
headers = next(rows)
for row in rows:
record = cls.from_row(row)
records.append(record)
return records
```
Unify the core of these functions into a single function `convert_csv()` that accepts a user-defined
conversion function as an argument. For example:
```python
>>> def make_dict(headers, row):
return dict(zip(headers, row))
>>> lines = open('Data/portfolio.csv')
>>> convert_csv(lines, make_dict)
[{'name': 'AA', 'shares': '100', 'price': '32.20'}, {'name': 'IBM', 'shares': '50', 'price': '91.10'},
{'name': 'CAT', 'shares': '150', 'price': '83.44'}, {'name': 'MSFT', 'shares': '200', 'price': '51.23'},
{'name': 'GE', 'shares': '95', 'price': '40.37'}, {'name': 'MSFT', 'shares': '50', 'price': '65.10'},
{'name': 'IBM', 'shares': '100', 'price': '70.44'}]
>>>
```
Rewrite the `csv_as_dicts()` and `csv_as_instances()` functions in terms of the new `convert_csv()`
function.
## (b) Mapping
One of the most common operations in functional programming is the `map()` operation that maps a function
to the values in a sequence. Python has a built-in `map()` function that does this. For
example:
```python
>>> nums = [1,2,3,4]
>>> squares = map(lambda x: x*x, nums)
>>> for n in squares:
print(n)
1
4
9
16
>>>
```
`map()` produces an iterator so if you want a list, you'll need to create it explicitly:
```python
>>> squares = list(map(lambda x: x*x, nums))
>>> squares
[1, 4, 9, 16]
>>>
```
Try to use `map()` in your `convert_csv()` function.
\[ [Solution](soln5_3.md) | [Index](index.md) | [Exercise 5.2](ex5_2.md) | [Exercise 5.4](ex5_4.md) \]
----
`>>>` Advanced Python Mastery
`...` A course by [dabeaz](https://www.dabeaz.com)
`...` Copyright 2007-2023
![](https://i.creativecommons.org/l/by-sa/4.0/88x31.png). This work is licensed under a [Creative Commons Attribution-ShareAlike 4.0 International License](http://creativecommons.org/licenses/by-sa/4.0/)