David Doblas Jiménez 86aff084d8 Clean-up
2021-09-20 18:08:16 +02:00

56 lines
1.6 KiB
Julia

#=
Created on 01 Aug 2021
@author: David Doblas Jiménez
@email: daviddoji@pm.me
Solution for Problem 18 of Project Euler
https://projecteuler.net/problem=18 =#
function Problem18()
#=
By starting at the top of the triangle below and moving to adjacent
numbers on the row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle above =#
triangle = [ # Mutable
[75],
[95,64],
[17,47,82],
[18,35,87,10],
[20, 4,82,47,65],
[19, 1,23,75, 3,34],
[88, 2,77,73, 7,63,67],
[99,65, 4,28, 6,16,70,92],
[41,41,26,56,83,40,80,70,33],
[41,48,72,33,47,32,37,16,94,29],
[53,71,44,65,25,43,91,52,97,51,14],
[70,11,33,28,77,73,17,78,39,68,17,57],
[91,71,52,38,17,14,91,43,58,50,27,29,48],
[63,66, 4,68,89,53,67,30,73,16,69,87,40,31],
[4,62,98,27,23, 9,70,98,73,93,38,53,60, 4,23],
]
len_triangle = length(triangle)
for i in len_triangle - 1:-1:1
for j in 1:length(triangle[i])
triangle[i][j] += max(triangle[i + 1][j], triangle[i + 1][j + 1])
end
end
return triangle[1][1]
end
println("Time to evaluate Problem 18:")
@time Problem18()
println("")
println("Result for Problem 18: ", Problem18())