#= Created on 01 Aug 2021 @author: David Doblas Jiménez @email: daviddoji@pm.me Solution for Problem 18 of Project Euler https://projecteuler.net/problem=18 =# function Problem18() #= By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5 9 3 That is, 3 + 7 + 4 + 9 = 23. Find the maximum total from top to bottom of the triangle above =# triangle = [ # Mutable [75], [95,64], [17,47,82], [18,35,87,10], [20, 4,82,47,65], [19, 1,23,75, 3,34], [88, 2,77,73, 7,63,67], [99,65, 4,28, 6,16,70,92], [41,41,26,56,83,40,80,70,33], [41,48,72,33,47,32,37,16,94,29], [53,71,44,65,25,43,91,52,97,51,14], [70,11,33,28,77,73,17,78,39,68,17,57], [91,71,52,38,17,14,91,43,58,50,27,29,48], [63,66, 4,68,89,53,67,30,73,16,69,87,40,31], [4,62,98,27,23, 9,70,98,73,93,38,53,60, 4,23], ] len_triangle = length(triangle) for i in len_triangle - 1:-1:1 for j in 1:length(triangle[i]) triangle[i][j] += max(triangle[i + 1][j], triangle[i + 1][j + 1]) end end return triangle[1][1] end println("Time to evaluate Problem 18:") @time Problem18() println("") println("Result for Problem 18: ", Problem18())