Solution to problem 42
This commit is contained in:
parent
3d157f1bfb
commit
f0efdb64c3
50
src/Python/Problem042.py
Normal file
50
src/Python/Problem042.py
Normal file
@ -0,0 +1,50 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Created on 26 Jul 2021
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for problem 42 of Project Euler
|
||||
https://projecteuler.net/problem=42
|
||||
"""
|
||||
|
||||
from utils import timeit
|
||||
|
||||
|
||||
@timeit("Problem 42")
|
||||
def compute():
|
||||
"""
|
||||
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1);
|
||||
so the first ten triangle numbers are:
|
||||
|
||||
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
|
||||
|
||||
By converting each letter in a word to a number corresponding to its alphabetical
|
||||
position and adding these values we form a word value. For example, the word value
|
||||
for SKY is 19 + 11 + 25 = 55 = t10. If the word value is a triangle number then we
|
||||
shall call the word a triangle word.
|
||||
|
||||
Using words.txt, a 16K text file containing nearly two-thousand common English words,
|
||||
how many are triangle words?
|
||||
"""
|
||||
|
||||
def triangle_number(num):
|
||||
return int(0.5*num*(num+1))
|
||||
|
||||
def word_to_value(word):
|
||||
return sum(ord(letter)-64 for letter in word)
|
||||
|
||||
triangular_numbers = [triangle_number(n) for n in range(27)]
|
||||
ans = 0
|
||||
with open("files/Problem42.txt", "r") as f:
|
||||
words = f.readline().strip('"').split('","')
|
||||
for word in words:
|
||||
if word_to_value(word) in triangular_numbers:
|
||||
ans += 1
|
||||
|
||||
return ans
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
print(f"Result for Problem 42: {compute()}")
|
Loading…
x
Reference in New Issue
Block a user