Solution to problem 21 in Julia
This commit is contained in:
parent
88285c1d74
commit
9cc30f5f84
55
src/Julia/Problem021.jl
Normal file
55
src/Julia/Problem021.jl
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
#=
|
||||||
|
Created on 05 Aug 2021
|
||||||
|
|
||||||
|
@author: David Doblas Jiménez
|
||||||
|
@email: daviddoji@pm.me
|
||||||
|
|
||||||
|
Solution for Problem 21 of Project Euler
|
||||||
|
https://projecteuler.net/problem=21 =#
|
||||||
|
|
||||||
|
|
||||||
|
function divisors(n)
|
||||||
|
divisors = Int64[1]
|
||||||
|
m = round(Int, n / 2)
|
||||||
|
for i in 2:m
|
||||||
|
if n % i == 0
|
||||||
|
push!(divisors, i)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
return divisors
|
||||||
|
end
|
||||||
|
|
||||||
|
function Problem21()
|
||||||
|
#=
|
||||||
|
Let d(n) be defined as the sum of proper divisors of n (numbers
|
||||||
|
less than n which divide evenly into n).
|
||||||
|
If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable
|
||||||
|
pair and each of a and b are called amicable numbers.
|
||||||
|
|
||||||
|
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22,
|
||||||
|
44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are
|
||||||
|
1, 2, 4, 71 and 142; so d(284) = 220.
|
||||||
|
|
||||||
|
Evaluate the sum of all the amicable numbers under 10000 =#
|
||||||
|
|
||||||
|
n = 9999
|
||||||
|
s = zeros(Int, n)
|
||||||
|
amicable = Int64[]
|
||||||
|
for i in 2:n
|
||||||
|
s[i] = sum(divisors(i))
|
||||||
|
end
|
||||||
|
|
||||||
|
for i in 2:n
|
||||||
|
if s[i] <= n && i != s[i] && i == s[s[i]]
|
||||||
|
push!(amicable, i)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
return sum(amicable)
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
println("Time to evaluate Problem 21:")
|
||||||
|
@time Problem21()
|
||||||
|
println("")
|
||||||
|
println("Result for Problem 21: ", Problem21())
|
Loading…
x
Reference in New Issue
Block a user