Solution to problem 21
This commit is contained in:
parent
4f96ef246f
commit
88285c1d74
42
src/Python/Problem021.py
Normal file
42
src/Python/Problem021.py
Normal file
@ -0,0 +1,42 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Created on 15 Sep 2018
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for problem 21 of Project Euler
|
||||
https://projecteuler.net/problem=21
|
||||
"""
|
||||
|
||||
from utils import timeit
|
||||
|
||||
def sum_divisors(n):
|
||||
return sum(i for i in range(1, n//2+1) if n%i==0)
|
||||
|
||||
@timeit("Problem 21")
|
||||
def compute():
|
||||
"""
|
||||
Let d(n) be defined as the sum of proper divisors of n (numbers
|
||||
less than n which divide evenly into n).
|
||||
If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable
|
||||
pair and each of a and b are called amicable numbers.
|
||||
|
||||
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22,
|
||||
44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are
|
||||
1, 2, 4, 71 and 142; so d(284) = 220.
|
||||
|
||||
Evaluate the sum of all the amicable numbers under 10000.
|
||||
"""
|
||||
n = 10000
|
||||
sum_amicable = 0
|
||||
for i in range(1, n):
|
||||
value = sum_divisors(i)
|
||||
if i != value and sum_divisors(value) == i:
|
||||
sum_amicable += i
|
||||
return sum_amicable
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
print(f"Result for Problem 21: {compute()}")
|
Loading…
x
Reference in New Issue
Block a user