30 KiB
100 numpy exercises
This is a collection of exercises that have been collected in the numpy mailing list, on stack overflow and in the numpy documentation. The goal of this collection is to offer a quick reference for both old and new users but also to provide a set of exercises for those who teach.
If you find an error or think you’ve a better way to solve some of them, feel free to open an issue at https://github.com/rougier/numpy-100. File automatically generated. See the documentation to update questions/answers/hints programmatically.
1. Import the numpy
package under the name np
(★☆☆)
hint: import … as
import numpy as np
2. Print the numpy version and the configuration (★☆☆)
hint: np.__version__, np.show_config)
print(np.__version__)
np.show_config()
3. Create a null vector of size 10 (★☆☆)
hint: np.zeros
= np.zeros(10)
Z print(Z)
4. How to find the memory size of any array (★☆☆)
hint: size, itemsize
= np.zeros((10,10))
Z print("%d bytes" % (Z.size * Z.itemsize))
5. How to get the documentation of the numpy add function from the command line? (★☆☆)
hint: np.info
%run `python -c "import numpy; numpy.info(numpy.add)"`
6. Create a null vector of size 10 but the fifth value which is 1 (★☆☆)
hint: array[4]
= np.zeros(10)
Z 4] = 1
Z[print(Z)
7. Create a vector with values ranging from 10 to 49 (★☆☆)
hint: arange
= np.arange(10,50)
Z print(Z)
8. Reverse a vector (first element becomes last) (★☆☆)
hint: array[::-1]
= np.arange(50)
Z = Z[::-1]
Z print(Z)
9. Create a 3x3 matrix with values ranging from 0 to 8 (★☆☆)
hint: reshape
= np.arange(9).reshape(3, 3)
Z print(Z)
10. Find indices of non-zero elements from [1,2,0,0,4,0] (★☆☆)
hint: np.nonzero
= np.nonzero([1,2,0,0,4,0])
nz print(nz)
11. Create a 3x3 identity matrix (★☆☆)
hint: np.eye
= np.eye(3)
Z print(Z)
12. Create a 3x3x3 array with random values (★☆☆)
hint: np.random.random
= np.random.random((3,3,3))
Z print(Z)
13. Create a 10x10 array with random values and find the minimum and maximum values (★☆☆)
hint: min, max
= np.random.random((10,10))
Z = Z.min(), Z.max()
Zmin, Zmax print(Zmin, Zmax)
14. Create a random vector of size 30 and find the mean value (★☆☆)
hint: mean
= np.random.random(30)
Z = Z.mean()
m print(m)
15. Create a 2d array with 1 on the border and 0 inside (★☆☆)
hint: array[1:-1, 1:-1]
= np.ones((10,10))
Z 1:-1,1:-1] = 0
Z[print(Z)
16. How to add a border (filled with 0’s) around an existing array? (★☆☆)
hint: np.pad
= np.ones((5,5))
Z = np.pad(Z, pad_width=1, mode='constant', constant_values=0)
Z print(Z)
# Using fancy indexing
0, -1]] = 0
Z[:, [0, -1], :] = 0
Z[[print(Z)
17. What is the result of the following expression? (★☆☆)
0 * np.nan
== np.nan
np.nan > np.nan
np.inf - np.nan
np.nan in set([np.nan])
np.nan 0.3 == 3 * 0.1
hint: NaN = not a number, inf = infinity
print(0 * np.nan)
print(np.nan == np.nan)
print(np.inf > np.nan)
print(np.nan - np.nan)
print(np.nan in set([np.nan]))
print(0.3 == 3 * 0.1)
18. Create a 5x5 matrix with values 1,2,3,4 just below the diagonal (★☆☆)
hint: np.diag
= np.diag(1+np.arange(4),k=-1)
Z print(Z)
19. Create a 8x8 matrix and fill it with a checkerboard pattern (★☆☆)
hint: array[::2]
= np.zeros((8,8),dtype=int)
Z 1::2,::2] = 1
Z[2,1::2] = 1
Z[::print(Z)
20. Consider a (6,7,8) shape array, what is the index (x,y,z) of the 100th element? (★☆☆)
hint: np.unravel_index
print(np.unravel_index(99,(6,7,8)))
21. Create a checkerboard 8x8 matrix using the tile function (★☆☆)
hint: np.tile
= np.tile( np.array([[0,1],[1,0]]), (4,4))
Z print(Z)
22. Normalize a 5x5 random matrix (★☆☆)
hint: (x -mean)/std
= np.random.random((5,5))
Z = (Z - np.mean (Z)) / (np.std (Z))
Z print(Z)
23. Create a custom dtype that describes a color as four unsigned bytes (RGBA) (★☆☆)
hint: np.dtype
= np.dtype([("r", np.ubyte),
color "g", np.ubyte),
("b", np.ubyte),
("a", np.ubyte)]) (
24. Multiply a 5x3 matrix by a 3x2 matrix (real matrix product) (★☆☆)
hint:
= np.dot(np.ones((5,3)), np.ones((3,2)))
Z print(Z)
# Alternative solution, in Python 3.5 and above
= np.ones((5,3)) @ np.ones((3,2))
Z print(Z)
25. Given a 1D array, negate all elements which are between 3 and 8, in place. (★☆☆)
hint: >, <
# Author: Evgeni Burovski
= np.arange(11)
Z 3 < Z) & (Z < 8)] *= -1
Z[(print(Z)
26. What is the output of the following script? (★☆☆)
# Author: Jake VanderPlas
print(sum(range(5),-1))
from numpy import *
print(sum(range(5),-1))
hint: np.sum
# Author: Jake VanderPlas
print(sum(range(5),-1))
from numpy import *
print(sum(range(5),-1))
27. Consider an integer vector Z, which of these expressions are legal? (★☆☆)
**Z
Z2 << Z >> 2
<- Z
Z 1j*Z
/1/1
Z<Z>Z Z
No hints provided...
**Z
Z2 << Z >> 2
<- Z
Z 1j*Z
/1/1
Z<Z>Z Z
28. What are the result of the following expressions? (★☆☆)
0) / np.array(0)
np.array(0) // np.array(0)
np.array(int).astype(float) np.array([np.nan]).astype(
No hints provided...
print(np.array(0) / np.array(0))
print(np.array(0) // np.array(0))
print(np.array([np.nan]).astype(int).astype(float))
29. How to round away from zero a float array ? (★☆☆)
hint: np.uniform, np.copysign, np.ceil, np.abs, np.where
# Author: Charles R Harris
= np.random.uniform(-10,+10,10)
Z print(np.copysign(np.ceil(np.abs(Z)), Z))
# More readable but less efficient
print(np.where(Z>0, np.ceil(Z), np.floor(Z)))
30. How to find common values between two arrays? (★☆☆)
hint: np.intersect1d
= np.random.randint(0,10,10)
Z1 = np.random.randint(0,10,10)
Z2 print(np.intersect1d(Z1,Z2))
31. How to ignore all numpy warnings (not recommended)? (★☆☆)
hint: np.seterr, np.errstate
# Suicide mode on
= np.seterr(all="ignore")
defaults = np.ones(1) / 0
Z
# Back to sanity
= np.seterr(**defaults)
_
# Equivalently with a context manager
with np.errstate(all="ignore"):
3) / 0 np.arange(
32. Is the following expressions true? (★☆☆)
-1) == np.emath.sqrt(-1) np.sqrt(
hint: imaginary number
-1) == np.emath.sqrt(-1) np.sqrt(
33. How to get the dates of yesterday, today and tomorrow? (★☆☆)
hint: np.datetime64, np.timedelta64
= np.datetime64('today') - np.timedelta64(1)
yesterday = np.datetime64('today')
today = np.datetime64('today') + np.timedelta64(1) tomorrow
34. How to get all the dates corresponding to the month of July 2016? (★★☆)
hint: np.arange(dtype=datetime64['D'])
= np.arange('2016-07', '2016-08', dtype='datetime64[D]')
Z print(Z)
35. How to compute ((A+B)*(-A/2)) in place (without copy)? (★★☆)
hint: np.add(out=), np.negative(out=), np.multiply(out=), np.divide(out=)
= np.ones(3)*1
A = np.ones(3)*2
B =B)
np.add(A,B,out2,out=A)
np.divide(A,=A)
np.negative(A,out=A) np.multiply(A,B,out
36. Extract the integer part of a random array of positive numbers using 4 different methods (★★☆)
hint: %, np.floor, astype, np.trunc
= np.random.uniform(0,10,10)
Z
print(Z - Z%1)
print(Z // 1)
print(np.floor(Z))
print(Z.astype(int))
print(np.trunc(Z))
37. Create a 5x5 matrix with row values ranging from 0 to 4 (★★☆)
hint: np.arange
= np.zeros((5,5))
Z += np.arange(5)
Z print(Z)
# without broadcasting
= np.tile(np.arange(0, 5), (5,1))
Z print(Z)
38. Consider a generator function that generates 10 integers and use it to build an array (★☆☆)
hint: np.fromiter
def generate():
for x in range(10):
yield x
= np.fromiter(generate(),dtype=float,count=-1)
Z print(Z)
39. Create a vector of size 10 with values ranging from 0 to 1, both excluded (★★☆)
hint: np.linspace
= np.linspace(0,1,11,endpoint=False)[1:]
Z print(Z)
40. Create a random vector of size 10 and sort it (★★☆)
hint: sort
= np.random.random(10)
Z
Z.sort()print(Z)
41. How to sum a small array faster than np.sum? (★★☆)
hint: np.add.reduce
# Author: Evgeni Burovski
= np.arange(10)
Z reduce(Z) np.add.
42. Consider two random array A and B, check if they are equal (★★☆)
hint: np.allclose, np.array_equal
= np.random.randint(0,2,5)
A = np.random.randint(0,2,5)
B
# Assuming identical shape of the arrays and a tolerance for the comparison of values
= np.allclose(A,B)
equal print(equal)
# Checking both the shape and the element values, no tolerance (values have to be exactly equal)
= np.array_equal(A,B)
equal print(equal)
43. Make an array immutable (read-only) (★★☆)
hint: flags.writeable
= np.zeros(10)
Z = False
Z.flags.writeable 0] = 1 Z[
44. Consider a random 10x2 matrix representing cartesian coordinates, convert them to polar coordinates (★★☆)
hint: np.sqrt, np.arctan2
= np.random.random((10,2))
Z = Z[:,0], Z[:,1]
X,Y = np.sqrt(X**2+Y**2)
R = np.arctan2(Y,X)
T print(R)
print(T)
45. Create random vector of size 10 and replace the maximum value by 0 (★★☆)
hint: argmax
= np.random.random(10)
Z = 0
Z[Z.argmax()] print(Z)
46.
Create a structured array with x
and y
coordinates covering the [0,1]x[0,1] area (★★☆)
hint: np.meshgrid
= np.zeros((5,5), [('x',float),('y',float)])
Z 'x'], Z['y'] = np.meshgrid(np.linspace(0,1,5),
Z[0,1,5))
np.linspace(print(Z)
47. Given two arrays, X and Y, construct the Cauchy matrix C (Cij =1/(xi - yj)) (★★☆)
hint: np.subtract.outer
# Author: Evgeni Burovski
= np.arange(8)
X = X + 0.5
Y = 1.0 / np.subtract.outer(X, Y)
C print(np.linalg.det(C))
48. Print the minimum and maximum representable value for each numpy scalar type (★★☆)
hint: np.iinfo, np.finfo, eps
for dtype in [np.int8, np.int32, np.int64]:
print(np.iinfo(dtype).min)
print(np.iinfo(dtype).max)
for dtype in [np.float32, np.float64]:
print(np.finfo(dtype).min)
print(np.finfo(dtype).max)
print(np.finfo(dtype).eps)
49. How to print all the values of an array? (★★☆)
hint: np.set_printoptions
=float("inf"))
np.set_printoptions(threshold= np.zeros((40,40))
Z print(Z)
50. How to find the closest value (to a given scalar) in a vector? (★★☆)
hint: argmin
= np.arange(100)
Z = np.random.uniform(0,100)
v = (np.abs(Z-v)).argmin()
index print(Z[index])
51. Create a structured array representing a position (x,y) and a color (r,g,b) (★★☆)
hint: dtype
= np.zeros(10, [ ('position', [ ('x', float, 1),
Z 'y', float, 1)]),
('color', [ ('r', float, 1),
('g', float, 1),
('b', float, 1)])])
(print(Z)
52. Consider a random vector with shape (100,2) representing coordinates, find point by point distances (★★☆)
hint: np.atleast_2d, T, np.sqrt
= np.random.random((10,2))
Z = np.atleast_2d(Z[:,0], Z[:,1])
X,Y = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2)
D print(D)
# Much faster with scipy
import scipy
# Thanks Gavin Heverly-Coulson (#issue 1)
import scipy.spatial
= np.random.random((10,2))
Z = scipy.spatial.distance.cdist(Z,Z)
D print(D)
53. How to convert a float (32 bits) array into an integer (32 bits) in place?
hint: view and [:] =
# Thanks Vikas (https://stackoverflow.com/a/10622758/5989906)
# & unutbu (https://stackoverflow.com/a/4396247/5989906)
= (np.random.rand(10)*100).astype(np.float32)
Z = Z.view(np.int32)
Y = Z
Y[:] print(Y)
54. How to read the following file? (★★☆)
1, 2, 3, 4, 5
6, , , 7, 8
, , 9,10,11
hint: np.genfromtxt
from io import StringIO
# Fake file
= StringIO('''1, 2, 3, 4, 5
s
6, , , 7, 8
, , 9,10,11
''')
= np.genfromtxt(s, delimiter=",", dtype=np.int)
Z print(Z)
55. What is the equivalent of enumerate for numpy arrays? (★★☆)
hint: np.ndenumerate, np.ndindex
= np.arange(9).reshape(3,3)
Z for index, value in np.ndenumerate(Z):
print(index, value)
for index in np.ndindex(Z.shape):
print(index, Z[index])
56. Generate a generic 2D Gaussian-like array (★★☆)
hint: np.meshgrid, np.exp
= np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10))
X, Y = np.sqrt(X*X+Y*Y)
D = 1.0, 0.0
sigma, mu = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) )
G print(G)
57. How to randomly place p elements in a 2D array? (★★☆)
hint: np.put, np.random.choice
# Author: Divakar
= 10
n = 3
p = np.zeros((n,n))
Z range(n*n), p, replace=False),1)
np.put(Z, np.random.choice(print(Z)
58. Subtract the mean of each row of a matrix (★★☆)
hint: mean(axis=,keepdims=)
# Author: Warren Weckesser
= np.random.rand(5, 10)
X
# Recent versions of numpy
= X - X.mean(axis=1, keepdims=True)
Y
# Older versions of numpy
= X - X.mean(axis=1).reshape(-1, 1)
Y
print(Y)
59. How to sort an array by the nth column? (★★☆)
hint: argsort
# Author: Steve Tjoa
= np.random.randint(0,10,(3,3))
Z print(Z)
print(Z[Z[:,1].argsort()])
60. How to tell if a given 2D array has null columns? (★★☆)
hint: any, ~
# Author: Warren Weckesser
= np.random.randint(0,3,(3,10))
Z print((~Z.any(axis=0)).any())
61. Find the nearest value from a given value in an array (★★☆)
hint: np.abs, argmin, flat
= np.random.uniform(0,1,10)
Z = 0.5
z = Z.flat[np.abs(Z - z).argmin()]
m print(m)
62. Considering two arrays with shape (1,3) and (3,1), how to compute their sum using an iterator? (★★☆)
hint: np.nditer
= np.arange(3).reshape(3,1)
A = np.arange(3).reshape(1,3)
B = np.nditer([A,B,None])
it for x,y,z in it: z[...] = x + y
print(it.operands[2])
63. Create an array class that has a name attribute (★★☆)
hint: class method
class NamedArray(np.ndarray):
def __new__(cls, array, name="no name"):
= np.asarray(array).view(cls)
obj = name
obj.name return obj
def __array_finalize__(self, obj):
if obj is None: return
self.info = getattr(obj, 'name', "no name")
= NamedArray(np.arange(10), "range_10")
Z print (Z.name)
64. Consider a given vector, how to add 1 to each element indexed by a second vector (be careful with repeated indices)? (★★★)
hint: np.bincount | np.add.at
# Author: Brett Olsen
= np.ones(10)
Z = np.random.randint(0,len(Z),20)
I += np.bincount(I, minlength=len(Z))
Z print(Z)
# Another solution
# Author: Bartosz Telenczuk
1)
np.add.at(Z, I, print(Z)
65. How to accumulate elements of a vector (X) to an array (F) based on an index list (I)? (★★★)
hint: np.bincount
# Author: Alan G Isaac
= [1,2,3,4,5,6]
X = [1,3,9,3,4,1]
I = np.bincount(I,X)
F print(F)
66. Considering a (w,h,3) image of (dtype=ubyte), compute the number of unique colors (★★☆)
hint: np.unique
# Author: Fisher Wang
= 256, 256
w, h = np.random.randint(0, 4, (h, w, 3)).astype(np.ubyte)
I = np.unique(I.reshape(-1, 3), axis=0)
colors = len(colors)
n print(n)
# Faster version
# Author: Mark Setchell
# https://stackoverflow.com/a/59671950/2836621
= 256, 256
w, h = np.random.randint(0,4,(h,w,3), dtype=np.uint8)
I
# View each pixel as a single 24-bit integer, rather than three 8-bit bytes
= np.dot(I.astype(np.uint32),[1,256,65536])
I24
# Count unique colours
= len(np.unique(I24))
n print(n)
67. Considering a four dimensions array, how to get sum over the last two axis at once? (★★★)
hint: sum(axis=(-2,-1))
= np.random.randint(0,10,(3,4,3,4))
A # solution by passing a tuple of axes (introduced in numpy 1.7.0)
sum = A.sum(axis=(-2,-1))
print(sum)
# solution by flattening the last two dimensions into one
# (useful for functions that don't accept tuples for axis argument)
sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)
print(sum)
68. Considering a one-dimensional vector D, how to compute means of subsets of D using a vector S of same size describing subset indices? (★★★)
hint: np.bincount
# Author: Jaime Fernández del Río
= np.random.uniform(0,1,100)
D = np.random.randint(0,10,100)
S = np.bincount(S, weights=D)
D_sums = np.bincount(S)
D_counts = D_sums / D_counts
D_means print(D_means)
# Pandas solution as a reference due to more intuitive code
import pandas as pd
print(pd.Series(D).groupby(S).mean())
69. How to get the diagonal of a dot product? (★★★)
hint: np.diag
# Author: Mathieu Blondel
= np.random.uniform(0,1,(5,5))
A = np.random.uniform(0,1,(5,5))
B
# Slow version
np.diag(np.dot(A, B))
# Fast version
sum(A * B.T, axis=1)
np.
# Faster version
"ij,ji->i", A, B) np.einsum(
70. Consider the vector [1, 2, 3, 4, 5], how to build a new vector with 3 consecutive zeros interleaved between each value? (★★★)
hint: array[::4]
# Author: Warren Weckesser
= np.array([1,2,3,4,5])
Z = 3
nz = np.zeros(len(Z) + (len(Z)-1)*(nz))
Z0 +1] = Z
Z0[::nzprint(Z0)
71. Consider an array of dimension (5,5,3), how to mulitply it by an array with dimensions (5,5)? (★★★)
hint: array[:, :, None]
= np.ones((5,5,3))
A = 2*np.ones((5,5))
B print(A * B[:,:,None])
72. How to swap two rows of an array? (★★★)
hint: array[[]] = array[[]]
# Author: Eelco Hoogendoorn
= np.arange(25).reshape(5,5)
A 0,1]] = A[[1,0]]
A[[print(A)
73. Consider a set of 10 triplets describing 10 triangles (with shared vertices), find the set of unique line segments composing all the triangles (★★★)
hint: repeat, np.roll, np.sort, view, np.unique
# Author: Nicolas P. Rougier
= np.random.randint(0,100,(10,3))
faces = np.roll(faces.repeat(2,axis=1),-1,axis=1)
F = F.reshape(len(F)*3,2)
F = np.sort(F,axis=1)
F = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] )
G = np.unique(G)
G print(G)
74. Given a sorted array C that corresponds to a bincount, how to produce an array A such that np.bincount(A) == C? (★★★)
hint: np.repeat
# Author: Jaime Fernández del Río
= np.bincount([1,1,2,3,4,4,6])
C = np.repeat(np.arange(len(C)), C)
A print(A)
75. How to compute averages using a sliding window over an array? (★★★)
hint: np.cumsum
# Author: Jaime Fernández del Río
def moving_average(a, n=3) :
= np.cumsum(a, dtype=float)
ret = ret[n:] - ret[:-n]
ret[n:] return ret[n - 1:] / n
= np.arange(20)
Z print(moving_average(Z, n=3))
76. Consider a one-dimensional array Z, build a two-dimensional array whose first row is (Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last row should be (Z[-3],Z[-2],Z[-1]) (★★★)
hint: from numpy.lib import stride_tricks
# Author: Joe Kington / Erik Rigtorp
from numpy.lib import stride_tricks
def rolling(a, window):
= (a.size - window + 1, window)
shape = (a.strides[0], a.strides[0])
strides return stride_tricks.as_strided(a, shape=shape, strides=strides)
= rolling(np.arange(10), 3)
Z print(Z)
77. How to negate a boolean, or to change the sign of a float inplace? (★★★)
hint: np.logical_not, np.negative
# Author: Nathaniel J. Smith
= np.random.randint(0,2,100)
Z =Z)
np.logical_not(Z, out
= np.random.uniform(-1.0,1.0,100)
Z =Z) np.negative(Z, out
78. Consider 2 sets of points P0,P1 describing lines (2d) and a point p, how to compute distance from p to each line i (P0[i],P1[i])? (★★★)
No hints provided...
def distance(P0, P1, p):
= P1 - P0
T = (T**2).sum(axis=1)
L = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
U = U.reshape(len(U),1)
U = P0 + U*T - p
D return np.sqrt((D**2).sum(axis=1))
= np.random.uniform(-10,10,(10,2))
P0 = np.random.uniform(-10,10,(10,2))
P1 = np.random.uniform(-10,10,( 1,2))
p print(distance(P0, P1, p))
79. Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i])? (★★★)
No hints provided...
# Author: Italmassov Kuanysh
# based on distance function from previous question
= np.random.uniform(-10, 10, (10,2))
P0 = np.random.uniform(-10,10,(10,2))
P1 = np.random.uniform(-10, 10, (10,2))
p print(np.array([distance(P0,P1,p_i) for p_i in p]))
80.
Consider an arbitrary array, write a function that extract a subpart
with a fixed shape and centered on a given element (pad with a
fill
value when necessary) (★★★)
hint: minimum maximum
# Author: Nicolas Rougier
= np.random.randint(0,10,(10,10))
Z = (5,5)
shape = 0
fill = (1,1)
position
= np.ones(shape, dtype=Z.dtype)*fill
R = np.array(list(position)).astype(int)
P = np.array(list(R.shape)).astype(int)
Rs = np.array(list(Z.shape)).astype(int)
Zs
= np.zeros((len(shape),)).astype(int)
R_start = np.array(list(shape)).astype(int)
R_stop = (P-Rs//2)
Z_start = (P+Rs//2)+Rs%2
Z_stop
= (R_start - np.minimum(Z_start,0)).tolist()
R_start = (np.maximum(Z_start,0)).tolist()
Z_start = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
R_stop = (np.minimum(Z_stop,Zs)).tolist()
Z_stop
= [slice(start,stop) for start,stop in zip(R_start,R_stop)]
r = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]
z = Z[z]
R[r] print(Z)
print(R)
81. Consider an array Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14], how to generate an array R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], …, [11,12,13,14]]? (★★★)
hint: stride_tricks.as_strided
# Author: Stefan van der Walt
= np.arange(1,15,dtype=np.uint32)
Z = stride_tricks.as_strided(Z,(11,4),(4,4))
R print(R)
82. Compute a matrix rank (★★★)
hint: np.linalg.svd
# Author: Stefan van der Walt
= np.random.uniform(0,1,(10,10))
Z = np.linalg.svd(Z) # Singular Value Decomposition
U, S, V = np.sum(S > 1e-10)
rank print(rank)
83. How to find the most frequent value in an array?
hint: np.bincount, argmax
= np.random.randint(0,10,50)
Z print(np.bincount(Z).argmax())
84. Extract all the contiguous 3x3 blocks from a random 10x10 matrix (★★★)
hint: stride_tricks.as_strided
# Author: Chris Barker
= np.random.randint(0,5,(10,10))
Z = 3
n = 1 + (Z.shape[0]-3)
i = 1 + (Z.shape[1]-3)
j = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides)
C print(C)
85. Create a 2D array subclass such that Z[i,j] == Z[j,i] (★★★)
hint: class method
# Author: Eric O. Lebigot
# Note: only works for 2d array and value setting using indices
class Symetric(np.ndarray):
def __setitem__(self, index, value):
= index
i,j super(Symetric, self).__setitem__((i,j), value)
super(Symetric, self).__setitem__((j,i), value)
def symetric(Z):
return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric)
= symetric(np.random.randint(0,10,(5,5)))
S 2,3] = 42
S[print(S)
86. Consider a set of p matrices wich shape (n,n) and a set of p vectors with shape (n,1). How to compute the sum of of the p matrix products at once? (result has shape (n,1)) (★★★)
hint: np.tensordot
# Author: Stefan van der Walt
= 10, 20
p, n = np.ones((p,n,n))
M = np.ones((p,n,1))
V = np.tensordot(M, V, axes=[[0, 2], [0, 1]])
S print(S)
# It works, because:
# M is (p,n,n)
# V is (p,n,1)
# Thus, summing over the paired axes 0 and 0 (of M and V independently),
# and 2 and 1, to remain with a (n,1) vector.
87. Consider a 16x16 array, how to get the block-sum (block size is 4x4)? (★★★)
hint: np.add.reduceat
# Author: Robert Kern
= np.ones((16,16))
Z = 4
k = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0),
S 0, Z.shape[1], k), axis=1)
np.arange(print(S)
# alternative solution:
# Author: Sebastian Wallkötter (@FirefoxMetzger)
= np.ones((16,16))
Z = 4
k
= np.lib.stride_tricks.sliding_window_view(Z, (k, k))
windows = windows[::k, ::k, ...].sum(axis=(-2, -1)) S
88. How to implement the Game of Life using numpy arrays? (★★★)
No hints provided...
# Author: Nicolas Rougier
def iterate(Z):
# Count neighbours
= (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] +
N 1:-1,0:-2] + Z[1:-1,2:] +
Z[2: ,0:-2] + Z[2: ,1:-1] + Z[2: ,2:])
Z[
# Apply rules
= (N==3) & (Z[1:-1,1:-1]==0)
birth = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1)
survive = 0
Z[...] 1:-1,1:-1][birth | survive] = 1
Z[return Z
= np.random.randint(0,2,(50,50))
Z for i in range(100): Z = iterate(Z)
print(Z)
89. How to get the n largest values of an array (★★★)
hint: np.argsort | np.argpartition
= np.arange(10000)
Z
np.random.shuffle(Z)= 5
n
# Slow
print (Z[np.argsort(Z)[-n:]])
# Fast
print (Z[np.argpartition(-Z,n)[:n]])
90. Given an arbitrary number of vectors, build the cartesian product (every combinations of every item) (★★★)
hint: np.indices
# Author: Stefan Van der Walt
def cartesian(arrays):
= [np.asarray(a) for a in arrays]
arrays = (len(x) for x in arrays)
shape
= np.indices(shape, dtype=int)
ix = ix.reshape(len(arrays), -1).T
ix
for n, arr in enumerate(arrays):
= arrays[n][ix[:, n]]
ix[:, n]
return ix
print (cartesian(([1, 2, 3], [4, 5], [6, 7])))
91. How to create a record array from a regular array? (★★★)
hint: np.core.records.fromarrays
= np.array([("Hello", 2.5, 3),
Z "World", 3.6, 2)])
(= np.core.records.fromarrays(Z.T,
R ='col1, col2, col3',
names= 'S8, f8, i8')
formats print(R)
92. Consider a large vector Z, compute Z to the power of 3 using 3 different methods (★★★)
hint: np.power, *, np.einsum
# Author: Ryan G.
= np.random.rand(int(5e7))
x
%timeit np.power(x,3)
%timeit x*x*x
%timeit np.einsum('i,i,i->i',x,x,x)
93. Consider two arrays A and B of shape (8,3) and (2,2). How to find rows of A that contain elements of each row of B regardless of the order of the elements in B? (★★★)
hint: np.where
# Author: Gabe Schwartz
= np.random.randint(0,5,(8,3))
A = np.random.randint(0,5,(2,2))
B
= (A[..., np.newaxis, np.newaxis] == B)
C = np.where(C.any((3,1)).all(1))[0]
rows print(rows)
94. Considering a 10x3 matrix, extract rows with unequal values (e.g. [2,2,3]) (★★★)
No hints provided...
# Author: Robert Kern
= np.random.randint(0,5,(10,3))
Z print(Z)
# solution for arrays of all dtypes (including string arrays and record arrays)
= np.all(Z[:,1:] == Z[:,:-1], axis=1)
E = Z[~E]
U print(U)
# soluiton for numerical arrays only, will work for any number of columns in Z
= Z[Z.max(axis=1) != Z.min(axis=1),:]
U print(U)
95. Convert a vector of ints into a matrix binary representation (★★★)
hint: np.unpackbits
# Author: Warren Weckesser
= np.array([0, 1, 2, 3, 15, 16, 32, 64, 128])
I = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int)
B print(B[:,::-1])
# Author: Daniel T. McDonald
= np.array([0, 1, 2, 3, 15, 16, 32, 64, 128], dtype=np.uint8)
I print(np.unpackbits(I[:, np.newaxis], axis=1))
96. Given a two dimensional array, how to extract unique rows? (★★★)
hint: np.ascontiguousarray | np.unique
# Author: Jaime Fernández del Río
= np.random.randint(0,2,(6,3))
Z = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))
T = np.unique(T, return_index=True)
_, idx = Z[idx]
uZ print(uZ)
# Author: Andreas Kouzelis
# NumPy >= 1.13
= np.unique(Z, axis=0)
uZ print(uZ)
97. Considering 2 vectors A & B, write the einsum equivalent of inner, outer, sum, and mul function (★★★)
hint: np.einsum
# Author: Alex Riley
# Make sure to read: http://ajcr.net/Basic-guide-to-einsum/
= np.random.uniform(0,1,10)
A = np.random.uniform(0,1,10)
B
'i->', A) # np.sum(A)
np.einsum('i,i->i', A, B) # A * B
np.einsum('i,i', A, B) # np.inner(A, B)
np.einsum('i,j->ij', A, B) # np.outer(A, B) np.einsum(
98. Considering a path described by two vectors (X,Y), how to sample it using equidistant samples (★★★)?
hint: np.cumsum, np.interp
# Author: Bas Swinckels
= np.arange(0, 10*np.pi, 0.1)
phi = 1
a = a*phi*np.cos(phi)
x = a*phi*np.sin(phi)
y
= (np.diff(x)**2 + np.diff(y)**2)**.5 # segment lengths
dr = np.zeros_like(x)
r 1:] = np.cumsum(dr) # integrate path
r[= np.linspace(0, r.max(), 200) # regular spaced path
r_int = np.interp(r_int, r, x) # integrate path
x_int = np.interp(r_int, r, y) y_int
99. Given an integer n and a 2D array X, select from X the rows which can be interpreted as draws from a multinomial distribution with n degrees, i.e., the rows which only contain integers and which sum to n. (★★★)
hint: np.logical_and.reduce, np.mod
# Author: Evgeni Burovski
= np.asarray([[1.0, 0.0, 3.0, 8.0],
X 2.0, 0.0, 1.0, 1.0],
[1.5, 2.5, 1.0, 0.0]])
[= 4
n = np.logical_and.reduce(np.mod(X, 1) == 0, axis=-1)
M &= (X.sum(axis=-1) == n)
M print(X[M])
100. Compute bootstrapped 95% confidence intervals for the mean of a 1D array X (i.e., resample the elements of an array with replacement N times, compute the mean of each sample, and then compute percentiles over the means). (★★★)
hint: np.percentile
# Author: Jessica B. Hamrick
= np.random.randn(100) # random 1D array
X = 1000 # number of bootstrap samples
N = np.random.randint(0, X.size, (N, X.size))
idx = X[idx].mean(axis=1)
means = np.percentile(means, [2.5, 97.5])
confint print(confint)