Merge branch 'rougier:master' into typo_fix
This commit is contained in:
commit
7022d36e7a
File diff suppressed because it is too large
Load Diff
@ -96,15 +96,6 @@ print(Z)
|
||||
Z = np.random.random((3,3,3))
|
||||
print(Z)
|
||||
```
|
||||
`hint: np.random.default_rng().random`
|
||||
```python
|
||||
# Author: KnightSnape
|
||||
|
||||
rng = np.random.default_rng()
|
||||
Z = rng.random((3, 3, 3))
|
||||
print(Z)
|
||||
```
|
||||
|
||||
#### 13. Create a 10x10 array with random values and find the minimum and maximum values (★☆☆)
|
||||
`hint: min, max`
|
||||
|
||||
@ -879,7 +870,27 @@ np.negative(Z, out=Z)
|
||||
`No hints provided...`
|
||||
|
||||
```python
|
||||
def distance(P0, P1, p):
|
||||
P0 = np.random.uniform(-10,10,(10,2))
|
||||
P1 = np.random.uniform(-10,10,(10,2))
|
||||
p = np.random.uniform(-10,10,( 1,2))
|
||||
|
||||
def distance_faster(P0,P1,p):
|
||||
#Author: Hemanth Pasupuleti
|
||||
#Reference: https://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
|
||||
|
||||
v = P1- P0
|
||||
v[:,[0,1]] = v[:,[1,0]]
|
||||
v[:,1]*=-1
|
||||
norm = np.linalg.norm(v,axis=1)
|
||||
r = P0 - p
|
||||
d = np.abs(np.einsum("ij,ij->i",r,v)) / norm
|
||||
|
||||
return d
|
||||
|
||||
print(distance_faster(P0, P1, p))
|
||||
|
||||
##--------------- OR ---------------##
|
||||
def distance_slower(P0, P1, p):
|
||||
T = P1 - P0
|
||||
L = (T**2).sum(axis=1)
|
||||
U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
|
||||
@ -887,10 +898,7 @@ def distance(P0, P1, p):
|
||||
D = P0 + U*T - p
|
||||
return np.sqrt((D**2).sum(axis=1))
|
||||
|
||||
P0 = np.random.uniform(-10,10,(10,2))
|
||||
P1 = np.random.uniform(-10,10,(10,2))
|
||||
p = np.random.uniform(-10,10,( 1,2))
|
||||
print(distance(P0, P1, p))
|
||||
print(distance_slower(P0, P1, p))
|
||||
```
|
||||
#### 79. Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i])? (★★★)
|
||||
`No hints provided...`
|
||||
@ -956,8 +964,8 @@ Z_start = (np.maximum(Z_start,0)).tolist()
|
||||
R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
|
||||
Z_stop = (np.minimum(Z_stop,Zs)).tolist()
|
||||
|
||||
r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]
|
||||
z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]
|
||||
r = tuple([slice(start,stop) for start,stop in zip(R_start,R_stop)])
|
||||
z = tuple([slice(start,stop) for start,stop in zip(Z_start,Z_stop)])
|
||||
R[r] = Z[z]
|
||||
print(Z)
|
||||
print(R)
|
||||
|
||||
@ -870,7 +870,27 @@ np.negative(Z, out=Z)
|
||||
|
||||
|
||||
```python
|
||||
def distance(P0, P1, p):
|
||||
P0 = np.random.uniform(-10,10,(10,2))
|
||||
P1 = np.random.uniform(-10,10,(10,2))
|
||||
p = np.random.uniform(-10,10,( 1,2))
|
||||
|
||||
def distance_faster(P0,P1,p):
|
||||
#Author: Hemanth Pasupuleti
|
||||
#Reference: https://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
|
||||
|
||||
v = P1- P0
|
||||
v[:,[0,1]] = v[:,[1,0]]
|
||||
v[:,1]*=-1
|
||||
norm = np.linalg.norm(v,axis=1)
|
||||
r = P0 - p
|
||||
d = np.abs(np.einsum("ij,ij->i",r,v)) / norm
|
||||
|
||||
return d
|
||||
|
||||
print(distance_faster(P0, P1, p))
|
||||
|
||||
##--------------- OR ---------------##
|
||||
def distance_slower(P0, P1, p):
|
||||
T = P1 - P0
|
||||
L = (T**2).sum(axis=1)
|
||||
U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
|
||||
@ -878,10 +898,7 @@ def distance(P0, P1, p):
|
||||
D = P0 + U*T - p
|
||||
return np.sqrt((D**2).sum(axis=1))
|
||||
|
||||
P0 = np.random.uniform(-10,10,(10,2))
|
||||
P1 = np.random.uniform(-10,10,(10,2))
|
||||
p = np.random.uniform(-10,10,( 1,2))
|
||||
print(distance(P0, P1, p))
|
||||
print(distance_slower(P0, P1, p))
|
||||
```
|
||||
#### 79. Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i])? (★★★)
|
||||
|
||||
@ -947,8 +964,8 @@ Z_start = (np.maximum(Z_start,0)).tolist()
|
||||
R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
|
||||
Z_stop = (np.minimum(Z_stop,Zs)).tolist()
|
||||
|
||||
r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]
|
||||
z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]
|
||||
r = tuple([slice(start,stop) for start,stop in zip(R_start,R_stop)])
|
||||
z = tuple([slice(start,stop) for start,stop in zip(Z_start,Z_stop)])
|
||||
R[r] = Z[z]
|
||||
print(Z)
|
||||
print(R)
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ea6cbc4b",
|
||||
"id": "738eba3f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 100 numpy exercises\n",
|
||||
@ -18,7 +18,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "354a533b",
|
||||
"id": "f65f901e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"File automatically generated. See the documentation to update questions/answers/hints programmatically."
|
||||
@ -26,7 +26,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9efa41bf",
|
||||
"id": "15045647",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Run the `initialize.py` module, then call a random question with `pick()` an hint towards its solution with\n",
|
||||
@ -36,7 +36,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1a6e8fdb",
|
||||
"id": "0d23aa5b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@ -46,7 +46,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d1e7d785",
|
||||
"id": "4a6a613b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
||||
@ -1090,7 +1090,27 @@ Consider 2 sets of points P0,P1 describing lines (2d) and a point p, how to comp
|
||||
No hints provided...
|
||||
|
||||
< a78
|
||||
def distance(P0, P1, p):
|
||||
P0 = np.random.uniform(-10,10,(10,2))
|
||||
P1 = np.random.uniform(-10,10,(10,2))
|
||||
p = np.random.uniform(-10,10,( 1,2))
|
||||
|
||||
def distance_faster(P0,P1,p):
|
||||
#Author: Hemanth Pasupuleti
|
||||
#Reference: https://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
|
||||
|
||||
v = P1- P0
|
||||
v[:,[0,1]] = v[:,[1,0]]
|
||||
v[:,1]*=-1
|
||||
norm = np.linalg.norm(v,axis=1)
|
||||
r = P0 - p
|
||||
d = np.abs(np.einsum("ij,ij->i",r,v)) / norm
|
||||
|
||||
return d
|
||||
|
||||
print(distance_faster(P0, P1, p))
|
||||
|
||||
##--------------- OR ---------------##
|
||||
def distance_slower(P0, P1, p):
|
||||
T = P1 - P0
|
||||
L = (T**2).sum(axis=1)
|
||||
U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
|
||||
@ -1098,10 +1118,7 @@ def distance(P0, P1, p):
|
||||
D = P0 + U*T - p
|
||||
return np.sqrt((D**2).sum(axis=1))
|
||||
|
||||
P0 = np.random.uniform(-10,10,(10,2))
|
||||
P1 = np.random.uniform(-10,10,(10,2))
|
||||
p = np.random.uniform(-10,10,( 1,2))
|
||||
print(distance(P0, P1, p))
|
||||
print(distance_slower(P0, P1, p))
|
||||
|
||||
< q79
|
||||
Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i])? (★★★)
|
||||
@ -1173,8 +1190,8 @@ Z_start = (np.maximum(Z_start,0)).tolist()
|
||||
R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
|
||||
Z_stop = (np.minimum(Z_stop,Zs)).tolist()
|
||||
|
||||
r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]
|
||||
z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]
|
||||
r = tuple([slice(start,stop) for start,stop in zip(R_start,R_stop)])
|
||||
z = tuple([slice(start,stop) for start,stop in zip(Z_start,Z_stop)])
|
||||
R[r] = Z[z]
|
||||
print(Z)
|
||||
print(R)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user