solutions update from 2bd3a6d

This commit is contained in:
rougier 2025-07-28 09:28:51 +00:00 committed by github-actions[bot]
parent 2bd3a6dcf7
commit 7bd00d196d
4 changed files with 253 additions and 219 deletions

File diff suppressed because it is too large Load Diff

View File

@ -870,7 +870,27 @@ np.negative(Z, out=Z)
`No hints provided...`
```python
def distance(P0, P1, p):
P0 = np.random.uniform(-10,10,(10,2))
P1 = np.random.uniform(-10,10,(10,2))
p = np.random.uniform(-10,10,( 1,2))
def distance_faster(P0,P1,p):
#Author: Hemanth Pasupuleti
#Reference: https://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
v = P1- P0
v[:,[0,1]] = v[:,[1,0]]
v[:,1]*=-1
norm = np.linalg.norm(v,axis=1)
r = P0 - p
d = np.abs(np.einsum("ij,ij->i",r,v)) / norm
return d
print(distance_faster(P0, P1, p))
##--------------- OR ---------------##
def distance_slower(P0, P1, p):
T = P1 - P0
L = (T**2).sum(axis=1)
U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
@ -878,10 +898,7 @@ def distance(P0, P1, p):
D = P0 + U*T - p
return np.sqrt((D**2).sum(axis=1))
P0 = np.random.uniform(-10,10,(10,2))
P1 = np.random.uniform(-10,10,(10,2))
p = np.random.uniform(-10,10,( 1,2))
print(distance(P0, P1, p))
print(distance_slower(P0, P1, p))
```
#### 79. Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i])? (★★★)
`No hints provided...`

View File

@ -870,7 +870,27 @@ np.negative(Z, out=Z)
```python
def distance(P0, P1, p):
P0 = np.random.uniform(-10,10,(10,2))
P1 = np.random.uniform(-10,10,(10,2))
p = np.random.uniform(-10,10,( 1,2))
def distance_faster(P0,P1,p):
#Author: Hemanth Pasupuleti
#Reference: https://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
v = P1- P0
v[:,[0,1]] = v[:,[1,0]]
v[:,1]*=-1
norm = np.linalg.norm(v,axis=1)
r = P0 - p
d = np.abs(np.einsum("ij,ij->i",r,v)) / norm
return d
print(distance_faster(P0, P1, p))
##--------------- OR ---------------##
def distance_slower(P0, P1, p):
T = P1 - P0
L = (T**2).sum(axis=1)
U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
@ -878,10 +898,7 @@ def distance(P0, P1, p):
D = P0 + U*T - p
return np.sqrt((D**2).sum(axis=1))
P0 = np.random.uniform(-10,10,(10,2))
P1 = np.random.uniform(-10,10,(10,2))
p = np.random.uniform(-10,10,( 1,2))
print(distance(P0, P1, p))
print(distance_slower(P0, P1, p))
```
#### 79. Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i])? (★★★)

View File

@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
"id": "c1a8ea63",
"id": "738eba3f",
"metadata": {},
"source": [
"# 100 numpy exercises\n",
@ -18,7 +18,7 @@
},
{
"cell_type": "markdown",
"id": "8481f467",
"id": "f65f901e",
"metadata": {},
"source": [
"File automatically generated. See the documentation to update questions/answers/hints programmatically."
@ -26,7 +26,7 @@
},
{
"cell_type": "markdown",
"id": "7c1a3673",
"id": "15045647",
"metadata": {},
"source": [
"Run the `initialize.py` module, then call a random question with `pick()` an hint towards its solution with\n",
@ -36,7 +36,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "6db52927",
"id": "0d23aa5b",
"metadata": {},
"outputs": [],
"source": [
@ -46,7 +46,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "2c9f898f",
"id": "4a6a613b",
"metadata": {},
"outputs": [],
"source": [