502 lines
17 KiB
C
502 lines
17 KiB
C
/*********************************************************************************/
|
|
/* */
|
|
/* Animation of particles in billiard */
|
|
/* */
|
|
/* N. Berglund, december 2012, april 2021 */
|
|
/* UPDATE 14 April 21 : graphics files go to subfolder, */
|
|
/* Switch MOVIE to decide whether to create a movie */
|
|
/* UPDATE 3 May 21 : new domains */
|
|
/* */
|
|
/* Feel free to reuse, but if doing so it would be nice to drop a */
|
|
/* line to nils.berglund@univ-orleans.fr - Thanks! */
|
|
/* */
|
|
/* compile with */
|
|
/* gcc -o particle_billiard particle_billiard.c */
|
|
/* -O3 -L/usr/X11R6/lib -ltiff -lm -lGL -lGLU -lX11 -lXmu -lglut */
|
|
/* */
|
|
/* To make a video, set MOVIE to 1 and create subfolder tif_part */
|
|
/* It may be possible to increase parameter PAUSE */
|
|
/* */
|
|
/* create movie using */
|
|
/* ffmpeg -i part.%05d.tif -vcodec libx264 part.mp4 */
|
|
/* */
|
|
/*********************************************************************************/
|
|
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include <GL/glut.h>
|
|
#include <GL/glu.h>
|
|
#include <unistd.h>
|
|
#include <sys/types.h>
|
|
#include <tiffio.h> /* Sam Leffler's libtiff library. */
|
|
|
|
#define MOVIE 0 /* set to 1 to generate movie */
|
|
|
|
#define WINWIDTH 1280 /* window width */
|
|
#define WINHEIGHT 720 /* window height */
|
|
|
|
#define XMIN -2.0
|
|
#define XMAX 2.0 /* x interval */
|
|
#define YMIN -1.125
|
|
#define YMAX 1.125 /* y interval for 9/16 aspect ratio */
|
|
|
|
#define SCALING_FACTOR 1.0 /* scaling factor of drawing, needed for flower billiards, otherwise set to 1.0 */
|
|
|
|
/* Choice of the billiard table, see global_particles.c */
|
|
|
|
#define B_DOMAIN 20 /* choice of domain shape */
|
|
|
|
#define CIRCLE_PATTERN 2 /* pattern of circles */
|
|
|
|
#define ABSORBING_CIRCLES 0 /* set to 1 for circular scatterers to be absorbing */
|
|
|
|
#define NMAXCIRCLES 1000 /* total number of circles (must be at least NCX*NCY for square grid) */
|
|
#define NCX 15 /* number of circles in x direction */
|
|
#define NCY 20 /* number of circles in y direction */
|
|
|
|
#define LAMBDA 0.75 /* parameter controlling shape of billiard */
|
|
#define MU 0.035 /* second parameter controlling shape of billiard */
|
|
#define FOCI 1 /* set to 1 to draw focal points of ellipse */
|
|
#define NPOLY 8 /* number of sides of polygon */
|
|
#define APOLY 0.25 /* angle by which to turn polygon, in units of Pi/2 */
|
|
#define DRAW_BILLIARD 1 /* set to 1 to draw billiard */
|
|
#define DRAW_CONSTRUCTION_LINES 1 /* set to 1 to draw additional construction lines for billiard */
|
|
#define PERIODIC_BC 0 /* set to 1 to enforce periodic boundary conditions when drawing particles */
|
|
|
|
#define RESAMPLE 0 /* set to 1 if particles should be added when dispersion too large */
|
|
#define DEBUG 0 /* draw trajectories, for debugging purposes */
|
|
|
|
/* Simulation parameters */
|
|
|
|
#define NPART 30000 /* number of particles */
|
|
#define NPARTMAX 100000 /* maximal number of particles after resampling */
|
|
#define LMAX 0.01 /* minimal segment length triggering resampling */
|
|
#define DMIN 0.02 /* minimal distance to boundary for triggering resampling */
|
|
#define CYCLE 1 /* set to 1 for closed curve (start in all directions) */
|
|
#define SHOWTRAILS 0 /* set to 1 to keep trails of the particles */
|
|
|
|
#define NSTEPS 3000 /* number of frames of movie */
|
|
#define TIME 1000 /* time between movie frames, for fluidity of real-time simulation */
|
|
#define DPHI 0.000005 /* integration step */
|
|
#define NVID 150 /* number of iterations between images displayed on screen */
|
|
|
|
/* Decreasing TIME accelerates the animation and the movie */
|
|
/* For constant speed of movie, TIME*DPHI should be kept constant */
|
|
/* However, increasing DPHI too much deterioriates quality of simulation */
|
|
/* NVID tells how often a picture is drawn in the animation, increase it for faster anim */
|
|
/* For a good quality movie, take for instance TIME = 400, DPHI = 0.00005, NVID = 100 */
|
|
|
|
/* Colors and other graphical parameters */
|
|
|
|
#define NCOLORS 32 /* number of colors */
|
|
#define COLORSHIFT 0 /* hue of initial color */
|
|
#define RAINBOW_COLOR 0 /* set to 1 to use different colors for all particles */
|
|
#define FLOWER_COLOR 0 /* set to 1 to adapt initial colors to flower billiard (tracks vs core) */
|
|
#define NSEG 100 /* number of segments of boundary */
|
|
#define LENGTH 0.02 /* length of velocity vectors */
|
|
#define BILLIARD_WIDTH 2 /* width of billiard */
|
|
#define PARTICLE_WIDTH 2 /* width of particles */
|
|
#define FRONT_WIDTH 3 /* width of wave front */
|
|
|
|
#define BLACK 1 /* set to 1 for black background */
|
|
#define COLOR_OUTSIDE 0 /* set to 1 for colored outside */
|
|
#define OUTER_COLOR 270.0 /* color outside billiard */
|
|
#define PAINT_INT 0 /* set to 1 to paint interior in other color (for polygon/Reuleaux) */
|
|
|
|
|
|
#define PAUSE 1000 /* number of frames after which to pause */
|
|
#define PSLEEP 1 /* sleep time during pause */
|
|
#define SLEEP1 1 /* initial sleeping time */
|
|
#define SLEEP2 1000 /* final sleeping time */
|
|
|
|
|
|
#include "global_particles.c"
|
|
#include "sub_part_billiard.c"
|
|
|
|
|
|
/*********************/
|
|
/* animation part */
|
|
/*********************/
|
|
|
|
void init_boundary_config(double smin, double smax, double anglemin, double anglemax, double *configs[NPARTMAX])
|
|
/* initialize configuration: drop on the boundary, beta version */
|
|
/* WORKS FOR ELLIPSE, HAS TO BE ADAPTED TO GENERAL BILLIARD */
|
|
{
|
|
int i;
|
|
double ds, da, s, angle, theta, alpha, pos[2];
|
|
|
|
if (anglemin <= 0.0) anglemin = PI/((double)NPART);
|
|
if (anglemax >= PI) anglemax = PI*(1.0 - 1.0/((double)NPART));
|
|
ds = (smax - smin)/((double)NPART);
|
|
da = (anglemax - anglemin)/((double)NPART);
|
|
for (i=0; i<NPART; i++)
|
|
{
|
|
s = smin + ds*((double)i);
|
|
angle = anglemin + da*((double)i),
|
|
pos[0] = LAMBDA*cos(s);
|
|
pos[1] = sin(s);
|
|
theta = argument(-LAMBDA*pos[1], pos[0]/LAMBDA);
|
|
alpha = theta + angle;
|
|
|
|
vbilliard_xy(configs[i], alpha, pos);
|
|
}
|
|
}
|
|
|
|
void init_drop_config(double x0, double y0, double angle1, double angle2, double *configs[NPARTMAX])
|
|
/* initialize configuration: drop at (x0,y0) */
|
|
{
|
|
int i;
|
|
double dalpha, alpha;
|
|
double conf[2], pos[2];
|
|
|
|
while (angle2 < angle1) angle2 += DPI;
|
|
if (NPART > 1) dalpha = (angle2 - angle1)/((double)(NPART-1));
|
|
else dalpha = 0.0;
|
|
for (i=0; i<NPART; i++)
|
|
{
|
|
alpha = angle1 + dalpha*((double)i);
|
|
|
|
// printf("alpha=%.5lg\n", alpha);
|
|
|
|
pos[0] = x0;
|
|
pos[1] = y0;
|
|
vbilliard_xy(configs[i], alpha, pos);
|
|
}
|
|
}
|
|
|
|
void init_sym_drop_config(double x0, double y0, double angle1, double angle2, double *configs[NPARTMAX])
|
|
/* initialize configuration with two symmetric partial drops */
|
|
{
|
|
int i;
|
|
double dalpha, alpha, meanangle;
|
|
double conf[2], pos[2];
|
|
|
|
while (angle2 < angle1) angle2 += DPI;
|
|
meanangle = 0.5*(angle1 + angle2);
|
|
dalpha = (angle2 - angle1)/((double)(NPART-1));
|
|
for (i=0; i<NPART/2; i++)
|
|
{
|
|
alpha = meanangle + dalpha*((double)i);
|
|
pos[0] = x0;
|
|
pos[1] = y0;
|
|
vbilliard_xy(configs[i], alpha, pos);
|
|
}
|
|
for (i=0; i<NPART/2; i++)
|
|
{
|
|
alpha = meanangle - dalpha*((double)i);
|
|
pos[0] = x0;
|
|
pos[1] = y0;
|
|
vbilliard_xy(configs[NPART/2 + i], alpha, pos);
|
|
}
|
|
|
|
}
|
|
|
|
void init_line_config(double x0, double y0, double x1, double y1, double angle, double *configs[NPARTMAX])
|
|
/* initialize configuration: line (x0,y0)-(x1,y1) in direction alpha */
|
|
{
|
|
int i;
|
|
double dx, dy;
|
|
double conf[2], pos[2];
|
|
|
|
dx = (x1-x0)/((double)(NPART));
|
|
dy = (y1-y0)/((double)(NPART));
|
|
// dx = (x1-x0)/((double)(NPART-1));
|
|
// dy = (y1-y0)/((double)(NPART-1));
|
|
for (i=0; i<NPART; i++)
|
|
{
|
|
pos[0] = x0 + ((double)i)*dx;
|
|
pos[1] = y0 + ((double)i)*dy;
|
|
vbilliard_xy(configs[i], angle, pos);
|
|
}
|
|
}
|
|
|
|
|
|
void draw_config(int color[NPARTMAX], double *configs[NPARTMAX], int active[NPARTMAX])
|
|
/* draw the particles */
|
|
{
|
|
int i;
|
|
double x1, y1, x2, y2, cosphi, sinphi, rgb[3];
|
|
|
|
glutSwapBuffers();
|
|
if (!SHOWTRAILS) blank();
|
|
if (PAINT_INT) paint_billiard_interior();
|
|
|
|
glLineWidth(PARTICLE_WIDTH);
|
|
|
|
glEnable(GL_LINE_SMOOTH);
|
|
|
|
for (i=0; i<nparticles; i++)
|
|
{
|
|
if (configs[i][2]<0.0)
|
|
{
|
|
vbilliard(configs[i]);
|
|
if (!RAINBOW_COLOR)
|
|
{
|
|
color[i]++;
|
|
if (color[i] >= NCOLORS) color[i] -= NCOLORS;
|
|
}
|
|
}
|
|
|
|
configs[i][2] += DPHI;
|
|
|
|
cosphi = (configs[i][6] - configs[i][4])/configs[i][3];
|
|
sinphi = (configs[i][7] - configs[i][5])/configs[i][3];
|
|
x1 = configs[i][4] + configs[i][2]*cosphi;
|
|
y1 = configs[i][5] + configs[i][2]*sinphi;
|
|
x2 = configs[i][4] + (configs[i][2] + LENGTH)*cosphi;
|
|
y2 = configs[i][5] + (configs[i][2] + LENGTH)*sinphi;
|
|
|
|
/* test whether particle does not escape billiard */
|
|
if (active[i]) active[i] = xy_in_billiard(x1, y1);
|
|
|
|
if (active[i])
|
|
{
|
|
rgb_color_scheme(color[i], rgb);
|
|
glColor3f(rgb[0], rgb[1], rgb[2]);
|
|
|
|
glBegin(GL_LINE_STRIP);
|
|
glVertex2d(SCALING_FACTOR*x1, SCALING_FACTOR*y1);
|
|
glVertex2d(SCALING_FACTOR*x2, SCALING_FACTOR*y2);
|
|
glEnd ();
|
|
|
|
/* taking care of boundary conditions - only needed for periodic boundary conditions */
|
|
if (PERIODIC_BC)
|
|
{
|
|
if (SCALING_FACTOR*x2 > XMAX)
|
|
{
|
|
glBegin(GL_LINE_STRIP);
|
|
glVertex2d(SCALING_FACTOR*(x1+XMIN-XMAX), SCALING_FACTOR*y1);
|
|
glVertex2d(SCALING_FACTOR*(x2+XMIN-XMAX), SCALING_FACTOR*y2);
|
|
glEnd ();
|
|
}
|
|
|
|
if (SCALING_FACTOR*x2 < XMIN)
|
|
{
|
|
glBegin(GL_LINE_STRIP);
|
|
glVertex2d(SCALING_FACTOR*(x1-XMIN+XMAX), SCALING_FACTOR*y1);
|
|
glVertex2d(SCALING_FACTOR*(x2-XMIN+XMAX), SCALING_FACTOR*y2);
|
|
glEnd ();
|
|
}
|
|
|
|
if (SCALING_FACTOR*y2 > YMAX)
|
|
{
|
|
glBegin(GL_LINE_STRIP);
|
|
glVertex2d(SCALING_FACTOR*x1, SCALING_FACTOR*(y1+YMIN-YMAX));
|
|
glVertex2d(SCALING_FACTOR*x2, SCALING_FACTOR*(y2+YMIN-YMAX));
|
|
glEnd ();
|
|
}
|
|
|
|
if (SCALING_FACTOR*y2 < YMIN)
|
|
{
|
|
glBegin(GL_LINE_STRIP);
|
|
glVertex2d(SCALING_FACTOR*x1, SCALING_FACTOR*(y1+YMAX-YMIN));
|
|
glVertex2d(SCALING_FACTOR*x2, SCALING_FACTOR*(y2+YMAX-YMIN));
|
|
glEnd ();
|
|
}
|
|
}
|
|
}
|
|
|
|
/* draw trajectories, for debugging purpose */
|
|
if (DEBUG)
|
|
{
|
|
glLineWidth(1.0);
|
|
glBegin(GL_LINES);
|
|
glVertex2d(SCALING_FACTOR*configs[i][4], SCALING_FACTOR*configs[i][5]);
|
|
glVertex2d(SCALING_FACTOR*configs[i][6], SCALING_FACTOR*configs[i][7]);
|
|
glEnd ();
|
|
glLineWidth(3.0);
|
|
}
|
|
|
|
if (configs[i][2] > configs[i][3] - DPHI) configs[i][2] -= configs[i][3];
|
|
}
|
|
if (DRAW_BILLIARD) draw_billiard();
|
|
}
|
|
|
|
|
|
void graph_movie(int time, int color[NPARTMAX], double *configs[NPARTMAX], int active[NPARTMAX])
|
|
/* compute next movie frame */
|
|
{
|
|
int i, j, c;
|
|
|
|
for (j=0; j<time; j++)
|
|
{
|
|
for (i=0; i<nparticles; i++)
|
|
{
|
|
if (configs[i][2]<0.0)
|
|
{
|
|
// printf("reflecting particle %i\n", i);
|
|
c = vbilliard(configs[i]);
|
|
// if (c>=0) color[i]++;
|
|
if (!RAINBOW_COLOR)
|
|
{
|
|
color[i]++;
|
|
if (color[i] >= NCOLORS) color[i] -= NCOLORS;
|
|
}
|
|
}
|
|
|
|
configs[i][2] += DPHI;
|
|
|
|
if (configs[i][2] > configs[i][3] - DPHI)
|
|
{
|
|
configs[i][2] -= configs[i][3];
|
|
}
|
|
}
|
|
}
|
|
|
|
// draw_config(color, configs);
|
|
}
|
|
|
|
void animation()
|
|
{
|
|
double time, dt, alpha, r;
|
|
double *configs[NPARTMAX];
|
|
int i, j, resamp = 1, s, i1, i2;
|
|
int *color, *newcolor, *active;
|
|
|
|
/* Since NPARTMAX can be big, it seemed wiser to use some memory allocation here */
|
|
color = malloc(sizeof(int)*(NPARTMAX));
|
|
newcolor = malloc(sizeof(int)*(NPARTMAX));
|
|
active = malloc(sizeof(int)*(NPARTMAX));
|
|
for (i=0; i<NPARTMAX; i++)
|
|
configs[i] = (double *)malloc(8*sizeof(double));
|
|
|
|
/* init circle configuration if the domain is D_CIRCLES */
|
|
if ((B_DOMAIN == D_CIRCLES)||(B_DOMAIN == D_CIRCLES_IN_RECT)||(B_DOMAIN == D_CIRCLES_IN_GENUSN)) init_circle_config();
|
|
|
|
|
|
/* initialize system by putting particles in a given point with a range of velocities */
|
|
r = cos(PI/(double)NPOLY)/cos(DPI/(double)NPOLY);
|
|
|
|
// init_line_config(-1.25, -0.5, -1.25, 0.5, 0.0, configs);
|
|
// init_drop_config(-0.75, 0.0, -0.1, 0.1, configs);
|
|
// init_drop_config(0.5, 0.5, -1.0, 1.0, configs);
|
|
// init_sym_drop_config(-1.0, 0.5, -PID, PID, configs);
|
|
// init_drop_config(-0.999, 0.0, -alpha, alpha, configs);
|
|
|
|
// other possible initial conditions :
|
|
init_line_config(-1.25, -0.5, -1.25, 0.5, 0.0, configs);
|
|
// init_line_config(0.0, -0.5, 0.0, 0.5, 0.0, configs);
|
|
// init_line_config(-1.25, -0.5, -1.25, 0.5, 0.0*PID, configs);
|
|
// init_line_config(-1.0, -0.3, -1.0, 0.3, 0.0, configs);
|
|
// init_line_config(-0.7, -0.45, -0.7, 0.45, 0.0, configs);
|
|
// init_line_config(-1.5, 0.1, -0.1, 1.0, -0.5*PID, configs);
|
|
|
|
if (!SHOWTRAILS) blank();
|
|
glColor3f(0.0, 0.0, 0.0);
|
|
if (DRAW_BILLIARD) draw_billiard();
|
|
|
|
glutSwapBuffers();
|
|
|
|
|
|
for (i=0; i<NPARTMAX; i++)
|
|
{
|
|
color[i] = 0;
|
|
newcolor[i] = 0;
|
|
active[i] = 1;
|
|
}
|
|
|
|
if (FLOWER_COLOR) /* adapt color scheme to flower configuration (beta implementation) */
|
|
{
|
|
// i1 = (int)((double)NPART*0.2538); /* the 0.27 is just a trial-and-error guess, to be improved */
|
|
// i1 = (int)((double)NPART*0.1971); /* the 0.27 is just a trial-and-error guess, to be improved */
|
|
i1 = (int)((double)NPART*0.3015); /* the 0.27 is just a trial-and-error guess, to be improved */
|
|
i2 = NPART-i1;
|
|
for (i=i1; i<i2; i++)
|
|
{
|
|
color[i] += NCOLORS/3;
|
|
newcolor[i] = NCOLORS/3;
|
|
}
|
|
for (i=i2; i<NPART; i++)
|
|
{
|
|
color[i] += 2*NCOLORS/3;
|
|
newcolor[i] = 2*NCOLORS/3;
|
|
}
|
|
}
|
|
|
|
if (RAINBOW_COLOR) /* rainbow color scheme */
|
|
for (i=0; i<NPART; i++)
|
|
{
|
|
color[i] = (i*NCOLORS)/NPART;
|
|
newcolor[i] = (i*NCOLORS)/NPART;
|
|
}
|
|
|
|
sleep(SLEEP1);
|
|
|
|
for (i=0; i<=NSTEPS; i++)
|
|
{
|
|
graph_movie(TIME, newcolor, configs, active);
|
|
|
|
draw_config(newcolor, configs, active);
|
|
if (DRAW_BILLIARD) draw_billiard();
|
|
for (j=0; j<NPARTMAX; j++) color[j] = newcolor[j];
|
|
|
|
|
|
if (MOVIE)
|
|
{
|
|
save_frame();
|
|
|
|
/* it seems that saving too many files too fast can cause trouble with the file system */
|
|
/* so this is to make a pause from time to time - parameter PAUSE may need adjusting */
|
|
if (i % PAUSE == PAUSE - 1)
|
|
{
|
|
printf("Making a short pause\n");
|
|
sleep(PSLEEP);
|
|
s = system("mv part*.tif tif_part/");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (MOVIE)
|
|
{
|
|
for (i=0; i<20; i++) save_frame();
|
|
s = system("mv part*.tif tif_part/");
|
|
}
|
|
|
|
free(color);
|
|
free(newcolor);
|
|
for (i=0; i<NPARTMAX; i++) free(configs[i]);
|
|
|
|
}
|
|
|
|
|
|
void display(void)
|
|
{
|
|
glPushMatrix();
|
|
|
|
blank();
|
|
|
|
if (!SHOWTRAILS)
|
|
{
|
|
glutSwapBuffers();
|
|
blank();
|
|
glutSwapBuffers();
|
|
}
|
|
|
|
animation();
|
|
|
|
sleep(SLEEP2);
|
|
|
|
glPopMatrix();
|
|
}
|
|
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
glutInit(&argc, argv);
|
|
if (SHOWTRAILS) glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE | GLUT_DEPTH);
|
|
else glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
|
|
// glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
|
|
glutInitWindowSize(WINWIDTH,WINHEIGHT);
|
|
glutCreateWindow("Billiard animation");
|
|
|
|
init();
|
|
|
|
glutDisplayFunc(display);
|
|
|
|
glutMainLoop();
|
|
|
|
return 0;
|
|
}
|
|
|
|
|