Add files via upload

This commit is contained in:
nilsberglund-orleans 2021-08-15 11:49:37 +02:00 committed by GitHub
parent d227439e84
commit b1d8db471a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 2424 additions and 1052 deletions

View File

@ -50,6 +50,8 @@
#define CIRCLE_PATTERN 0 /* pattern of circles */
#define ABSORBING_CIRCLES 0 /* set to 1 for circular scatterers to be absorbing */
#define NMAXCIRCLES 1000 /* total number of circles (must be at least NCX*NCY for square grid) */
// #define NCX 10 /* number of circles in x direction */
// #define NCY 15 /* number of circles in y direction */
@ -126,10 +128,8 @@
/* animation part */
/*********************/
void init_boundary_config(smin, smax, anglemin, anglemax, configs)
void init_boundary_config(double smin, double smax, double anglemin, double anglemax, double *configs[NPARTMAX])
/* initialize configuration: drop on the boundary, beta version */
double smin, smax, anglemin, anglemax;
double *configs[NPARTMAX];
{
int i;
double ds, da, s, angle, alpha, pos[2], conf[2];
@ -151,9 +151,8 @@ double *configs[NPARTMAX];
}
}
void init_drop_config(x0, y0, angle1, angle2, configs) /* initialize configuration: drop at (x0,y0) */
double x0, y0, angle1, angle2;
double *configs[NPARTMAX];
void init_drop_config(double x0, double y0, double angle1, double angle2, double *configs[NPARTMAX])
/* initialize configuration: drop at (x0,y0) */
{
int i;
double dalpha, alpha, pos[2];
@ -172,9 +171,8 @@ double *configs[NPARTMAX];
}
int resample(color, configs) /* add particles where the front is stretched too thin */
int color[NPARTMAX];
double *configs[NPARTMAX];
int resample(int color[NPARTMAX], double *configs[NPARTMAX])
/* add particles where the front is stretched too thin */
{
int len, i, j, k, iplus, newnparticles=nparticles, *newcolor;
double dx, dy, pos[2], s1, s2, s, x, y, x1, y1, theta, alpha, beta, length2;
@ -261,10 +259,9 @@ double *configs[NPARTMAX];
else return(1);
}
void draw_config(color, configs)
/* draw the wave front by ordering colors */
int color[NPARTMAX];
double *configs[NPARTMAX];
void draw_config(int color[NPARTMAX], double *configs[NPARTMAX])
/* draw the particles */
{
int i;
double x1, y1, x2, y2, cosphi, sinphi, rgb[3], dist, dmax;
@ -315,10 +312,8 @@ double *configs[NPARTMAX];
}
void draw_ordered_config(color, configs)
void draw_ordered_config(int color[NPARTMAX], double *configs[NPARTMAX])
/* draw the wave front, one color after the other */
int color[NPARTMAX];
double *configs[NPARTMAX];
{
int i, col;
double x1, y1, x2, y2, cosphi, sinphi, rgb[3], dist, dmax;
@ -376,10 +371,8 @@ double *configs[NPARTMAX];
}
void graph_movie(time, color, configs)
void graph_movie(int time, int color[NPARTMAX], double *configs[NPARTMAX])
/* compute next movie frame */
int time, color[NPARTMAX];
double *configs[NPARTMAX];
{
int i, j;
@ -407,10 +400,8 @@ double *configs[NPARTMAX];
}
}
void graph_no_movie(time, color, configs)
void graph_no_movie(int time, int color[NPARTMAX], double *configs[NPARTMAX])
/* plot next image without making a movie */
int time, color[NPARTMAX];
double *configs[NPARTMAX];
{
int i, j;

View File

@ -2,6 +2,8 @@ double circlex[NMAXCIRCLES], circley[NMAXCIRCLES], circlerad[NMAXCIRCLES];
short int circleactive[NMAXCIRCLES]; /* tells which circular scatters are active */
int ncircles = NMAXCIRCLES; /* actual number of circles, can be decreased e.g. for random patterns */
double x_shooter = -0.2, y_shooter = -0.6, x_target = 0.4, y_target = 0.7;
/* shooter and target positions for "laser in room of mirrors" simulations, with default values for square domain */
/* some basic math */
@ -28,8 +30,12 @@ int ncircles = NMAXCIRCLES; /* actual number of circles, can be decre
#define D_CIRCLES 20 /* several circles */
#define D_CIRCLES_IN_RECT 21 /* several circles inside a rectangle */
#define D_CIRCLES_IN_GENUSN 22 /* several circles in polygon with identified opposite sides */
#define C_FOUR_CIRCLES 0 /* four circles almost touching each other */
#define C_SQUARE 1 /* square grid of circles */
#define C_HEX 2 /* hexagonal/triangular grid of circles */
#define C_LASER 3 /* laser fight in a room of mirrors */
#define C_GOLDEN_MEAN 3 /* golden mean grid */
#define C_LASER 11 /* laser fight in a room of mirrors */
#define C_LASER_GENUSN 12 /* laser fight in a translation surface */

View File

@ -42,6 +42,12 @@
#define C_CLOAK 5 /* invisibility cloak */
#define C_CLOAK_A 6 /* first optimized invisibility cloak */
#define C_GOLDEN_MEAN 10 /* pattern based on vertical shifts by golden mean */
#define C_GOLDEN_SPIRAL 11 /* spiral pattern based on golden mean */
#define C_SQUARE_HEX 12 /* alternating between square and hexagonal/triangular */
#define C_ONE 97 /* one single circle, as for Sinai */
#define C_TWO 98 /* two concentric circles of different type */
#define C_NOTHING 99 /* no circle at all, for comparisons */
@ -60,10 +66,12 @@
#define BC_PERIODIC 1 /* periodic boundary conditions */
#define BC_ABSORBING 2 /* absorbing boundary conditions (beta version) */
#define BC_VPER_HABS 3 /* vertically periodic and horizontally absorbing boundary conditions */
#define BC_ABS_REFLECT 4 /* absorbing boundary conditions, except reflecting at y=0, for comparisons */
// #define BC_OSCILL_ABSORB 5 /* oscillating boundary condition on the left, absorbing on other walls */
/* For debugging purposes only */
#define FLOOR 0 /* set to 1 to limit wave amplitude to VMAX */
#define VMAX 10.0 /* max value of wave amplitude */
// #define FLOOR 0 /* set to 1 to limit wave amplitude to VMAX */
// #define VMAX 10.0 /* max value of wave amplitude */
/* Plot types */

56
heat.c
View File

@ -107,6 +107,7 @@
#define NVID 50 /* number of iterations between images displayed on screen */
// #define NVID 100 /* number of iterations between images displayed on screen */
#define NSEG 100 /* number of segments of boundary */
#define BOUNDARY_WIDTH 2 /* width of billiard boundary */
#define PAUSE 100 /* number of frames after which to pause */
#define PSLEEP 1 /* sleep time during pause */
@ -160,11 +161,9 @@ double intstep1; /* integration step used in absorbing boundary conditions */
void init_gaussian(x, y, mean, amplitude, scalex, phi, xy_in)
void init_gaussian(double x, double y, double mean, double amplitude, double scalex,
double *phi[NX], short int * xy_in[NX])
/* initialise field with gaussian at position (x,y) */
double x, y, mean, amplitude, scalex, *phi[NX];
short int * xy_in[NX];
{
int i, j, in;
double xy[2], dist2, module, phase, scale2;
@ -193,11 +192,8 @@ void init_gaussian(x, y, mean, amplitude, scalex, phi, xy_in)
}
}
void init_julia_set(phi, xy_in)
void init_julia_set(double *phi[NX], short int * xy_in[NX])
/* change Julia set boundary condition */
double *phi[NX];
short int * xy_in[NX];
{
int i, j, in;
double xy[2], dist2, module, phase, scale2;
@ -220,9 +216,8 @@ void init_julia_set(phi, xy_in)
/*********************/
void compute_gradient(phi, nablax, nablay)
void compute_gradient(double *phi[NX], double *nablax[NX], double *nablay[NX])
/* compute the gradient of the field */
double *phi[NX], *nablax[NX], *nablay[NX];
{
int i, j, iplus, iminus, jplus, jminus;
double dx;
@ -241,12 +236,9 @@ double *phi[NX], *nablax[NX], *nablay[NX];
}
}
void draw_field_line(x, y, xy_in, nablax, nablay, delta, nsteps)
// void draw_field_line(x, y, nablax, nablay, delta, nsteps)
void draw_field_line(double x, double y, short int *xy_in[NX], double *nablax[NX],
double *nablay[NX], double delta, int nsteps)
/* draw a field line of the gradient, starting in (x,y) */
double x, y, *nablax[NX], *nablay[NX], delta;
int nsteps;
short int *xy_in[NX];
{
double x1, y1, x2, y2, pos[2], nabx, naby, norm2, norm;
int i = 0, ij[2], cont = 1;
@ -303,11 +295,8 @@ short int *xy_in[NX];
glEnd();
}
void draw_wave(phi, xy_in, scale, time)
void draw_wave(double *phi[NX], short int *xy_in[NX], double scale, int time)
/* draw the field */
double *phi[NX], scale;
short int *xy_in[NX];
int time;
{
int i, j, iplus, iminus, jplus, jminus, ij[2], counter = 0;
static int first = 1;
@ -413,9 +402,8 @@ int time;
void evolve_wave_half(phi_in, phi_out, xy_in)
void evolve_wave_half(double *phi_in[NX], double *phi_out[NX], short int *xy_in[NX])
/* time step of field evolution */
double *phi_in[NX], *phi_out[NX]; short int *xy_in[NX];
{
int i, j, iplus, iminus, jplus, jminus;
double delta1, delta2, x, y;
@ -493,18 +481,16 @@ void evolve_wave_half(phi_in, phi_out, xy_in)
// printf("phi(0,0) = %.3lg, psi(0,0) = %.3lg\n", phi[NX/2][NY/2], psi[NX/2][NY/2]);
}
void evolve_wave(phi, phi_tmp, xy_in)
void evolve_wave(double *phi[NX], double *phi_tmp[NX], short int *xy_in[NX])
/* time step of field evolution */
double *phi[NX], *phi_tmp[NX]; short int *xy_in[NX];
{
evolve_wave_half(phi, phi_tmp, xy_in);
evolve_wave_half(phi_tmp, phi, xy_in);
}
void old_evolve_wave(phi, xy_in)
void old_evolve_wave(double *phi[NX], short int *xy_in[NX])
/* time step of field evolution */
double *phi[NX]; short int *xy_in[NX];
{
int i, j, iplus, iminus, jplus, jminus;
double delta1, delta2, x, y, *newphi[NX];
@ -595,9 +581,8 @@ void old_evolve_wave(phi, xy_in)
// printf("phi(0,0) = %.3lg, psi(0,0) = %.3lg\n", phi[NX/2][NY/2], psi[NX/2][NY/2]);
}
double compute_variance(phi, xy_in)
double compute_variance(double *phi[NX], short int * xy_in[NX])
/* compute the variance (total probability) of the field */
double *phi[NX]; short int * xy_in[NX];
{
int i, j, n = 0;
double variance = 0.0;
@ -615,10 +600,8 @@ double *phi[NX]; short int * xy_in[NX];
return(variance/(double)n);
}
void renormalise_field(phi, xy_in, variance)
void renormalise_field(double *phi[NX], short int * xy_in[NX], double variance)
/* renormalise variance of field */
double *phi[NX], variance;
short int * xy_in[NX];
{
int i, j;
double stdv;
@ -635,8 +618,7 @@ short int * xy_in[NX];
}
}
void print_level(level)
int level;
void print_level(int level)
{
double pos[2];
char message[50];
@ -660,10 +642,7 @@ void print_Julia_parameters()
write_text(pos[0], pos[1], message);
}
void set_Julia_parameters(time, phi, xy_in)
int time;
double *phi[NX];
short int *xy_in[NX];
void set_Julia_parameters(int time, double *phi[NX], short int *xy_in[NX])
{
double jangle, cosj, sinj, radius = 0.15;
@ -680,10 +659,7 @@ short int *xy_in[NX];
printf("Julia set parameters : i = %i, angle = %.5lg, cx = %.5lg, cy = %.5lg \n", time, jangle, julia_x, julia_y);
}
void set_Julia_parameters_cardioid(time, phi, xy_in)
int time;
double *phi[NX];
short int *xy_in[NX];
void set_Julia_parameters_cardioid(int time, double *phi[NX], short int *xy_in[NX])
{
double jangle, cosj, sinj, yshift;

View File

@ -42,32 +42,19 @@
#define SCALING_FACTOR 1.0 /* scaling factor of drawing, needed for flower billiards, otherwise set to 1.0 */
// #define XMIN -1.8
// #define XMAX 1.8 /* x interval */
// #define YMIN -0.91
// #define YMAX 1.115 /* y interval for 9/16 aspect ratio */
/* Choice of the billiard table, see global_particles.c */
#define B_DOMAIN 14 /* choice of domain shape */
#define B_DOMAIN 20 /* choice of domain shape */
#define CIRCLE_PATTERN 0 /* pattern of circles */
#define CIRCLE_PATTERN 2 /* pattern of circles */
#define ABSORBING_CIRCLES 0 /* set to 1 for circular scatterers to be absorbing */
#define NMAXCIRCLES 1000 /* total number of circles (must be at least NCX*NCY for square grid) */
// #define NCX 10 /* number of circles in x direction */
// #define NCY 15 /* number of circles in y direction */
#define NCX 15 /* number of circles in x direction */
#define NCY 20 /* number of circles in y direction */
#define LAMBDA 0.75 /* parameter controlling shape of billiard */
// #define LAMBDA -3.346065215 /* sin(60°)/sin(15°) for Reuleaux-type triangle with 90° angles */
// #define LAMBDA 3.0 /* parameter controlling shape of billiard */
// #define LAMBDA 0.6 /* parameter controlling shape of billiard */
// #define LAMBDA 0.4175295 /* sin(20°)/sin(55°) for 9-star shape with 30° angles */
// #define LAMBDA -1.949855824 /* 7-sided Reuleaux triangle */
// #define LAMBDA 3.75738973 /* sin(36°)/sin(9°) for 5-star shape with 90° angles */
// #define LAMBDA -1.73205080756888 /* -sqrt(3) for Reuleaux triangle */
// #define LAMBDA 1.73205080756888 /* sqrt(3) for triangle tiling plane */
#define MU 0.035 /* second parameter controlling shape of billiard */
#define FOCI 1 /* set to 1 to draw focal points of ellipse */
#define NPOLY 8 /* number of sides of polygon */
@ -81,16 +68,15 @@
/* Simulation parameters */
#define NPART 5000 /* number of particles */
#define NPART 30000 /* number of particles */
#define NPARTMAX 100000 /* maximal number of particles after resampling */
#define LMAX 0.01 /* minimal segment length triggering resampling */
#define DMIN 0.02 /* minimal distance to boundary for triggering resampling */
#define CYCLE 1 /* set to 1 for closed curve (start in all directions) */
#define SHOWTRAILS 0 /* set to 1 to keep trails of the particles */
#define NSTEPS 3000 /* number of frames of movie */
#define TIME 1000 /* time between movie frames, for fluidity of real-time simulation */
// #define DPHI 0.000002 /* integration step */
// #define DPHI 0.00002 /* integration step */
#define DPHI 0.000005 /* integration step */
#define NVID 150 /* number of iterations between images displayed on screen */
@ -102,9 +88,9 @@
/* Colors and other graphical parameters */
#define NCOLORS 16 /* number of colors */
#define NCOLORS 32 /* number of colors */
#define COLORSHIFT 0 /* hue of initial color */
#define RAINBOW_COLOR 1 /* set to 1 to use different colors for all particles */
#define RAINBOW_COLOR 0 /* set to 1 to use different colors for all particles */
#define FLOWER_COLOR 0 /* set to 1 to adapt initial colors to flower billiard (tracks vs core) */
#define NSEG 100 /* number of segments of boundary */
#define LENGTH 0.02 /* length of velocity vectors */
@ -132,11 +118,9 @@
/* animation part */
/*********************/
void init_boundary_config(smin, smax, anglemin, anglemax, configs)
void init_boundary_config(double smin, double smax, double anglemin, double anglemax, double *configs[NPARTMAX])
/* initialize configuration: drop on the boundary, beta version */
/* WORKS FOR ELLIPSE, HAS TO BE ADAPTED TO GENERAL BILLIARD */
double smin, smax, anglemin, anglemax;
double *configs[NPARTMAX];
{
int i;
double ds, da, s, angle, theta, alpha, pos[2];
@ -158,9 +142,8 @@ double *configs[NPARTMAX];
}
}
void init_drop_config(x0, y0, angle1, angle2, configs) /* initialize configuration: drop at (x0,y0) */
double x0, y0, angle1, angle2;
double *configs[NPARTMAX];
void init_drop_config(double x0, double y0, double angle1, double angle2, double *configs[NPARTMAX])
/* initialize configuration: drop at (x0,y0) */
{
int i;
double dalpha, alpha;
@ -181,10 +164,8 @@ double *configs[NPARTMAX];
}
}
void init_sym_drop_config(x0, y0, angle1, angle2, configs)
void init_sym_drop_config(double x0, double y0, double angle1, double angle2, double *configs[NPARTMAX])
/* initialize configuration with two symmetric partial drops */
double x0, y0, angle1, angle2;
double *configs[NPARTMAX];
{
int i;
double dalpha, alpha, meanangle;
@ -210,9 +191,8 @@ double *configs[NPARTMAX];
}
void init_line_config(x0, y0, x1, y1, angle, configs) /* initialize configuration: line (x0,y0)-(x1,y1) in direction alpha */
double x0, y0, x1, y1, angle;
double *configs[NPARTMAX];
void init_line_config(double x0, double y0, double x1, double y1, double angle, double *configs[NPARTMAX])
/* initialize configuration: line (x0,y0)-(x1,y1) in direction alpha */
{
int i;
double dx, dy;
@ -231,16 +211,14 @@ double *configs[NPARTMAX];
}
void draw_config(color, configs, active)
void draw_config(int color[NPARTMAX], double *configs[NPARTMAX], int active[NPARTMAX])
/* draw the particles */
int color[NPARTMAX], active[NPARTMAX];
double *configs[NPARTMAX];
{
int i;
double x1, y1, x2, y2, cosphi, sinphi, rgb[3];
glutSwapBuffers();
blank();
if (!SHOWTRAILS) blank();
if (PAINT_INT) paint_billiard_interior();
glLineWidth(PARTICLE_WIDTH);
@ -335,10 +313,8 @@ double *configs[NPARTMAX];
}
void graph_movie(time, color, configs, active)
void graph_movie(int time, int color[NPARTMAX], double *configs[NPARTMAX], int active[NPARTMAX])
/* compute next movie frame */
int time, color[NPARTMAX], active[NPARTMAX];
double *configs[NPARTMAX];
{
int i, j, c;
@ -370,77 +346,6 @@ double *configs[NPARTMAX];
// draw_config(color, configs);
}
void init_circle_config()
{
int i, j, n;
double dx, dy;
switch (CIRCLE_PATTERN) {
case (C_FOUR_CIRCLES):
{
ncircles = 4;
circlex[0] = 1.0;
circley[0] = 0.0;
circlerad[0] = 0.8;
circlex[1] = -1.0;
circley[1] = 0.0;
circlerad[1] = 0.8;
circlex[2] = 0.0;
circley[2] = 0.8;
circlerad[2] = 0.4;
circlex[3] = 0.0;
circley[3] = -0.8;
circlerad[3] = 0.4;
for (i=0; i<4; i++) circleactive[i] = 1;
break;
}
case (C_SQUARE):
{
ncircles = NCX*NCY;
dy = (YMAX - YMIN)/((double)NCY);
for (i = 0; i < NCX; i++)
for (j = 0; j < NCY; j++)
{
n = NCY*i + j;
circlex[n] = ((double)(i-NCX/2) + 0.5)*dy;
circley[n] = YMIN + ((double)j + 0.5)*dy;
circlerad[n] = MU;
circleactive[n] = 1;
}
break;
}
case (C_HEX):
{
ncircles = NCX*(NCY+1);
dy = (YMAX - YMIN)/((double)NCY);
dx = dy*0.5*sqrt(3.0);
for (i = 0; i < NCX; i++)
for (j = 0; j < NCY+1; j++)
{
n = (NCY+1)*i + j;
circlex[n] = ((double)(i-NCX/2) + 0.5)*dy;
circley[n] = YMIN + ((double)j - 0.5)*dy;
if ((i+NCX)%2 == 1) circley[n] += 0.5*dy;
circlerad[n] = MU;
circleactive[n] = 1;
}
break;
}
default:
{
printf("Function init_circle_config not defined for this pattern \n");
}
}
}
void animation()
{
double time, dt, alpha, r;
@ -456,24 +361,27 @@ void animation()
configs[i] = (double *)malloc(8*sizeof(double));
/* init circle configuration if the domain is D_CIRCLES */
if (B_DOMAIN == D_CIRCLES) init_circle_config();
if ((B_DOMAIN == D_CIRCLES)||(B_DOMAIN == D_CIRCLES_IN_RECT)||(B_DOMAIN == D_CIRCLES_IN_GENUSN)) init_circle_config();
/* initialize system by putting particles in a given point with a range of velocities */
r = cos(PI/(double)NPOLY)/cos(DPI/(double)NPOLY);
// init_drop_config(0.0, 0.0, 0.0, PI, configs);
// init_line_config(-1.25, -0.5, -1.25, 0.5, 0.0, configs);
// init_drop_config(-0.75, 0.0, -0.1, 0.1, configs);
// init_drop_config(0.5, 0.5, -1.0, 1.0, configs);
// init_sym_drop_config(-1.0, 0.5, -PID, PID, configs);
// init_drop_config(-0.999, 0.0, -alpha, alpha, configs);
// other possible initial conditions :
// init_line_config(-1.25, -0.5, -1.25, 0.5, 0.0, configs);
init_line_config(0.0, -1.0, -1.0, 1.0, 0.25*PID, configs);
init_line_config(-1.25, -0.5, -1.25, 0.5, 0.0, configs);
// init_line_config(0.0, -0.5, 0.0, 0.5, 0.0, configs);
// init_line_config(-1.25, -0.5, -1.25, 0.5, 0.0*PID, configs);
// init_line_config(-1.0, -0.3, -1.0, 0.3, 0.0, configs);
// init_line_config(-0.7, -0.45, -0.7, 0.45, 0.0, configs);
// init_line_config(-1.5, 0.1, -0.1, 1.0, -0.5*PID, configs);
blank();
if (!SHOWTRAILS) blank();
glColor3f(0.0, 0.0, 0.0);
if (DRAW_BILLIARD) draw_billiard();
@ -556,9 +464,13 @@ void display(void)
glPushMatrix();
blank();
glutSwapBuffers();
blank();
glutSwapBuffers();
if (!SHOWTRAILS)
{
glutSwapBuffers();
blank();
glutSwapBuffers();
}
animation();
@ -571,7 +483,9 @@ void display(void)
int main(int argc, char** argv)
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
if (SHOWTRAILS) glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE | GLUT_DEPTH);
else glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
// glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
glutInitWindowSize(WINWIDTH,WINHEIGHT);
glutCreateWindow("Billiard animation");

View File

@ -97,6 +97,7 @@
#define NSTEPS 200 /* number of frames of movie */
#define NVID 1200 /* number of iterations between images displayed on screen */
#define NSEG 100 /* number of segments of boundary */
#define BOUNDARY_WIDTH 2 /* width of billiard boundary */
#define PAUSE 1000 /* number of frames after which to pause */
#define PSLEEP 1 /* sleep time during pause */
@ -140,12 +141,10 @@ double intstep1; /* integration step used in absorbing boundary conditions */
void init_coherent_state(x, y, px, py, scalex, phi, psi, xy_in)
void init_coherent_state(double x, double y, double px, double py, double scalex, double *phi[NX],
double *psi[NX], short int *xy_in[NX])
/* initialise field with coherent state of position (x,y) and momentum (px, py) */
/* phi is real part, psi is imaginary part */
double x, y, px, py, scalex, *phi[NX], *psi[NX];
short int * xy_in[NX];
{
int i, j;
double xy[2], dist2, module, phase, scale2;
@ -181,9 +180,9 @@ void init_coherent_state(x, y, px, py, scalex, phi, psi, xy_in)
/* animation part */
/*********************/
void schrodinger_color_scheme(phi, psi, scale, time, rgb)
double phi, psi, scale, rgb[3];
int time;
void schrodinger_color_scheme(double phi, double psi, double scale, int time, double rgb[3])
// double phi, psi, scale, rgb[3];
// int time;
{
double phase, amp, lum;
@ -204,11 +203,8 @@ int time;
}
void draw_wave(phi, psi, xy_in, scale, time)
void draw_wave(double *phi[NX], double *psi[NX], short int *xy_in[NX], double scale, int time)
/* draw the field */
double *phi[NX], *psi[NX], scale;
short int *xy_in[NX];
int time;
{
int i, j;
double rgb[3], xy[2], x1, y1, x2, y2, amp, phase;
@ -234,10 +230,12 @@ int time;
glEnd ();
}
void evolve_wave_half(phi_in, psi_in, phi_out, psi_out, xy_in)
/* time step of field evolution */
/* phi is real part, psi is imaginary part */
double *phi_in[NX], *psi_in[NX], *phi_out[NX], *psi_out[NX]; short int *xy_in[NX];
void evolve_wave_half(double *phi_in[NX], double *psi_in[NX], double *phi_out[NX], double *psi_out[NX],
short int *xy_in[NX])
// void evolve_wave_half(phi_in, psi_in, phi_out, psi_out, xy_in)
// /* time step of field evolution */
// /* phi is real part, psi is imaginary part */
// double *phi_in[NX], *psi_in[NX], *phi_out[NX], *psi_out[NX]; short int *xy_in[NX];
{
int i, j, iplus, iminus, jplus, jminus;
double delta1, delta2, x, y;
@ -325,19 +323,19 @@ void evolve_wave_half(phi_in, psi_in, phi_out, psi_out, xy_in)
// printf("phi(0,0) = %.3lg, psi(0,0) = %.3lg\n", phi[NX/2][NY/2], psi[NX/2][NY/2]);
}
void evolve_wave(phi, psi, phi_tmp, psi_tmp, xy_in)
void evolve_wave(double *phi[NX], double *psi[NX], double *phi_tmp[NX], double *psi_tmp[NX], short int *xy_in[NX])
/* time step of field evolution */
/* phi is value of field at time t, psi at time t-1 */
double *phi[NX], *psi[NX], *phi_tmp[NX], *psi_tmp[NX]; short int *xy_in[NX];
/* phi is real part, psi is imaginary part */
{
evolve_wave_half(phi, psi, phi_tmp, psi_tmp, xy_in);
evolve_wave_half(phi_tmp, psi_tmp, phi, psi, xy_in);
}
double compute_variance(phi, psi, xy_in)
double compute_variance(double *phi[NX], double *psi[NX], short int *xy_in[NX])
// double compute_variance(phi, psi, xy_in)
/* compute the variance (total probability) of the field */
double *phi[NX], *psi[NX]; short int * xy_in[NX];
// double *phi[NX], *psi[NX]; short int * xy_in[NX];
{
int i, j, n = 0;
double variance = 0.0;
@ -355,10 +353,8 @@ double *phi[NX], *psi[NX]; short int * xy_in[NX];
return(variance/(double)n);
}
void renormalise_field(phi, psi, xy_in, variance)
void renormalise_field(double *phi[NX], double *psi[NX], short int *xy_in[NX], double variance)
/* renormalise variance of field */
double *phi[NX], *psi[NX], variance;
short int * xy_in[NX];
{
int i, j;
double stdv;

File diff suppressed because it is too large Load Diff

View File

@ -67,9 +67,8 @@ void init() /* initialisation of window */
void hsl_to_rgb(h, s, l, rgb) /* color conversion from HSL to RGB */
void hsl_to_rgb(double h, double s, double l, double rgb[3]) /* color conversion from HSL to RGB */
/* h = hue, s = saturation, l = luminosity */
double h, s, l, rgb[3];
{
double c = 0.0, m = 0.0, x = 0.0;
@ -109,19 +108,14 @@ double h, s, l, rgb[3];
double color_amplitude(value, scale, time)
double color_amplitude(double value, double scale, int time)
/* transforms the wave amplitude into a double in [-1,1] to feed into color scheme */
double value, scale;
int time;
{
return(tanh(SLOPE*value/scale)*exp(-((double)time*ATTENUATION)));
}
void color_scheme(scheme, value, scale, time, rgb) /* color scheme */
double value, scale;
int scheme, time;
double rgb[3];
void color_scheme(int scheme, double value, double scale, int time, double rgb[3]) /* color scheme */
{
double hue, y, r, amplitude;
int intpart;
@ -182,6 +176,21 @@ void save_frame()
}
void save_frame_counter(int counter)
/* same as save_frame, but with imposed image number (for option DOUBLE_MOVIE) */
{
char *name="wave.", n2[100];
char format[6]=".%05i";
strcpy(n2, name);
sprintf(strstr(n2,"."), format, counter);
strcat(n2, ".tif");
printf(" saving frame %s \n",n2);
writetiff(n2, "Wave equation in a planar domain", 0, 0,
WINWIDTH, WINHEIGHT, COMPRESSION_LZW);
}
void write_text( double x, double y, char *st)
{
@ -203,8 +212,7 @@ void write_text( double x, double y, char *st)
/* some basic math */
/*********************/
double vabs(x) /* absolute value */
double x;
double vabs(double x) /* absolute value */
{
double res;
@ -213,9 +221,7 @@ void write_text( double x, double y, char *st)
return(res);
}
double module2(x, y) /* Euclidean norm */
double x, y;
double module2(double x, double y) /* Euclidean norm */
{
double m;
@ -223,9 +229,7 @@ void write_text( double x, double y, char *st)
return(m);
}
double argument(x, y)
double x, y;
double argument(double x, double y)
{
double alph;
@ -257,10 +261,8 @@ void write_text( double x, double y, char *st)
/* sets of coordinates decreases number of double computations when */
/* drawing the field */
void xy_to_ij(x, y, ij)
void xy_to_ij(double x, double y, int ij[2])
/* convert (x,y) position to (i,j) in table representing wave */
double x, y;
int ij[2];
{
double x1, y1;
@ -272,9 +274,8 @@ int ij[2];
}
void xy_to_pos(x, y, pos)
void xy_to_pos(double x, double y, double pos[2])
/* convert (x,y) position to double-valued position in table representing wave */
double x, y, pos[2];
{
double x1, y1;
@ -286,10 +287,8 @@ double x, y, pos[2];
}
void ij_to_xy(i, j, xy)
void ij_to_xy(int i, int j, double xy[2])
/* convert (i,j) position in table representing wave to (x,y) */
int i, j;
double xy[2];
{
double x1, y1;
@ -297,8 +296,26 @@ double xy[2];
xy[1] = YMIN + ((double)j)*(YMAX-YMIN)/((double)NY);
}
void draw_rectangle(x1, y1, x2, y2)
double x1, y1, x2, y2;
void erase_area(double x, double y, double dx, double dy)
{
double pos[2], rgb[3];
hsl_to_rgb(220.0, 0.8, 0.7, rgb);
glColor3f(rgb[0], rgb[1], rgb[2]);
glBegin(GL_QUADS);
xy_to_pos(x - dx, y - dy, pos);
glVertex2d(pos[0], pos[1]);
xy_to_pos(x + dx, y - dy, pos);
glVertex2d(pos[0], pos[1]);
xy_to_pos(x + dx, y + dy, pos);
glVertex2d(pos[0], pos[1]);
xy_to_pos(x - dx, y + dy, pos);
glVertex2d(pos[0], pos[1]);
glEnd();
}
void draw_rectangle(double x1, double y1, double x2, double y2)
{
double pos[2];
@ -314,9 +331,7 @@ double x1, y1, x2, y2;
glEnd();
}
void draw_rotated_rectangle(x1, y1, x2, y2)
double x1, y1, x2, y2;
void draw_rotated_rectangle(double x1, double y1, double x2, double y2)
{
double pos[2];
double xa, ya, xb, yb, xc, yc;
@ -340,12 +355,51 @@ double x1, y1, x2, y2;
glEnd();
}
void draw_circle(double x, double y, double r, int nseg)
{
int i;
double pos[2], alpha, dalpha;
dalpha = DPI/(double)nseg;
glBegin(GL_LINE_LOOP);
for (i=0; i<=nseg; i++)
{
alpha = (double)i*dalpha;
xy_to_pos(x + r*cos(alpha), y + r*sin(alpha), pos);
glVertex2d(pos[0], pos[1]);
}
glEnd();
}
void draw_colored_circle(double x, double y, double r, int nseg, double rgb[3])
{
int i;
double pos[2], alpha, dalpha;
dalpha = DPI/(double)nseg;
glColor3f(rgb[0], rgb[1], rgb[2]);
glBegin(GL_TRIANGLE_FAN);
xy_to_pos(x, y, pos);
glVertex2d(pos[0], pos[1]);
for (i=0; i<=nseg; i++)
{
alpha = (double)i*dalpha;
xy_to_pos(x + r*cos(alpha), y + r*sin(alpha), pos);
glVertex2d(pos[0], pos[1]);
}
glEnd();
}
void init_circle_config()
/* initialise the arrays circlex, circley, circlerad and circleactive */
/* for billiard shape D_CIRCLES */
{
int i, j, n;
double dx, dy, p, phi, r, ra[5], sa[5];
int i, j, n, ncirc0;
double dx, dy, p, phi, r, r0, ra[5], sa[5], height, x, y = 0.0, gamma;
switch (CIRCLE_PATTERN) {
case (C_SQUARE):
@ -372,11 +426,13 @@ void init_circle_config()
for (j = 0; j < NGRIDY+1; j++)
{
n = (NGRIDY+1)*i + j;
circlex[n] = ((double)(i-NGRIDX/2) + 0.5)*dy;
circlex[n] = ((double)(i-NGRIDX/2) + 0.5)*dy; /* is +0.5 needed? */
circley[n] = YMIN + ((double)j - 0.5)*dy;
if ((i+NGRIDX)%2 == 1) circley[n] += 0.5*dy;
circlerad[n] = MU;
circleactive[n] = 1;
/* activate only circles that intersect the domain */
if ((circley[n] < YMAX + MU)&&(circley[n] > YMIN - MU)) circleactive[n] = 1;
else circleactive[n] = 0;
}
break;
}
@ -388,9 +444,9 @@ void init_circle_config()
for (j = 0; j < NGRIDY; j++)
{
n = NGRIDY*i + j;
circlex[n] = ((double)(i-NGRIDX/2) + 0.5 + 0.5*(double)rand()/RAND_MAX)*dy;
circley[n] = YMIN + ((double)j + 0.5 + 0.5*(double)rand()/RAND_MAX)*dy;
circlerad[n] = MU*(1.0 + 0.35*(double)rand()/RAND_MAX);
circlex[n] = ((double)(i-NGRIDX/2) + 0.5*((double)rand()/RAND_MAX - 0.5))*dy;
circley[n] = YMIN + ((double)j + 0.5 + 0.5*((double)rand()/RAND_MAX - 0.5))*dy;
circlerad[n] = MU*sqrt(1.0 + 0.8*((double)rand()/RAND_MAX - 0.5));
circleactive[n] = 1;
}
break;
@ -461,6 +517,129 @@ void init_circle_config()
}
break;
}
case (C_GOLDEN_MEAN):
{
ncircles = 300;
gamma = (sqrt(5.0) - 1.0)*0.5; /* golden mean */
height = YMAX - YMIN;
dx = 2.0*LAMBDA/((double)ncircles);
for (n = 0; n < ncircles; n++)
{
circlex[n] = -LAMBDA + n*dx;
circley[n] = y;
y += height*gamma;
if (y > YMAX) y -= height;
circlerad[n] = MU;
circleactive[n] = 1;
}
/* test for circles that overlap top or bottom boundary */
ncirc0 = ncircles;
for (n=0; n < ncirc0; n++)
{
if (circley[n] + circlerad[n] > YMAX)
{
circlex[ncircles] = circlex[n];
circley[ncircles] = circley[n] - height;
circlerad[ncircles] = MU;
circleactive[ncircles] = 1;
ncircles ++;
}
else if (circley[n] - circlerad[n] < YMIN)
{
circlex[ncircles] = circlex[n];
circley[ncircles] = circley[n] + height;
circlerad[ncircles] = MU;
circleactive[ncircles] = 1;
ncircles ++;
}
}
break;
}
case (C_GOLDEN_SPIRAL):
{
ncircles = 1;
circlex[0] = 0.0;
circley[0] = 0.0;
gamma = (sqrt(5.0) - 1.0)*PI; /* golden mean times 2Pi */
phi = 0.0;
r0 = 2.0*MU;
r = r0 + MU;
for (i=0; i<1000; i++)
{
x = r*cos(phi);
y = r*sin(phi);
phi += gamma;
r += MU*r0/r;
if ((vabs(x) < LAMBDA)&&(vabs(y) < YMAX + MU))
{
circlex[ncircles] = x;
circley[ncircles] = y;
ncircles++;
}
}
for (i=0; i<ncircles; i++)
{
circlerad[i] = MU;
/* inactivate circles outside the domain */
if ((circley[i] < YMAX + MU)&&(circley[i] > YMIN - MU)) circleactive[i] = 1;
// printf("i = %i, circlex = %.3lg, circley = %.3lg\n", i, circlex[i], circley[i]);
}
break;
}
case (C_SQUARE_HEX):
{
ncircles = NGRIDX*(NGRIDY+1);
dy = (YMAX - YMIN)/((double)NGRIDY);
dx = dy*0.5*sqrt(3.0);
for (i = 0; i < NGRIDX; i++)
for (j = 0; j < NGRIDY+1; j++)
{
n = (NGRIDY+1)*i + j;
circlex[n] = ((double)(i-NGRIDX/2) + 0.5)*dy; /* is +0.5 needed? */
circley[n] = YMIN + ((double)j - 0.5)*dy;
if (((i+NGRIDX)%4 == 2)||((i+NGRIDX)%4 == 3)) circley[n] += 0.5*dy;
circlerad[n] = MU;
/* activate only circles that intersect the domain */
if ((circley[n] < YMAX + MU)&&(circley[n] > YMIN - MU)) circleactive[n] = 1;
else circleactive[n] = 0;
}
break;
}
case (C_ONE):
{
circlex[ncircles] = 0.0;
circley[ncircles] = 0.0;
circlerad[ncircles] = MU;
circleactive[ncircles] = 1;
ncircles += 1;
break;
}
case (C_TWO): /* used for comparison with cloak */
{
circlex[ncircles] = 0.0;
circley[ncircles] = 0.0;
circlerad[ncircles] = MU;
circleactive[ncircles] = 2;
ncircles += 1;
circlex[ncircles] = 0.0;
circley[ncircles] = 0.0;
circlerad[ncircles] = 2.0*MU;
circleactive[ncircles] = 1;
ncircles += 1;
break;
}
case (C_NOTHING):
{
ncircles += 0;
break;
}
default:
{
printf("Function init_circle_config not defined for this pattern \n");
@ -477,19 +656,19 @@ double x, y;
int i, j, k, k1, k2, condition;
switch (B_DOMAIN) {
case D_RECTANGLE:
case (D_RECTANGLE):
{
if ((vabs(x) <LAMBDA)&&(vabs(y) < 1.0)) return(1);
else return(0);
break;
}
case D_ELLIPSE:
case (D_ELLIPSE):
{
if (x*x/(LAMBDA*LAMBDA) + y*y < 1.0) return(1);
else return(0);
break;
}
case D_STADIUM:
case (D_STADIUM):
{
if ((x > -0.5*LAMBDA)&&(x < 0.5*LAMBDA)&&(y > -1.0)&&(y < 1.0)) return(1);
else if (module2(x+0.5*LAMBDA, y) < 1.0) return(1);
@ -497,13 +676,13 @@ double x, y;
else return(0);
break;
}
case D_SINAI:
case (D_SINAI):
{
if (x*x + y*y > LAMBDA*LAMBDA) return(1);
else return(0);
break;
}
case D_DIAMOND:
case (D_DIAMOND):
{
l2 = LAMBDA*LAMBDA;
r2 = l2 + (LAMBDA-1.0)*(LAMBDA-1.0);
@ -514,26 +693,26 @@ double x, y;
else return(0);
break;
}
case D_TRIANGLE:
case (D_TRIANGLE):
{
if ((x>-LAMBDA)&&(y>-1.0)&&(LAMBDA*y+x<0.0)) return(1);
else return(0);
break;
}
case D_FLAT:
case (D_FLAT):
{
if (y > -LAMBDA) return(1);
else return(0);
break;
}
case D_ANNULUS:
case (D_ANNULUS):
{
l2 = LAMBDA*LAMBDA;
r2 = x*x + y*y;
if ((r2 > l2)&&(r2 < 1.0)) return(1);
else return(0);
}
case D_POLYGON:
case (D_POLYGON):
{
condition = 1;
omega = DPI/((double)NPOLY);
@ -546,13 +725,13 @@ double x, y;
// for (k=0; k<NPOLY; k++) condition = condition*(-x*sin((k+0.5)*omega) + y*cos((k+0.5)*omega) < c);
return(condition);
}
case D_YOUNG:
case (D_YOUNG):
{
if ((x < -MU)||(x > MU)) return(1);
else if ((vabs(y-LAMBDA) < MU)||(vabs(y+LAMBDA) < MU)) return (1);
else return(0);
}
case D_GRATING:
case (D_GRATING):
{
k1 = -(int)((-YMIN)/LAMBDA);
k2 = (int)(YMAX/LAMBDA);
@ -565,11 +744,11 @@ double x, y;
// printf("x = %.3lg, y = %.3lg, k1 = %i, k2 = %i, condition = %i\n", x, y, k1, k2, condition);
return(condition);
}
case D_EHRENFEST:
case (D_EHRENFEST):
{
return(((x-1.0)*(x-1.0) + y*y < LAMBDA*LAMBDA)||((x+1.0)*(x+1.0) + y*y < LAMBDA*LAMBDA)||((vabs(x) < 1.0)&&(vabs(y) < MU)));
}
case D_DISK_GRID:
case (D_DISK_GRID):
{
dy = (YMAX - YMIN)/((double)NGRIDY);
for (i = -NGRIDX/2; i < NGRIDX/2; i++)
@ -581,7 +760,7 @@ double x, y;
}
return(1);
}
case D_DISK_HEX:
case (D_DISK_HEX):
{
dy = (YMAX - YMIN)/((double)NGRIDY);
dx = dy*0.5*sqrt(3.0);
@ -595,7 +774,7 @@ double x, y;
}
return(1);
}
case D_CIRCLES:
case (D_CIRCLES):
{
for (i = 0; i < ncircles; i++)
if (circleactive[i])
@ -607,7 +786,7 @@ double x, y;
}
return(1);
}
case D_MENGER:
case (D_MENGER):
{
x1 = 0.5*(x+1.0);
y1 = 0.5*(y+1.0);
@ -619,7 +798,7 @@ double x, y;
}
return(1);
}
case D_JULIA_INT:
case (D_JULIA_INT):
{
u = x/JULIA_SCALE;
v = y/JULIA_SCALE;
@ -634,7 +813,7 @@ double x, y;
if (u*u + v*v < MANDELLIMIT) return(1);
else return(0);
}
case D_MENGER_ROTATED:
case (D_MENGER_ROTATED):
{
x2 = 1.0*(x + y);
y2 = 1.0*(x - y);
@ -651,7 +830,7 @@ double x, y;
}
return(1);
}
case D_ANNULUS_HEATED: /* returns 2 if in inner circle */
case (D_ANNULUS_HEATED): /* returns 2 if in inner circle */
{
l2 = LAMBDA*LAMBDA;
r2 = x*x + y*y;
@ -660,7 +839,7 @@ double x, y;
else if (r2mu <= l2) return(2);
else return (0);
}
case D_MENGER_HEATED:
case (D_MENGER_HEATED):
{
if ((vabs(x) >= 1.0)||(vabs(y) >= 1.0)) return(0);
else
@ -676,7 +855,7 @@ double x, y;
return(1);
}
}
case D_MENGER_H_OPEN: /* returns 2 if in inner circle */
case (D_MENGER_H_OPEN): /* returns 2 if in inner circle */
{
x1 = 0.5*(x+1.0);
y1 = 0.5*(y+1.0);
@ -688,7 +867,7 @@ double x, y;
}
return(1);
}
case D_MANDELBROT:
case (D_MANDELBROT):
{
u = 0.0;
v = 0.0;
@ -707,7 +886,7 @@ double x, y;
else if ((x-0.5)*(x-0.5)/3.0 + y*y/1.0 > 1.2) return(2);
else return(1);
}
case D_MANDELBROT_CIRCLE:
case (D_MANDELBROT_CIRCLE):
{
u = 0.0;
v = 0.0;
@ -723,7 +902,7 @@ double x, y;
else if ((x-LAMBDA)*(x-LAMBDA) + (y-0.5)*(y-0.5) < MU*MU) return(2);
else return(1);
}
case D_JULIA:
case (D_JULIA):
{
u = x/JULIA_SCALE;
v = y/JULIA_SCALE;
@ -750,9 +929,8 @@ double x, y;
}
}
int ij_in_billiard(i, j)
int ij_in_billiard(int i, int j)
/* returns 1 if (i,j) represents a point in the billiard */
int i, j;
{
double xy[2];
@ -811,31 +989,13 @@ void draw_billiard() /* draws the billiard boundary */
glLineWidth(2);
glEnable(GL_LINE_SMOOTH);
glBegin(GL_LINE_LOOP);
for (i=0; i<=NSEG; i++)
{
phi = (double)i*DPI/(double)NSEG;
x = x0 + r*cos(phi);
y = r*sin(phi);
xy_to_pos(x, y, pos);
glVertex2d(pos[0], pos[1]);
}
glEnd();
glBegin(GL_LINE_LOOP);
for (i=0; i<=NSEG; i++)
{
phi = (double)i*DPI/(double)NSEG;
x = -x0 + r*cos(phi);
y = r*sin(phi);
xy_to_pos(x, y, pos);
glVertex2d(pos[0], pos[1]);
}
glEnd();
draw_circle(x0, 0.0, r, NSEG);
draw_circle(-x0, 0.0, r, NSEG);
}
break;
}
case D_STADIUM:
case (D_STADIUM):
{
glBegin(GL_LINE_LOOP);
for (i=0; i<=NSEG; i++)
@ -857,21 +1017,12 @@ void draw_billiard() /* draws the billiard boundary */
glEnd();
break;
}
case D_SINAI:
case (D_SINAI):
{
glBegin(GL_LINE_LOOP);
for (i=0; i<=NSEG; i++)
{
phi = (double)i*DPI/(double)NSEG;
x = LAMBDA*cos(phi);
y = LAMBDA*sin(phi);
xy_to_pos(x, y, pos);
glVertex2d(pos[0], pos[1]);
}
glEnd();
draw_circle(0.0, 0.0, LAMBDA, NSEG);
break;
}
case D_DIAMOND:
case (D_DIAMOND):
{
alpha = atan(1.0 - 1.0/LAMBDA);
dphi = (PID - 2.0*alpha)/(double)NSEG;
@ -936,26 +1087,8 @@ void draw_billiard() /* draws the billiard boundary */
}
case (D_ANNULUS):
{
glBegin(GL_LINE_LOOP);
for (i=0; i<=NSEG; i++)
{
phi = (double)i*DPI/(double)NSEG;
x = LAMBDA*cos(phi);
y = LAMBDA*sin(phi);
xy_to_pos(x, y, pos);
glVertex2d(pos[0], pos[1]);
}
glEnd ();
glBegin(GL_LINE_LOOP);
for (i=0; i<=NSEG; i++)
{
phi = (double)i*DPI/(double)NSEG;
x = cos(phi);
y = sin(phi);
xy_to_pos(x, y, pos);
glVertex2d(pos[0], pos[1]);
}
glEnd ();
draw_circle(0.0, 0.0, LAMBDA, NSEG);
draw_circle(0.0, 0.0, 1.0, NSEG);
break;
}
case (D_POLYGON):
@ -1008,27 +1141,18 @@ void draw_billiard() /* draws the billiard boundary */
glEnd();
break;
}
case D_GRATING:
case (D_GRATING):
{
k1 = -(int)(-YMIN/LAMBDA);
k2 = (int)(YMAX/LAMBDA);
for (i=k1; i<= k2; i++)
{
z = (double)i*LAMBDA;
glBegin(GL_LINE_LOOP);
for (j=0; j<=NSEG; j++)
{
phi = (double)j*DPI/(double)NSEG;
x = MU*cos(phi);
y = z + MU*sin(phi);
xy_to_pos(x, y, pos);
glVertex2d(pos[0], pos[1]);
}
glEnd ();
draw_circle(0.0, z, MU, NSEG);
}
break;
}
case D_EHRENFEST:
case (D_EHRENFEST):
{
alpha = asin(MU/LAMBDA);
x0 = 1.0 - sqrt(LAMBDA*LAMBDA - MU*MU);
@ -1053,7 +1177,7 @@ void draw_billiard() /* draws the billiard boundary */
glEnd ();
break;
}
case D_DISK_GRID:
case (D_DISK_GRID):
{
glLineWidth(2);
for (i = -NGRIDX/2; i < NGRIDX/2; i++)
@ -1063,20 +1187,11 @@ void draw_billiard() /* draws the billiard boundary */
dx = dy*0.5*sqrt(3.0);
x1 = ((double)i + 0.5)*dy;
y1 = YMIN + ((double)j + 0.5)*dy;
glBegin(GL_LINE_LOOP);
for (k=0; k<=NSEG; k++)
{
phi = (double)k*DPI/(double)NSEG;
x = x1 + MU*cos(phi);
y = y1 + MU*sin(phi);
xy_to_pos(x, y, pos);
glVertex2d(pos[0], pos[1]);
}
glEnd ();
draw_circle(x1, y1, MU, NSEG);
}
break;
}
case D_DISK_HEX:
case (D_DISK_HEX):
{
glLineWidth(2);
for (i = -NGRIDX/2; i < NGRIDX/2; i++)
@ -1086,16 +1201,7 @@ void draw_billiard() /* draws the billiard boundary */
x1 = ((double)i + 0.5)*dy;
y1 = YMIN + ((double)j + 0.5)*dy;
if ((i+NGRIDX)%2 == 1) y1 += 0.5*dy;
glBegin(GL_LINE_LOOP);
for (k=0; k<=NSEG; k++)
{
phi = (double)k*DPI/(double)NSEG;
x = x1 + MU*cos(phi);
y = y1 + MU*sin(phi);
xy_to_pos(x, y, pos);
glVertex2d(pos[0], pos[1]);
}
glEnd ();
draw_circle(x1, y1, MU, NSEG);
}
break;
}
@ -1103,19 +1209,7 @@ void draw_billiard() /* draws the billiard boundary */
{
glLineWidth(BOUNDARY_WIDTH);
for (i = 0; i < ncircles; i++)
if (circleactive[i])
{
glBegin(GL_LINE_LOOP);
for (k=0; k<=NSEG; k++)
{
phi = (double)k*DPI/(double)NSEG;
x = circlex[i] + circlerad[i]*cos(phi);
y = circley[i] + circlerad[i]*sin(phi);
xy_to_pos(x, y, pos);
glVertex2d(pos[0], pos[1]);
}
glEnd ();
}
if (circleactive[i]) draw_circle(circlex[i], circley[i], circlerad[i], NSEG);
break;
}
case (D_MENGER):
@ -1221,26 +1315,8 @@ void draw_billiard() /* draws the billiard boundary */
}
case (D_ANNULUS_HEATED):
{
glBegin(GL_LINE_LOOP);
for (i=0; i<=NSEG; i++)
{
phi = (double)i*DPI/(double)NSEG;
x = MU + LAMBDA*cos(phi);
y = LAMBDA*sin(phi);
xy_to_pos(x, y, pos);
glVertex2d(pos[0], pos[1]);
}
glEnd ();
glBegin(GL_LINE_LOOP);
for (i=0; i<=NSEG; i++)
{
phi = (double)i*DPI/(double)NSEG;
x = cos(phi);
y = sin(phi);
xy_to_pos(x, y, pos);
glVertex2d(pos[0], pos[1]);
}
glEnd ();
draw_circle(MU, 0.0, LAMBDA, NSEG);
draw_circle(0.0, 0.0, 1.0, NSEG);
break;
}
case (D_MENGER_HEATED):

667
sub_wave_comp.c Normal file
View File

@ -0,0 +1,667 @@
/* some changes in sub_wave.c required by wave_comparison.c */
short int circletop[NMAXCIRCLES]; /* set to 1 if circle is in top half */
void init_circle_config_half(int pattern, int top)
/* initialise the arrays circlex, circley, circlerad and circleactive */
/* for billiard shape D_CIRCLES */
{
int i, j, n, ncirc0;
double dx, dy, p, phi, r, ra[5], sa[5], height, y = 0.0, gamma, ymean, ytop, ybottom;
ymean = 0.5*(YMIN + YMAX);
switch (pattern) {
case (C_SQUARE):
{
dy = (YMAX - YMIN)/((double)NGRIDY);
for (i = 0; i < NGRIDX; i++)
for (j = 0; j < NGRIDY/2; j++)
{
printf("i = %i, j = %i, n = %i\n", i, j, n);
n = ncircles + NGRIDY*i/2 + j;
circlex[n] = ((double)(i-NGRIDX/2) + 0.5)*dy;
y = ((double)j + 0.5)*dy;
if (top) circley[n] = ymean + y;
else circley[n] = ymean - y;
circlerad[n] = MU;
circleactive[n] = 1;
circletop[n] = top;
}
ncircles += NGRIDX*NGRIDY/2;
break;
}
case (C_HEX):
{
dy = (YMAX - YMIN)/((double)NGRIDY);
dx = dy*0.5*sqrt(3.0);
for (i = 0; i < NGRIDX; i++)
for (j = 0; j < NGRIDY/2+1; j++)
{
n = ncircles + (NGRIDY+1)*i/2 + j;
circlex[n] = ((double)(i-NGRIDX/2))*dy;
y = ((double)j - 0.5)*dy;
if ((i+NGRIDX)%2 == 1) y += 0.5*dy;
if (top) circley[n] = ymean + 0.5*dy + y;
else circley[n] = ymean - 0.5*dy - y;
circlerad[n] = MU;
circleactive[n] = 1;
circletop[n] = top;
}
ncircles += NGRIDX*(NGRIDY+1)/2;
break;
}
case (C_RAND_DISPLACED):
{
dy = (YMAX - YMIN)/((double)NGRIDY);
for (i = 0; i < NGRIDX; i++)
for (j = 0; j < NGRIDY/2; j++)
{
n = ncircles + NGRIDY*i/2 + j;
circlex[n] = ((double)(i-NGRIDX/2) + 0.5*((double)rand()/RAND_MAX - 0.5))*dy;
if (NGRIDX%2 == 0) circlex[n] += 0.5*dy;
y = ((double)j + 0.5 + 0.5*((double)rand()/RAND_MAX - 0.5))*dy;
if (top) circley[n] = ymean + y;
else circley[n] = ymean - y;
circlerad[n] = MU*sqrt(1.0 + 0.8*((double)rand()/RAND_MAX - 0.5));
circleactive[n] = 1;
circletop[n] = top;
printf("n = %i, x = %.3lg\n", n, circlex[n]);
}
ncircles += NGRIDX*NGRIDY/2;
break;
}
case (C_RAND_PERCOL):
{
dy = (YMAX - YMIN)/((double)NGRIDY);
for (i = 0; i < NGRIDX; i++)
for (j = 0; j < NGRIDY/2; j++)
{
n = ncircles + NGRIDY*i/2 + j;
circlex[n] = ((double)(i-NGRIDX/2) + 0.5)*dy;
y = YMIN + ((double)j + 0.5)*dy;
if ( ((top)&&(y > 0.0))||((!top)&&(y <= 0.0)) )
circley[n] = y;
circlerad[n] = MU;
p = (double)rand()/RAND_MAX;
if (p < P_PERCOL) circleactive[n] = 1;
else circleactive[n] = 0;
circletop[n] = top;
}
ncircles += NGRIDX*NGRIDY/2;
break;
}
case (C_RAND_POISSON):
{
for (i = 0; i < NPOISSON/2; i++)
{
n = ncircles + i;
circlex[n] = LAMBDA*(2.0*(double)rand()/RAND_MAX - 1.0);
if (top) y = ymean + (YMAX-ymean)*(double)rand()/RAND_MAX;
else y = ymean + (YMIN-ymean)*(double)rand()/RAND_MAX;
if ( ((top)&&(y > 0.0))||((!top)&&(y <= 0.0)) )
circley[n] = y;
circlerad[n] = MU;
circleactive[n] = 1;
circletop[n] = top;
printf("n = %i, x = %.3lg\n", n, circlex[n]);
}
ncircles += NPOISSON/2;
break;
}
case (C_CLOAK):
{
for (i = 0; i < 40; i++)
for (j = 0; j < 5; j++)
{
n = ncircles + 5*i + j;
phi = (double)i*DPI/40.0;
r = LAMBDA*0.5*(1.0 + (double)j/5.0);
circlex[n] = r*cos(phi);
y = r*sin(phi);
if ( ((top)&&(y > 0.0))||((!top)&&(y <= 0.0)) )
circley[n] = y;
circlerad[n] = MU;
circleactive[n] = 1;
circletop[n] = top;
}
ncircles += 200;
break;
}
case (C_CLOAK_A): /* optimized model A1 by C. Jo et al */
{
ra[0] = 0.0731; sa[0] = 1.115;
ra[1] = 0.0768; sa[1] = 1.292;
ra[2] = 0.0652; sa[2] = 1.464;
ra[3] = 0.056; sa[3] = 1.633;
ra[4] = 0.0375; sa[4] = 1.794;
for (i = 0; i < 21; i++)
for (j = 0; j < 5; j++)
{
n = ncircles + 5*i + j;
phi = (double)i*DPI/40.0;
r = LAMBDA*sa[j];
circlex[n] = r*cos(phi);
circley[n] = r*sin(phi);
if (top) y = r*sin(phi);
else y = -r*sin(phi);
circley[n] = y;
circlerad[n] = LAMBDA*ra[j];
circleactive[n] = 1;
circletop[n] = top;
}
ncircles += 105;
/* add circle in the center */
circlex[ncircles] = 0.0;
circley[ncircles] = 0.0;
circlerad[ncircles] = MU;
circleactive[ncircles] = 2;
circletop[ncircles] = top;
ncircles += 1;
break;
}
case (C_GOLDEN_MEAN):
{
gamma = (sqrt(5.0) - 1.0)*0.5; /* golden mean */
height = YMAX - ymean;
dx = 2.0*LAMBDA/150.0;
if (top) y = ymean + 0.5*height;
else y = ymean - 0.5*height;
for (n = 0; n < 150; n++)
{
circlex[ncircles + n] = -LAMBDA + n*dx;
circley[ncircles + n] = y;
if (top)
{
y += height*gamma;
if (y > YMAX) y -= height;
}
else
{
y -= height*gamma;
if (y < YMIN) y += height;
}
circlerad[ncircles + n] = MU;
circleactive[ncircles + n] = 1;
circletop[ncircles] = top;
}
/* test for circles that overlap top or bottom boundary */
ncirc0 = ncircles;
ncircles += 150;
if (top) ytop = YMAX;
else ytop = ymean;
if (top) ybottom = ymean;
else ybottom = YMIN;
for (n=0; n < 150; n++)
{
if (circley[ncirc0 + n] + circlerad[ncirc0 + n] > ytop)
{
circlex[ncircles] = circlex[ncirc0 + n];
circley[ncircles] = circley[ncirc0 + n] - height;
circlerad[ncircles] = MU;
circleactive[ncircles] = 1;
ncircles ++;
}
else if (circley[ncirc0 + n] - circlerad[ncirc0 + n] < ybottom)
{
circlex[ncircles] = circlex[ncirc0 + n];
circley[ncircles] = circley[ncirc0 + n] + height;
circlerad[ncircles] = MU;
circleactive[ncircles] = 1;
ncircles ++;
}
}
break;
}
case (C_ONE):
{
circlex[ncircles] = 0.0;
circley[ncircles] = 0.0;
if (top) circlerad[ncircles] = MU;
else circlerad[ncircles] = MUB;
circleactive[ncircles] = 1;
circletop[ncircles] = top;
ncircles += 1;
break;
}
case (C_TWO):
{
circlex[ncircles] = 0.0;
circley[ncircles] = 0.0;
if (top) circlerad[ncircles] = MU;
else circlerad[ncircles] = MUB;
circleactive[ncircles] = 2;
circletop[ncircles] = top;
ncircles += 1;
circlex[ncircles] = 0.0;
circley[ncircles] = 0.0;
if (top) circlerad[ncircles] = 2.0*MU;
else circlerad[ncircles] = 2.0*MUB;
circleactive[ncircles] = 1;
circletop[ncircles] = top;
ncircles += 1;
break;
}
case (C_NOTHING):
{
ncircles += 0;
break;
}
default:
{
printf("Function init_circle_config not defined for this pattern \n");
}
}
}
void init_circle_config_comp()
/* initialise the arrays circlex, circley, circlerad and circleactive */
/* for billiard shape D_CIRCLES */
{
ncircles = 0;
init_circle_config_half(CIRCLE_PATTERN, 1);
init_circle_config_half(CIRCLE_PATTERN_B, 0);
}
int xy_in_billiard_half(double x, double y, int domain, int pattern, int top)
/* returns 1 if (x,y) represents a point in the billiard */
{
double l2, r2, r2mu, omega, c, angle, z, x1, y1, x2, y2, u, v, u1, v1, dx, dy;
int i, j, k, k1, k2, condition, type;
switch (domain) {
case D_MENGER:
{
x1 = 0.5*(x+1.0);
y1 = 0.5*(y+1.0);
for (k=0; k<MDEPTH; k++)
{
x1 = x1*(double)MRATIO;
y1 = y1*(double)MRATIO;
if ((top)&&(y > 0.0)&&(vabs(x)<1.0)&&(vabs(y)<1.0)&&(((int)x1 % MRATIO)==MRATIO/2)&&(((int)y1 % MRATIO)==MRATIO/2)) return(0);
else if ((!top)&&(y < 0.0)&&(vabs(x)<1.0)&&(vabs(y)<1.0)&&(((int)x1 % MRATIO)==MRATIO/2)&&(((int)y1 % MRATIO)==MRATIO/2)) return(0);
}
return(1);
}
case D_CIRCLES:
{
for (i = 0; i < ncircles; i++)
if (circleactive[i] != 0)
{
/* choose specific type according to value of circleactive[i] */
if (circleactive[i] == 1) type = 0;
else type = circleactive[i];
x1 = circlex[i];
y1 = circley[i];
r2 = circlerad[i]*circlerad[i];
if ((top)&&(circletop[i])&&(y > 0.0)&&((x-x1)*(x-x1) + (y-y1)*(y-y1) < r2)) return(type);
else if ((!top)&&(!circletop[i])&&(y < 0.0)&&((x-x1)*(x-x1) + (y-y1)*(y-y1) < r2)) return(type);
}
return(1);
}
default:
{
printf("Function ij_in_billiard not defined for this billiard \n");
return(0);
}
}
}
int xy_in_billiard_comp(double x, double y)
/* returns 1 if (x,y) represents a point in the billiard */
{
if (y > 0) return(xy_in_billiard_half(x, y, B_DOMAIN, CIRCLE_PATTERN, 1));
else return(xy_in_billiard_half(x, y, B_DOMAIN_B, CIRCLE_PATTERN_B, 0));
}
int ij_in_billiard_comp(int i, int j)
/* returns 1 if (i,j) represents a point in the billiard */
{
double xy[2];
ij_to_xy(i, j, xy);
return(xy_in_billiard_comp(xy[0], xy[1]));
}
void draw_billiard_half(int domain, int pattern, int top) /* draws the billiard boundary */
/* two domain version implemented for D_CIRCLES */
{
double x0, x, y, x1, y1, dx, dy, phi, r = 0.01, pos[2], pos1[2], alpha, dphi, omega, z, l, signtop;
int i, j, k, k1, k2, mr2;
if (BLACK) glColor3f(1.0, 1.0, 1.0);
else glColor3f(0.0, 0.0, 0.0);
glLineWidth(5);
if (top) signtop = 1.0;
else signtop = -1.0;
glEnable(GL_LINE_SMOOTH);
switch (domain) {
case (D_MENGER):
{
glLineWidth(3);
// draw_rectangle(XMIN, -1.0, XMAX, 1.0);
/* level 1 */
if (MDEPTH > 0)
{
glLineWidth(2);
x = 1.0/((double)MRATIO);
draw_rectangle(-x, 0.0, x, signtop*x);
}
/* level 2 */
if (MDEPTH > 1)
{
glLineWidth(1);
mr2 = MRATIO*MRATIO;
l = 2.0/((double)mr2);
for (i=0; i<MRATIO; i++)
for (j=MRATIO/2; j<MRATIO; j++)
if ((i!=MRATIO/2)||(j!=MRATIO/2))
{
x = -1.0 - 0.5*l + 2.0*((double)i + 0.5)/((double)MRATIO);
y = -1.0 - 0.5*l + 2.0*((double)j + 0.5)/((double)MRATIO);
y1 = y+l;
if (y < 0.0) y = 0.0;
if (y1 < 0.0) y1 = 0.0;
draw_rectangle(x, signtop*y, x+l, signtop*y1);
}
}
/* level 3 */
if (MDEPTH > 2)
{
glLineWidth(1);
l = 2.0/((double)(mr2*MRATIO));
for (i=0; i<mr2; i++)
for (j=mr2/2; j<mr2; j++)
if ( (((i%MRATIO!=MRATIO/2))||(j%MRATIO!=MRATIO/2)) && (((i/MRATIO!=MRATIO/2))||(j/MRATIO!=MRATIO/2)) )
{
x = -1.0 - 0.5*l + 2.0*((double)i + 0.5)/((double)mr2);
y = -1.0 - 0.5*l + 2.0*((double)j + 0.5)/((double)mr2);
y1 = y+l;
if (y < 0.0) y = 0.0;
if (y1 < 0.0) y1 = 0.0;
draw_rectangle(x, signtop*y, x+l, signtop*y1);
}
}
break;
}
case (D_CIRCLES):
{
glLineWidth(2);
for (i = 0; i < ncircles; i++)
if ((circleactive[i])&&(circletop[i] == top))
{
glBegin(GL_LINE_STRIP);
for (k=0; k<=NSEG; k++)
{
phi = (double)k*DPI/(double)NSEG;
x = circlex[i] + circlerad[i]*cos(phi);
y = circley[i] + circlerad[i]*sin(phi);
if ((top)&&(circletop[i])&&(y < 0.0)) y = 0.0;
if ((!top)&&(!circletop[i])&&(y > 0.0)) y = 0.0;
xy_to_pos(x, y, pos);
glVertex2d(pos[0], pos[1]);
}
glEnd ();
}
break;
}
case (D_MANDELBROT):
{
/* Do nothing */
break;
}
case (D_MANDELBROT_CIRCLE):
{
/* Do nothing */
break;
}
case (D_JULIA):
{
/* Do nothing */
break;
}
default:
{
printf("Function draw_billiard not defined for this billiard \n");
}
}
}
void draw_billiard_comp() /* draws the billiard boundary */
{
draw_billiard_half(B_DOMAIN, CIRCLE_PATTERN, 1);
draw_billiard_half(B_DOMAIN_B, CIRCLE_PATTERN_B, 0);
}
void int_planar_wave_comp(double x, double y, double *phi[NX], double *psi[NX], short int * xy_in[NX])
/* initialise field with drop at (x,y) - phi is wave height, psi is phi at time t-1 */
/* beta version, works for vertical planar wave only so far */
{
int i, j;
double xy[2], dist2;
for (i=0; i<NX; i++)
for (j=0; j<NY; j++)
{
ij_to_xy(i, j, xy);
dist2 = (xy[0]-x)*(xy[0]-x);
xy_in[i][j] = xy_in_billiard_comp(xy[0],xy[1]);
if ((xy_in[i][j])||(TWOSPEEDS)) phi[i][j] = 0.01*exp(-dist2/0.0005)*cos(-sqrt(dist2)/0.01);
else phi[i][j] = 0.0;
psi[i][j] = 0.0;
}
}
void init_wave_flat_comp( double *phi[NX], double *psi[NX], short int * xy_in[NX])
/* initialise flat field - phi is wave height, psi is phi at time t-1 */
{
int i, j;
double xy[2], dist2;
for (i=0; i<NX; i++)
for (j=0; j<NY; j++)
{
ij_to_xy(i, j, xy);
xy_in[i][j] = xy_in_billiard_comp(xy[0],xy[1]);
phi[i][j] = 0.0;
psi[i][j] = 0.0;
}
}
void draw_wave_comp(double *phi[NX], double *psi[NX], short int *xy_in[NX], double scale, int time)
/* draw the field */
{
int i, j, iplus, iminus, jplus, jminus;
double rgb[3], xy[2], x1, y1, x2, y2, velocity, energy, gradientx2, gradienty2, pos[2];
static double dtinverse = ((double)NX)/(COURANT*(XMAX-XMIN)), dx = (XMAX-XMIN)/((double)NX);
glBegin(GL_QUADS);
// printf("dtinverse = %.5lg\n", dtinverse);
for (i=0; i<NX; i++)
for (j=0; j<NY; j++)
{
if (((TWOSPEEDS)&&(xy_in[i][j] != 2))||(xy_in[i][j] == 1))
{
if (PLOT == P_AMPLITUDE)
color_scheme(COLOR_SCHEME, phi[i][j], scale, time, rgb);
else if (PLOT == P_ENERGY)
color_scheme(COLOR_SCHEME, compute_energy(phi, psi, xy_in, i, j), scale, time, rgb);
else if (PLOT == P_MIXED)
{
if (j > NY/2) color_scheme(COLOR_SCHEME, phi[i][j], scale, time, rgb);
else color_scheme(COLOR_SCHEME, compute_energy(phi, psi, xy_in, i, j), scale, time, rgb);
}
glColor3f(rgb[0], rgb[1], rgb[2]);
glVertex2i(i, j);
glVertex2i(i+1, j);
glVertex2i(i+1, j+1);
glVertex2i(i, j+1);
}
}
glEnd ();
/* draw horizontal mid line */
glColor3f(1.0, 1.0, 1.0);
glBegin(GL_LINE_STRIP);
xy_to_pos(XMIN, 0.5*(YMIN+YMAX), pos);
glVertex2d(pos[0], pos[1]);
xy_to_pos(XMAX, 0.5*(YMIN+YMAX), pos);
glVertex2d(pos[0], pos[1]);
glEnd();
}
void compute_energy_tblr(double *phi[NX], double *psi[NX], short int *xy_in[NX], double energies[6])
/* compute total energy in top/bottom left/right boxes */
{
int i, j, ij[2];
double energy = 0.0, pos, xleft = XMAX, xright = XMIN;
static short int first = 1;
static int ileft, iright, jmid = NY/2;
if (first) /* compute box limits */
{
/* find leftmost and rightmost circle */
for (i=0; i<ncircles; i++)
if ((circleactive[i])&&(circlex[i] - circlerad[i] < xleft)) xleft = circlex[i] - circlerad[i];
for (i=0; i<ncircles; i++)
if ((circleactive[i])&&(circlex[i] + circlerad[i] > xright)) xright = circlex[i] + circlerad[i];
xy_to_ij(xleft, 0.0, ij);
ileft = ij[0];
xy_to_ij(xright, 0.0, ij);
iright = ij[0];
first = 0;
printf("xleft = %.3lg, xright = %.3lg", xleft, xright);
}
/* top left box */
for (i=0; i<ileft; i++)
for (j=jmid; j<NY; j++)
energy += compute_energy(phi, psi, xy_in, i, j);
energies[0] = energy;
/* top middle box */
energy = 0.0;
for (i=ileft; i<iright; i++)
for (j=jmid; j<NY; j++)
energy += compute_energy(phi, psi, xy_in, i, j);
energies[1] = energy;
/* top right box */
energy = 0.0;
for (i=iright; i<NX; i++)
for (j=jmid; j<NY; j++)
energy += compute_energy(phi, psi, xy_in, i, j);
energies[2] = energy;
/* bottom left box */
energy = 0.0;
for (i=0; i<ileft; i++)
for (j=0; j<jmid; j++)
energy += compute_energy(phi, psi, xy_in, i, j);
energies[3] = energy;
/* bottom middle box */
energy = 0.0;
for (i=ileft; i<iright; i++)
for (j=0; j<jmid; j++)
energy += compute_energy(phi, psi, xy_in, i, j);
energies[4] = energy;
/* bottom right box */
energy = 0.0;
for (i=iright; i<NX; i++)
for (j=0; j<jmid; j++)
energy += compute_energy(phi, psi, xy_in, i, j);
energies[5] = energy;
printf("Energies: %.5lg, %.5lg, %.5lg\n %.5lg, %.5lg, %.5lg\n", energies[0], energies[1], energies[2], energies[3], energies[4], energies[5]);
}
void print_energies(double energies[6], double top_energy, double bottom_energy)
{
char message[50];
double ytop, ybot, pos[2], centerx = -0.075;
ytop = YMAX - 0.1;
ybot = -0.1;
// ybot = YMIN + 0.05;
erase_area(XMIN + 0.175, ytop + 0.025, 0.1, 0.05);
glColor3f(1.0, 1.0, 1.0);
sprintf(message, "%.3f", energies[0]/top_energy);
xy_to_pos(XMIN + 0.1, ytop, pos);
write_text(pos[0], pos[1], message);
erase_area(centerx + 0.075, ytop + 0.025, 0.1, 0.05);
glColor3f(1.0, 1.0, 1.0);
sprintf(message, "%.3f", energies[1]/top_energy);
xy_to_pos(centerx, ytop, pos);
write_text(pos[0], pos[1], message);
glColor3f(1.0, 1.0, 1.0);
sprintf(message, "%.5f", energies[2]/top_energy);
xy_to_pos(XMAX - 0.28, ytop, pos);
write_text(pos[0], pos[1], message);
erase_area(XMIN + 0.175, ybot + 0.025, 0.1, 0.05);
glColor3f(1.0, 1.0, 1.0);
sprintf(message, "%.3f", energies[3]/bottom_energy);
xy_to_pos(XMIN + 0.1, ybot, pos);
write_text(pos[0], pos[1], message);
erase_area(centerx + 0.075, ybot + 0.025, 0.1, 0.05);
glColor3f(1.0, 1.0, 1.0);
sprintf(message, "%.3f", energies[4]/bottom_energy);
xy_to_pos(centerx, ybot, pos);
write_text(pos[0], pos[1], message);
glColor3f(1.0, 1.0, 1.0);
sprintf(message, "%.5f", energies[5]/bottom_energy);
xy_to_pos(XMAX - 0.28, ybot, pos);
write_text(pos[0], pos[1], message);
}

View File

@ -15,6 +15,9 @@
/* gcc -o wave_billiard wave_billiard.c */
/* -L/usr/X11R6/lib -ltiff -lm -lGL -lGLU -lX11 -lXmu -lglut -O3 -fopenmp */
/* */
/* OMP acceleration may be more effective after executing */
/* export OMP_NUM_THREADS=2 in the shell before running the program */
/* */
/* To make a video, set MOVIE to 1 and create subfolder tif_wave */
/* It may be possible to increase parameter PAUSE */
/* */
@ -40,6 +43,7 @@
#include <omp.h>
#define MOVIE 0 /* set to 1 to generate movie */
#define DOUBLE_MOVIE 1 /* set to 1 to produce movies for wave height and energy simultaneously */
/* General geometrical parameters */
@ -58,32 +62,28 @@
#define XMAX 2.0 /* x interval */
#define YMIN -1.125
#define YMAX 1.125 /* y interval for 9/16 aspect ratio */
// #define XMIN -1.8
// #define XMAX 1.8 /* x interval */
// #define YMIN -1.0125
// #define YMAX 1.0125 /* y interval for 9/16 aspect ratio */
#define JULIA_SCALE 1.0 /* scaling for Julia sets */
/* Choice of the billiard table */
#define B_DOMAIN 3 /* choice of domain shape, see list in global_pdes.c */
#define B_DOMAIN 20 /* choice of domain shape, see list in global_pdes.c */
#define CIRCLE_PATTERN 4 /* pattern of circles, see list in global_pdes.c */
#define CIRCLE_PATTERN 11 /* pattern of circles, see list in global_pdes.c */
#define P_PERCOL 0.25 /* probability of having a circle in C_RAND_PERCOL arrangement */
#define NPOISSON 300 /* number of points for Poisson C_RAND_POISSON arrangement */
#define LAMBDA 0.75 /* parameter controlling the dimensions of domain */
#define MU 0.025 /* parameter controlling the dimensions of domain */
#define LAMBDA 0.85 /* parameter controlling the dimensions of domain */
#define MU 0.03 /* parameter controlling the dimensions of domain */
#define NPOLY 3 /* number of sides of polygon */
#define APOLY 1.0 /* angle by which to turn polygon, in units of Pi/2 */
#define MDEPTH 4 /* depth of computation of Menger gasket */
#define MRATIO 3 /* ratio defining Menger gasket */
#define MANDELLEVEL 1000 /* iteration level for Mandelbrot set */
#define MANDELLIMIT 10.0 /* limit value for approximation of Mandelbrot set */
#define MANDELLEVEL 1000 /* iteration level for Mandelbrot set */
#define MANDELLIMIT 10.0 /* limit value for approximation of Mandelbrot set */
#define FOCI 1 /* set to 1 to draw focal points of ellipse */
#define NGRIDX 15 /* number of grid point for grid of disks */
#define NGRIDX 15 /* number of grid point for grid of disks */
#define NGRIDY 20 /* number of grid point for grid of disks */
/* You can add more billiard tables by adapting the functions */
@ -91,16 +91,21 @@
/* Physical parameters of wave equation */
#define TWOSPEEDS 1 /* set to 1 to replace hardcore boundary by medium with different speed */
#define TWOSPEEDS 0 /* set to 1 to replace hardcore boundary by medium with different speed */
#define OSCILLATE_LEFT 0 /* set to 1 to add oscilating boundary condition on the left */
#define OSCILLATE_TOPBOT 0 /* set to 1 to enforce a planar wave on top and bottom boundary */
#define OMEGA 0.9 /* frequency of periodic excitation */
#define COURANT 0.01 /* Courant number */
#define COURANTB 0.003 /* Courant number in medium B */
#define GAMMA 0.0 /* damping factor in wave equation */
#define GAMMA_BC 1.0e-4 /* damping factor on boundary */
// #define GAMMA 5.0e-10 /* damping factor in wave equation */
#define KAPPA 0.0 /* "elasticity" term enforcing oscillations */
#define KAPPA_BC 5.0e-4 /* "elasticity" term on absorbing boundary */
#define OMEGA 0.002 /* frequency of periodic excitation */
#define AMPLITUDE 1.0 /* amplitude of periodic excitation */
#define COURANT 0.02 /* Courant number */
#define COURANTB 0.01 /* Courant number in medium B */
#define GAMMA 0.0 /* damping factor in wave equation */
#define GAMMAB 1.0e-6 /* damping factor in wave equation */
#define GAMMA_SIDES 1.0e-4 /* damping factor on boundary */
#define GAMMA_TOPBOT 1.0e-6 /* damping factor on boundary */
#define KAPPA 0.0 /* "elasticity" term enforcing oscillations */
#define KAPPA_SIDES 5.0e-4 /* "elasticity" term on absorbing boundary */
#define KAPPA_TOPBOT 0.0 /* "elasticity" term on absorbing boundary */
/* The Courant number is given by c*DT/DX, where DT is the time step and DX the lattice spacing */
/* The physical damping coefficient is given by GAMMA/(DT)^2 */
/* Increasing COURANT speeds up the simulation, but decreases accuracy */
@ -112,10 +117,11 @@
/* Parameters for length and speed of simulation */
#define NSTEPS 7000 /* number of frames of movie */
#define NVID 50 /* number of iterations between images displayed on screen */
#define NSTEPS 3000 /* number of frames of movie */
#define NVID 20 /* number of iterations between images displayed on screen */
#define NSEG 100 /* number of segments of boundary */
#define INITIAL_TIME 200 /* time after which to start saving frames */
#define INITIAL_TIME 250 /* time after which to start saving frames */
#define BOUNDARY_WIDTH 2 /* width of billiard boundary */
#define PAUSE 1000 /* number of frames after which to pause */
#define PSLEEP 1 /* sleep time during pause */
@ -124,7 +130,9 @@
/* Plot type, see list in global_pdes.c */
#define PLOT 1
#define PLOT 0
#define PLOT_B 1 /* plot type for second movie */
/* Color schemes */
@ -133,10 +141,10 @@
#define COLOR_SCHEME 1 /* choice of color scheme, see list in global_pdes.c */
#define SCALE 0 /* set to 1 to adjust color scheme to variance of field */
#define SLOPE 1.0 /* sensitivity of color on wave amplitude */
// #define SLOPE 0.5 /* sensitivity of color on wave amplitude */
#define SLOPE 1.5 /* sensitivity of color on wave amplitude */
#define ATTENUATION 0.0 /* exponential attenuation coefficient of contrast with time */
#define E_SCALE 750.0 /* scaling factor for energy representation */
#define E_SCALE 2000.0 /* scaling factor for energy representation */
// #define E_SCALE 2500.0 /* scaling factor for energy representation */
#define COLORHUE 260 /* initial hue of water color for scheme C_LUM */
#define COLORDRIFT 0.0 /* how much the color hue drifts during the whole simulation */
@ -144,199 +152,34 @@
#define LUMAMP 0.3 /* amplitude of luminosity variation for scheme C_LUM */
#define HUEMEAN 220.0 /* mean value of hue for color scheme C_HUE */
#define HUEAMP -220.0 /* amplitude of variation of hue for color scheme C_HUE */
// #define HUEMEAN 320.0 /* mean value of hue for color scheme C_HUE */
// #define HUEAMP 100.0 /* amplitude of variation of hue for color scheme C_HUE */
/* For debugging purposes only */
#define FLOOR 0 /* set to 1 to limit wave amplitude to VMAX */
#define VMAX 10.0 /* max value of wave amplitude */
#include "global_pdes.c"
#include "sub_wave.c"
#include "global_pdes.c" /* constants and global variables */
#include "sub_wave.c" /* common functions for wave_billiard, heat and schrodinger */
#include "wave_common.c" /* common functions for wave_billiard, wave_comparison, etc */
double courant2, courantb2; /* Courant parameters squared */
void init_wave(x, y, phi, psi, xy_in)
/* initialise field with drop at (x,y) - phi is wave height, psi is phi at time t-1 */
double x, y, *phi[NX], *psi[NX]; short int * xy_in[NX];
{
int i, j;
double xy[2], dist2;
for (i=0; i<NX; i++)
for (j=0; j<NY; j++)
{
ij_to_xy(i, j, xy);
dist2 = (xy[0]-x)*(xy[0]-x) + (xy[1]-y)*(xy[1]-y);
xy_in[i][j] = xy_in_billiard(xy[0],xy[1]);
if ((xy_in[i][j])||(TWOSPEEDS)) phi[i][j] = 0.2*exp(-dist2/0.001)*cos(-sqrt(dist2)/0.01);
else phi[i][j] = 0.0;
psi[i][j] = 0.0;
}
}
void init_planar_wave(x, y, phi, psi, xy_in)
/* initialise field with drop at (x,y) - phi is wave height, psi is phi at time t-1 */
/* beta version, works for vertical planar wave only so far */
double x, y, *phi[NX], *psi[NX]; short int * xy_in[NX];
{
int i, j;
double xy[2], dist2;
for (i=0; i<NX; i++)
for (j=0; j<NY; j++)
{
ij_to_xy(i, j, xy);
dist2 = (xy[0]-x)*(xy[0]-x);
xy_in[i][j] = xy_in_billiard(xy[0],xy[1]);
if ((xy_in[i][j])||(TWOSPEEDS)) phi[i][j] = 0.01*exp(-dist2/0.0005)*cos(-sqrt(dist2)/0.01);
else phi[i][j] = 0.0;
psi[i][j] = 0.0;
}
}
void init_wave_flat(phi, psi, xy_in)
/* initialise flat field - phi is wave height, psi is phi at time t-1 */
double *phi[NX], *psi[NX]; short int * xy_in[NX];
{
int i, j;
double xy[2], dist2;
for (i=0; i<NX; i++)
for (j=0; j<NY; j++)
{
ij_to_xy(i, j, xy);
xy_in[i][j] = xy_in_billiard(xy[0],xy[1]);
phi[i][j] = 0.0;
psi[i][j] = 0.0;
}
}
void add_drop_to_wave(factor, x, y, phi, psi)
/* add drop at (x,y) to the field with given prefactor */
double factor, x, y, *phi[NX], *psi[NX];
{
int i, j;
double xy[2], dist2;
for (i=0; i<NX; i++)
for (j=0; j<NY; j++)
{
ij_to_xy(i, j, xy);
dist2 = (xy[0]-x)*(xy[0]-x) + (xy[1]-y)*(xy[1]-y);
phi[i][j] += 0.2*factor*exp(-dist2/0.001)*cos(-sqrt(dist2)/0.01);
}
}
void oscillate_linear_wave(amplitude, t, x1, y1, x2, y2, phi, psi)
/* oscillating boundary condition at (x,y), beta version */
double amplitude, t, x1, y1, x2, y2, *phi[NX], *psi[NX];
{
int i, j, ij1[2], ij2[2], imin, imax, jmin, jmax, d = 5;
double xy[2], dist2;
xy_to_ij(x1, y1, ij1);
xy_to_ij(x2, y2, ij2);
imin = ij1[0] - d; if (imin < 0) imin = 0;
imax = ij2[0] + d; if (imax >= NX) imax = NX-1;
jmin = ij1[1] - d; if (jmin < 0) jmin = 0;
jmax = ij2[1] + d; if (jmax >= NY) jmax = NY-1;
for (i = imin; i < imax; i++)
for (j = jmin; j < jmax; j++)
{
ij_to_xy(i, j, xy);
dist2 = (xy[0]-x1)*(xy[0]-x1); /* to be improved */
// dist2 = (xy[0]-x)*(xy[0]-x) + (xy[1]-y)*(xy[1]-y);
// if (dist2 < 0.01)
if (dist2 < 0.001)
phi[i][j] = amplitude*exp(-dist2/0.001)*cos(-sqrt(dist2)/0.01)*cos(t*OMEGA);
// phi[i][j] += 0.2*exp(-dist2/0.001)*cos(-sqrt(dist2)/0.01)*cos(t*OMEGA);
}
}
/*********************/
/* animation part */
/*********************/
double compute_energy(phi, psi, xy_in, i, j)
double *phi[NX], *psi[NX];
short int *xy_in[NX];
int i, j;
{
double velocity, energy, gradientx2, gradienty2;
int iplus, iminus, jplus, jminus;
velocity = (phi[i][j] - psi[i][j]);
iplus = (i+1); if (iplus == NX) iplus = NX-1;
iminus = (i-1); if (iminus == -1) iminus = 0;
jplus = (j+1); if (jplus == NY) jplus = NY-1;
jminus = (j-1); if (jminus == -1) jminus = 0;
gradientx2 = (phi[iplus][j]-phi[i][j])*(phi[iplus][j]-phi[i][j])
+ (phi[i][j] - phi[iminus][j])*(phi[i][j] - phi[iminus][j]);
gradienty2 = (phi[i][jplus]-phi[i][j])*(phi[i][jplus]-phi[i][j])
+ (phi[i][j] - phi[i][jminus])*(phi[i][j] - phi[i][jminus]);
if (xy_in[i][j]) return(E_SCALE*E_SCALE*(velocity*velocity + 0.5*COURANT*COURANT*(gradientx2+gradienty2)));
else if (TWOSPEEDS) return(E_SCALE*E_SCALE*(velocity*velocity + 0.5*COURANTB*COURANTB*(gradientx2+gradienty2)));
else return(0);
}
void draw_wave(phi, psi, xy_in, scale, time)
/* draw the field */
double *phi[NX], *psi[NX], scale;
short int *xy_in[NX];
int time;
{
int i, j, iplus, iminus, jplus, jminus;
double rgb[3], xy[2], x1, y1, x2, y2, velocity, energy, gradientx2, gradienty2;
static double dtinverse = ((double)NX)/(COURANT*(XMAX-XMIN)), dx = (XMAX-XMIN)/((double)NX);
glBegin(GL_QUADS);
// printf("dtinverse = %.5lg\n", dtinverse);
for (i=0; i<NX; i++)
for (j=0; j<NY; j++)
{
if ((TWOSPEEDS)||(xy_in[i][j]))
{
if (PLOT == P_AMPLITUDE)
color_scheme(COLOR_SCHEME, phi[i][j], scale, time, rgb);
else if (PLOT == P_ENERGY)
color_scheme(COLOR_SCHEME, compute_energy(phi, psi, xy_in, i, j), scale, time, rgb);
else if (PLOT == P_MIXED)
{
if (j > NY/2) color_scheme(COLOR_SCHEME, phi[i][j], scale, time, rgb);
else color_scheme(COLOR_SCHEME, compute_energy(phi, psi, xy_in, i, j), scale, time, rgb);
}
glColor3f(rgb[0], rgb[1], rgb[2]);
glVertex2i(i, j);
glVertex2i(i+1, j);
glVertex2i(i+1, j+1);
glVertex2i(i, j+1);
}
}
glEnd ();
}
void evolve_wave_half(phi_in, psi_in, phi_out, psi_out, xy_in)
void evolve_wave_half(double *phi_in[NX], double *psi_in[NX], double *phi_out[NX], double *psi_out[NX],
short int *xy_in[NX])
/* time step of field evolution */
/* phi is value of field at time t, psi at time t-1 */
double *phi_in[NX], *psi_in[NX], *phi_out[NX], *psi_out[NX]; short int *xy_in[NX];
{
int i, j, iplus, iminus, jplus, jminus;
double delta, x, y, c, cc;
double delta, x, y, c, cc, gamma;
static long time = 0;
time++;
// c = COURANT;
// cc = courant2;
@ -348,11 +191,13 @@ void evolve_wave_half(phi_in, psi_in, phi_out, psi_out, xy_in)
{
c = COURANT;
cc = courant2;
gamma = GAMMA;
}
else if (TWOSPEEDS)
{
c = COURANTB;
cc = courantb2;
cc = courantb2;
gamma = GAMMAB;
}
if ((TWOSPEEDS)||(xy_in[i][j])){
@ -381,6 +226,14 @@ void evolve_wave_half(phi_in, psi_in, phi_out, psi_out, xy_in)
jminus = (j-1) % NY;
if (jminus < 0) jminus += NY;
}
/* imposing linear wave on top and bottom by making Laplacian 1d */
if (OSCILLATE_TOPBOT)
{
if (j == NY-1) jminus = NY-1;
else if (j == 0) jplus = 0;
}
delta = phi_in[iplus][j] + phi_in[iminus][j] + phi_in[i][jplus] + phi_in[i][jminus] - 4.0*phi_in[i][j];
x = phi_in[i][j];
@ -388,42 +241,46 @@ void evolve_wave_half(phi_in, psi_in, phi_out, psi_out, xy_in)
/* evolve phi */
if ((B_COND == BC_PERIODIC)||(B_COND == BC_DIRICHLET))
phi_out[i][j] = -y + 2*x + cc*delta - KAPPA*x - GAMMA*(x-y);
phi_out[i][j] = -y + 2*x + cc*delta - KAPPA*x - gamma*(x-y);
else if (B_COND == BC_ABSORBING)
{
if ((i>0)&&(i<NX-1)&&(j>0)&&(j<NY-1))
phi_out[i][j] = -y + 2*x + cc*delta - KAPPA*x - GAMMA_BC*(x-y);
phi_out[i][j] = -y + 2*x + cc*delta - KAPPA*x - gamma*(x-y);
/* upper border */
else if (j==NY-1)
phi_out[i][j] = x - c*(x - phi_in[i][NY-2]) - KAPPA_BC*x - GAMMA_BC*(x-y);
phi_out[i][j] = x - c*(x - phi_in[i][NY-2]) - KAPPA_TOPBOT*x - GAMMA_TOPBOT*(x-y);
/* lower border */
else if (j==0)
phi_out[i][j] = x - c*(x - phi_in[i][1]) - KAPPA_BC*x - GAMMA_BC*(x-y);
phi_out[i][j] = x - c*(x - phi_in[i][1]) - KAPPA_TOPBOT*x - GAMMA_TOPBOT*(x-y);
/* right border */
if (i==NX-1)
phi_out[i][j] = x - c*(x - phi_in[NX-2][j]) - KAPPA_BC*x - GAMMA_BC*(x-y);
phi_out[i][j] = x - c*(x - phi_in[NX-2][j]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y);
/* left border */
else if (i==0)
phi_out[i][j] = x - c*(x - phi_in[1][j]) - KAPPA_BC*x - GAMMA_BC*(x-y);
phi_out[i][j] = x - c*(x - phi_in[1][j]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y);
}
else if (B_COND == BC_VPER_HABS)
{
if ((i>0)&&(i<NX-1))
phi_out[i][j] = -y + 2*x + cc*delta - KAPPA*x - GAMMA*(x-y);
phi_out[i][j] = -y + 2*x + cc*delta - KAPPA*x - gamma*(x-y);
/* right border */
else if (i==NX-1)
phi_out[i][j] = x - c*(x - phi_in[NX-2][j]) - KAPPA_BC*x - GAMMA_BC*(x-y);
phi_out[i][j] = x - c*(x - phi_in[NX-2][j]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y);
/* left border */
else if (i==0)
phi_out[i][j] = x - c*(x - phi_in[1][j]) - KAPPA_BC*x - GAMMA_BC*(x-y);
phi_out[i][j] = x - c*(x - phi_in[1][j]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y);
}
psi_out[i][j] = x;
/* add oscillating boundary condition on the left */
if ((i == 0)&&(OSCILLATE_LEFT)) phi_out[i][j] = AMPLITUDE*cos((double)time*OMEGA);
psi_out[i][j] = x;
if (FLOOR)
{
@ -439,46 +296,22 @@ void evolve_wave_half(phi_in, psi_in, phi_out, psi_out, xy_in)
}
void evolve_wave(phi, psi, phi_tmp, psi_tmp, xy_in)
void evolve_wave(double *phi[NX], double *psi[NX], double *phi_tmp[NX], double *psi_tmp[NX], short int *xy_in[NX])
/* time step of field evolution */
/* phi is value of field at time t, psi at time t-1 */
double *phi[NX], *psi[NX], *phi_tmp[NX], *psi_tmp[NX]; short int *xy_in[NX];
{
evolve_wave_half(phi, psi, phi_tmp, psi_tmp, xy_in);
evolve_wave_half(phi_tmp, psi_tmp, phi, psi, xy_in);
}
double compute_variance(phi, psi, xy_in)
/* compute the variance of the field, to adjust color scheme */
double *phi[NX], *psi[NX]; short int * xy_in[NX];
{
int i, j, n = 0;
double variance = 0.0;
for (i=1; i<NX; i++)
for (j=1; j<NY; j++)
{
if (xy_in[i][j])
{
n++;
variance += phi[i][j]*phi[i][j];
}
}
if (n==0) n=1;
return(variance/(double)n);
}
void animation()
{
double time, scale;
double *phi[NX], *psi[NX], *phi_tmp[NX], *psi_tmp[NX];
short int *xy_in[NX];
int i, j, s;
static int counter = 0;
/* Since NX and NY are big, it seemed wiser to use some memory allocation here */
for (i=0; i<NX; i++)
@ -497,8 +330,11 @@ void animation()
courantb2 = COURANTB*COURANTB;
/* initialize wave with a drop at one point, zero elsewhere */
init_planar_wave(XMIN + 0.01, 0.0, phi, psi, xy_in);
// init_planar_wave(XMIN + 1.0, 0.0, phi, psi, xy_in);
// init_wave_flat(phi, psi, xy_in);
init_planar_wave(XMIN + 0.015, 0.0, phi, psi, xy_in);
// init_planar_wave(XMIN + 0.02, 0.0, phi, psi, xy_in);
// init_planar_wave(XMIN + 0.8, 0.0, phi, psi, xy_in);
// init_wave(-1.5, 0.0, phi, psi, xy_in);
// init_wave(0.0, 0.0, phi, psi, xy_in);
@ -509,7 +345,7 @@ void animation()
blank();
glColor3f(0.0, 0.0, 0.0);
draw_wave(phi, psi, xy_in, 1.0, 0);
draw_wave(phi, psi, xy_in, 1.0, 0, PLOT);
draw_billiard();
glutSwapBuffers();
@ -530,7 +366,7 @@ void animation()
}
else scale = 1.0;
draw_wave(phi, psi, xy_in, scale, i);
draw_wave(phi, psi, xy_in, scale, i, PLOT);
for (j=0; j<NVID; j++)
{
evolve_wave(phi, psi, phi_tmp, psi_tmp, xy_in);
@ -546,6 +382,15 @@ void animation()
{
if (i >= INITIAL_TIME) save_frame();
else printf("Initial phase time %i of %i\n", i, INITIAL_TIME);
if ((i >= INITIAL_TIME)&&(DOUBLE_MOVIE))
{
draw_wave(phi, psi, xy_in, scale, i, PLOT_B);
draw_billiard();
glutSwapBuffers();
save_frame_counter(NSTEPS + 21 + counter);
counter++;
}
/* it seems that saving too many files too fast can cause trouble with the file system */
/* so this is to make a pause from time to time - parameter PAUSE may need adjusting */
@ -561,7 +406,21 @@ void animation()
if (MOVIE)
{
if (DOUBLE_MOVIE)
{
draw_wave(phi, psi, xy_in, scale, i, PLOT);
draw_billiard();
glutSwapBuffers();
}
for (i=0; i<20; i++) save_frame();
if (DOUBLE_MOVIE)
{
draw_wave(phi, psi, xy_in, scale, i, PLOT_B);
draw_billiard();
glutSwapBuffers();
for (i=0; i<20; i++) save_frame_counter(NSTEPS + 21 + counter + i);
}
s = system("mv wave*.tif tif_wave/");
}
for (i=0; i<NX; i++)

222
wave_common.c Normal file
View File

@ -0,0 +1,222 @@
/* functions common to wave_billiard.c, wave_comparison.c, mangrove.c */
void init_xyin(short int * xy_in[NX])
/* initialise table xy_in, needed when obstacles are killed */
// short int * xy_in[NX];
//
{
int i, j;
double xy[2];
for (i=0; i<NX; i++)
for (j=0; j<NY; j++)
{
ij_to_xy(i, j, xy);
xy_in[i][j] = xy_in_billiard(xy[0],xy[1]);
}
}
void init_wave(double x, double y, double *phi[NX], double *psi[NX], short int * xy_in[NX])
/* initialise field with drop at (x,y) - phi is wave height, psi is phi at time t-1 */
{
int i, j;
double xy[2], dist2;
for (i=0; i<NX; i++)
for (j=0; j<NY; j++)
{
ij_to_xy(i, j, xy);
dist2 = (xy[0]-x)*(xy[0]-x) + (xy[1]-y)*(xy[1]-y);
xy_in[i][j] = xy_in_billiard(xy[0],xy[1]);
if ((xy_in[i][j])||(TWOSPEEDS)) phi[i][j] = 0.2*exp(-dist2/0.001)*cos(-sqrt(dist2)/0.01);
else phi[i][j] = 0.0;
psi[i][j] = 0.0;
}
}
void init_planar_wave(double x, double y, double *phi[NX], double *psi[NX], short int * xy_in[NX])
/* initialise field with drop at (x,y) - phi is wave height, psi is phi at time t-1 */
/* beta version, works for vertical planar wave only so far */
{
int i, j;
double xy[2], dist2;
for (i=0; i<NX; i++)
for (j=0; j<NY; j++)
{
ij_to_xy(i, j, xy);
dist2 = (xy[0]-x)*(xy[0]-x);
xy_in[i][j] = xy_in_billiard(xy[0],xy[1]);
// if ((xy_in[i][j])||(TWOSPEEDS)) phi[i][j] = 0.01*exp(-dist2/0.0005)*cos(-sqrt(dist2)/0.01);
// if ((xy_in[i][j])||(TWOSPEEDS)) phi[i][j] = 0.01*exp(-dist2/0.0005)*cos(-sqrt(dist2)/0.02);
// if ((xy_in[i][j])||(TWOSPEEDS)) phi[i][j] = 0.01*exp(-dist2/0.005)*cos(-sqrt(dist2)/0.02);
// if ((xy_in[i][j])||(TWOSPEEDS)) phi[i][j] = 0.01*exp(-dist2/0.01)*cos(-sqrt(dist2)/0.02);
if ((xy_in[i][j])||(TWOSPEEDS)) phi[i][j] = 0.01*exp(-dist2/0.0005)*cos(-sqrt(dist2)/0.01);
// if ((xy_in[i][j])||(TWOSPEEDS)) phi[i][j] = 0.01*exp(-dist2/0.05)*cos(-sqrt(dist2)/0.025);
else phi[i][j] = 0.0;
psi[i][j] = 0.0;
}
}
void init_wave_flat( double *phi[NX], double *psi[NX], short int * xy_in[NX])
/* initialise flat field - phi is wave height, psi is phi at time t-1 */
{
int i, j;
double xy[2], dist2;
for (i=0; i<NX; i++)
for (j=0; j<NY; j++)
{
ij_to_xy(i, j, xy);
xy_in[i][j] = xy_in_billiard(xy[0],xy[1]);
phi[i][j] = 0.0;
psi[i][j] = 0.0;
}
}
void add_drop_to_wave(double factor, double x, double y, double *phi[NX], double *psi[NX])
/* add drop at (x,y) to the field with given prefactor */
{
int i, j;
double xy[2], dist2;
for (i=0; i<NX; i++)
for (j=0; j<NY; j++)
{
ij_to_xy(i, j, xy);
dist2 = (xy[0]-x)*(xy[0]-x) + (xy[1]-y)*(xy[1]-y);
phi[i][j] += 0.2*factor*exp(-dist2/0.001)*cos(-sqrt(dist2)/0.01);
}
}
void oscillate_linear_wave(double amplitude, double t, double x1, double y1, double x2, double y2, double *phi[NX],
double *psi[NX])
/* oscillating boundary condition at (x,y), beta version */
{
int i, j, ij1[2], ij2[2], imin, imax, jmin, jmax, d = 5;
double xy[2], dist2;
xy_to_ij(x1, y1, ij1);
xy_to_ij(x2, y2, ij2);
imin = ij1[0] - d; if (imin < 0) imin = 0;
imax = ij2[0] + d; if (imax >= NX) imax = NX-1;
jmin = ij1[1] - d; if (jmin < 0) jmin = 0;
jmax = ij2[1] + d; if (jmax >= NY) jmax = NY-1;
for (i = imin; i < imax; i++)
for (j = jmin; j < jmax; j++)
{
ij_to_xy(i, j, xy);
dist2 = (xy[0]-x1)*(xy[0]-x1); /* to be improved */
// dist2 = (xy[0]-x)*(xy[0]-x) + (xy[1]-y)*(xy[1]-y);
// if (dist2 < 0.01)
if (dist2 < 0.001)
phi[i][j] = amplitude*exp(-dist2/0.001)*cos(-sqrt(dist2)/0.01)*cos(t*OMEGA);
// phi[i][j] += 0.2*exp(-dist2/0.001)*cos(-sqrt(dist2)/0.01)*cos(t*OMEGA);
}
}
double compute_energy(double *phi[NX], double *psi[NX], short int *xy_in[NX], int i, int j)
{
double velocity, energy, gradientx2, gradienty2;
int iplus, iminus, jplus, jminus;
velocity = (phi[i][j] - psi[i][j]);
iplus = (i+1); if (iplus == NX) iplus = NX-1;
iminus = (i-1); if (iminus == -1) iminus = 0;
jplus = (j+1); if (jplus == NY) jplus = NY-1;
jminus = (j-1); if (jminus == -1) jminus = 0;
gradientx2 = (phi[iplus][j]-phi[i][j])*(phi[iplus][j]-phi[i][j])
+ (phi[i][j] - phi[iminus][j])*(phi[i][j] - phi[iminus][j]);
gradienty2 = (phi[i][jplus]-phi[i][j])*(phi[i][jplus]-phi[i][j])
+ (phi[i][j] - phi[i][jminus])*(phi[i][j] - phi[i][jminus]);
if (xy_in[i][j]) return(E_SCALE*E_SCALE*(velocity*velocity + 0.5*COURANT*COURANT*(gradientx2+gradienty2)));
else if (TWOSPEEDS) return(E_SCALE*E_SCALE*(velocity*velocity + 0.5*COURANTB*COURANTB*(gradientx2+gradienty2)));
else return(0);
}
double compute_variance(double *phi[NX], double *psi[NX], short int *xy_in[NX])
/* compute the variance of the field, to adjust color scheme */
{
int i, j, n = 0;
double variance = 0.0;
for (i=1; i<NX; i++)
for (j=1; j<NY; j++)
{
if (xy_in[i][j])
{
n++;
variance += phi[i][j]*phi[i][j];
}
}
if (n==0) n=1;
return(variance/(double)n);
}
double compute_dissipation(double *phi[NX], double *psi[NX], short int *xy_in[NX], double x, double y)
{
double velocity;
int ij[2];
xy_to_ij(x, y, ij);
velocity = (phi[ij[0]][ij[1]] - psi[ij[0]][ij[1]]);
return(velocity*velocity);
}
void draw_wave(double *phi[NX], double *psi[NX], short int *xy_in[NX], double scale, int time, int plot)
/* draw the field */
{
int i, j, iplus, iminus, jplus, jminus;
double rgb[3], xy[2], x1, y1, x2, y2, velocity, energy, gradientx2, gradienty2;
static double dtinverse = ((double)NX)/(COURANT*(XMAX-XMIN)), dx = (XMAX-XMIN)/((double)NX);
glBegin(GL_QUADS);
// printf("dtinverse = %.5lg\n", dtinverse);
for (i=0; i<NX; i++)
for (j=0; j<NY; j++)
{
if ((TWOSPEEDS)||(xy_in[i][j]))
{
if (plot == P_AMPLITUDE)
color_scheme(COLOR_SCHEME, phi[i][j], scale, time, rgb);
else if (plot == P_ENERGY)
color_scheme(COLOR_SCHEME, compute_energy(phi, psi, xy_in, i, j), scale, time, rgb);
else if (plot == P_MIXED)
{
if (j > NY/2) color_scheme(COLOR_SCHEME, phi[i][j], scale, time, rgb);
else color_scheme(COLOR_SCHEME, compute_energy(phi, psi, xy_in, i, j), scale, time, rgb);
}
glColor3f(rgb[0], rgb[1], rgb[2]);
glVertex2i(i, j);
glVertex2i(i+1, j);
glVertex2i(i+1, j+1);
glVertex2i(i, j+1);
}
}
glEnd ();
}

486
wave_comparison.c Normal file
View File

@ -0,0 +1,486 @@
/*********************************************************************************/
/* */
/* Animation of wave equation in a planar domain */
/* */
/* N. Berglund, december 2012, may 2021 */
/* */
/* UPDATE 24/04: distinction between damping and "elasticity" parameters */
/* UPDATE 27/04: new billiard shapes, bug in color scheme fixed */
/* UPDATE 28/04: code made more efficient, with help of Marco Mancini */
/* */
/* Feel free to reuse, but if doing so it would be nice to drop a */
/* line to nils.berglund@univ-orleans.fr - Thanks! */
/* */
/* compile with */
/* gcc -o wave_billiard wave_billiard.c */
/* -L/usr/X11R6/lib -ltiff -lm -lGL -lGLU -lX11 -lXmu -lglut -O3 -fopenmp */
/* */
/* OMP acceleration may be more effective after executing */
/* export OMP_NUM_THREADS=2 in the shell before running the program */
/* */
/* To make a video, set MOVIE to 1 and create subfolder tif_wave */
/* It may be possible to increase parameter PAUSE */
/* */
/* create movie using */
/* ffmpeg -i wave.%05d.tif -vcodec libx264 wave.mp4 */
/* */
/*********************************************************************************/
/*********************************************************************************/
/* */
/* NB: The algorithm used to simulate the wave equation is highly paralellizable */
/* One could make it much faster by using a GPU */
/* */
/*********************************************************************************/
#include <math.h>
#include <string.h>
#include <GL/glut.h>
#include <GL/glu.h>
#include <unistd.h>
#include <sys/types.h>
#include <tiffio.h> /* Sam Leffler's libtiff library. */
#include <omp.h>
#define MOVIE 0 /* set to 1 to generate movie */
#define WINWIDTH 1280 /* window width */
#define WINHEIGHT 720 /* window height */
#define NX 1280 /* number of grid points on x axis */
#define NY 720 /* number of grid points on y axis */
#define XMIN -2.0
#define XMAX 2.0 /* x interval */
#define YMIN -1.125
#define YMAX 1.125 /* y interval for 9/16 aspect ratio */
#define JULIA_SCALE 1.0 /* scaling for Julia sets */
/* Choice of the billiard table */
#define B_DOMAIN 20 /* choice of domain shape, see list in global_pdes.c */
#define B_DOMAIN_B 20 /* choice of domain shape, see list in global_pdes.c */
#define CIRCLE_PATTERN 1 /* pattern of circles, see list in global_pdes.c */
#define CIRCLE_PATTERN_B 10 /* pattern of circles, see list in global_pdes.c */
#define P_PERCOL 0.25 /* probability of having a circle in C_RAND_PERCOL arrangement */
#define NPOISSON 300 /* number of points for Poisson C_RAND_POISSON arrangement */
#define LAMBDA 0.8 /* parameter controlling the dimensions of domain */
#define MU 0.03 /* parameter controlling the dimensions of domain */
#define MUB 0.03 /* parameter controlling the dimensions of domain */
#define NPOLY 3 /* number of sides of polygon */
#define APOLY 1.0 /* angle by which to turn polygon, in units of Pi/2 */
#define MDEPTH 4 /* depth of computation of Menger gasket */
#define MRATIO 3 /* ratio defining Menger gasket */
#define MANDELLEVEL 1000 /* iteration level for Mandelbrot set */
#define MANDELLIMIT 10.0 /* limit value for approximation of Mandelbrot set */
#define FOCI 1 /* set to 1 to draw focal points of ellipse */
#define NGRIDX 15 /* number of grid point for grid of disks */
#define NGRIDY 20 /* number of grid point for grid of disks */
/* You can add more billiard tables by adapting the functions */
/* xy_in_billiard and draw_billiard below */
/* Physical parameters of wave equation */
#define TWOSPEEDS 0 /* set to 1 to replace hardcore boundary by medium with different speed */
#define OSCILLATE_LEFT 0 /* set to 1 to add oscilating boundary condition on the left */
#define OSCILLATE_TOPBOT 0 /* set to 1 to enforce a planar wave on top and bottom boundary */
#define OMEGA 0.0035 /* frequency of periodic excitation */
#define AMPLITUDE 1.0 /* amplitude of periodic excitation */
#define COURANT 0.02 /* Courant number */
#define COURANTB 0.0075 /* Courant number in medium B */
#define GAMMA 0.0 /* damping factor in wave equation */
#define GAMMAB 1.0e-5 /* damping factor in wave equation */
#define GAMMA_SIDES 1.0e-4 /* damping factor on boundary */
#define GAMMA_TOPBOT 1.0e-6 /* damping factor on boundary */
#define KAPPA 0.0 /* "elasticity" term enforcing oscillations */
#define KAPPA_SIDES 5.0e-4 /* "elasticity" term on absorbing boundary */
#define KAPPA_TOPBOT 0.0 /* "elasticity" term on absorbing boundary */
/* The Courant number is given by c*DT/DX, where DT is the time step and DX the lattice spacing */
/* The physical damping coefficient is given by GAMMA/(DT)^2 */
/* Increasing COURANT speeds up the simulation, but decreases accuracy */
/* For similar wave forms, COURANT^2*GAMMA should be kept constant */
/* Boundary conditions, see list in global_pdes.c */
#define B_COND 3
/* Parameters for length and speed of simulation */
#define NSTEPS 6000 /* number of frames of movie */
#define NVID 25 /* number of iterations between images displayed on screen */
#define NSEG 100 /* number of segments of boundary */
#define INITIAL_TIME 200 /* time after which to start saving frames */
#define COMPUTE_ENERGIES 1 /* set to 1 to compute and print energies */
#define BOUNDARY_WIDTH 2 /* width of billiard boundary */
#define PAUSE 1000 /* number of frames after which to pause */
#define PSLEEP 1 /* sleep time during pause */
#define SLEEP1 1 /* initial sleeping time */
#define SLEEP2 1 /* final sleeping time */
/* Plot type, see list in global_pdes.c */
#define PLOT 1
/* Color schemes */
#define BLACK 1 /* background */
#define COLOR_SCHEME 1 /* choice of color scheme, see list in global_pdes.c */
#define SCALE 0 /* set to 1 to adjust color scheme to variance of field */
#define SLOPE 1.5 /* sensitivity of color on wave amplitude */
#define ATTENUATION 0.0 /* exponential attenuation coefficient of contrast with time */
#define E_SCALE 2000.0 /* scaling factor for energy representation */
#define COLORHUE 260 /* initial hue of water color for scheme C_LUM */
#define COLORDRIFT 0.0 /* how much the color hue drifts during the whole simulation */
#define LUMMEAN 0.5 /* amplitude of luminosity variation for scheme C_LUM */
#define LUMAMP 0.3 /* amplitude of luminosity variation for scheme C_LUM */
#define HUEMEAN 220.0 /* mean value of hue for color scheme C_HUE */
#define HUEAMP -220.0 /* amplitude of variation of hue for color scheme C_HUE */
/* For debugging purposes only */
#define FLOOR 0 /* set to 1 to limit wave amplitude to VMAX */
#define VMAX 10.0 /* max value of wave amplitude */
#include "global_pdes.c" /* constants and global variables */
#include "sub_wave.c" /* common functions for wave_billiard, heat and schrodinger */
#include "wave_common.c" /* common functions for wave_billiard, wave_comparison, etc */
#include "sub_wave_comp.c" /* some functions specific to wave_comparison */
double courant2, courantb2; /* Courant parameters squared */
/*********************/
/* animation part */
/*********************/
void evolve_wave_half(double *phi_in[NX], double *psi_in[NX], double *phi_out[NX], double *psi_out[NX],
short int *xy_in[NX])
/* time step of field evolution */
/* phi is value of field at time t, psi at time t-1 */
{
int i, j, iplus, iminus, jplus, jminus, jmid = NY/2;
double delta, x, y, c, cc, gamma;
static long time = 0;
time++;
#pragma omp parallel for private(i,j,iplus,iminus,jplus,jminus,delta,x,y)
for (i=0; i<NX; i++){
for (j=0; j<NY; j++){
if (xy_in[i][j])
{
c = COURANT;
cc = courant2;
gamma = GAMMA;
}
else if (TWOSPEEDS)
{
c = COURANTB;
cc = courantb2;
gamma = GAMMAB;
}
if (((TWOSPEEDS)&&(xy_in[i][j] != 2))||(xy_in[i][j] == 1)){
/* discretized Laplacian for various boundary conditions */
if ((B_COND == BC_DIRICHLET)||(B_COND == BC_ABSORBING)||(B_COND == BC_ABS_REFLECT))
{
iplus = (i+1); if (iplus == NX) iplus = NX-1;
iminus = (i-1); if (iminus == -1) iminus = 0;
jplus = (j+1);
if (jplus == NY) jplus = NY-1;
else if (jplus == jmid) jplus = jmid-1;
jminus = (j-1);
if (jminus == -1) jminus = 0;
else if (jminus == jmid-1) jminus = jmid;
}
else if (B_COND == BC_PERIODIC)
{
iplus = (i+1) % NX;
iminus = (i-1) % NX;
if (iminus < 0) iminus += NX;
if (j < jmid) /* lower half */
{
jplus = (j+1) % jmid;
jminus = (j-1) % jmid;
if (jminus < 0) jminus += jmid;
}
else /* upper half */
{
jplus = j+1;
if (jplus >= NY) jplus -= jmid;
jminus = j-1;
if (jminus < jmid) jminus += jmid;
}
}
else if (B_COND == BC_VPER_HABS)
{
iplus = (i+1); if (iplus == NX) iplus = NX-1;
iminus = (i-1); if (iminus == -1) iminus = 0;
if (j < jmid) /* lower half */
{
jplus = (j+1) % jmid;
jminus = (j-1) % jmid;
if (jminus < 0) jminus += jmid;
}
else /* upper half */
{
jplus = j+1;
if (jplus >= NY) jplus -= jmid;
jminus = j-1;
if (jminus < jmid) jminus += jmid;
}
}
/* imposing linear wave on top and bottom by making Laplacian 1d */
if (OSCILLATE_TOPBOT)
{
if (j == NY-1) jminus = NY-1;
else if (j == 0) jplus = 0;
}
delta = phi_in[iplus][j] + phi_in[iminus][j] + phi_in[i][jplus] + phi_in[i][jminus] - 4.0*phi_in[i][j];
x = phi_in[i][j];
y = psi_in[i][j];
/* evolve phi */
if ((B_COND == BC_PERIODIC)||(B_COND == BC_DIRICHLET))
phi_out[i][j] = -y + 2*x + cc*delta - KAPPA*x - gamma*(x-y);
else if ((B_COND == BC_ABSORBING)||(B_COND == BC_ABS_REFLECT))
{
if ((i>0)&&(i<NX-1)&&(j>0)&&(j<NY-1))
phi_out[i][j] = -y + 2*x + cc*delta - KAPPA*x - gamma*(x-y);
/* upper border */
else if (j==NY-1)
phi_out[i][j] = x - c*(x - phi_in[i][NY-2]) - KAPPA_TOPBOT*x - GAMMA_TOPBOT*(x-y);
/* lower border */
else if (j==0)
phi_out[i][j] = x - c*(x - phi_in[i][1]) - KAPPA_TOPBOT*x - GAMMA_TOPBOT*(x-y);
/* right border */
if (i==NX-1)
phi_out[i][j] = x - c*(x - phi_in[NX-2][j]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y);
/* left border */
else if (i==0)
phi_out[i][j] = x - c*(x - phi_in[1][j]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y);
}
else if (B_COND == BC_VPER_HABS)
{
if ((i>0)&&(i<NX-1))
phi_out[i][j] = -y + 2*x + cc*delta - KAPPA*x - gamma*(x-y);
/* right border */
else if (i==NX-1)
phi_out[i][j] = x - c*(x - phi_in[NX-2][j]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y);
/* left border */
else if (i==0)
phi_out[i][j] = x - c*(x - phi_in[1][j]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y);
}
/* add oscillating boundary condition on the left */
if ((i == 0)&&(OSCILLATE_LEFT)) phi_out[i][j] = AMPLITUDE*cos((double)time*OMEGA);
psi_out[i][j] = x;
if (FLOOR)
{
if (phi_out[i][j] > VMAX) phi_out[i][j] = VMAX;
if (phi_out[i][j] < -VMAX) phi_out[i][j] = -VMAX;
if (psi_out[i][j] > VMAX) psi_out[i][j] = VMAX;
if (psi_out[i][j] < -VMAX) psi_out[i][j] = -VMAX;
}
}
}
}
// printf("phi(0,0) = %.3lg, psi(0,0) = %.3lg\n", phi[NX/2][NY/2], psi[NX/2][NY/2]);
}
void evolve_wave(double *phi[NX], double *psi[NX], double *phi_tmp[NX], double *psi_tmp[NX], short int *xy_in[NX])
/* time step of field evolution */
/* phi is value of field at time t, psi at time t-1 */
{
evolve_wave_half(phi, psi, phi_tmp, psi_tmp, xy_in);
evolve_wave_half(phi_tmp, psi_tmp, phi, psi, xy_in);
}
void animation()
{
double time, scale, energies[6], top_energy, bottom_energy;
double *phi[NX], *psi[NX], *phi_tmp[NX], *psi_tmp[NX];
short int *xy_in[NX];
int i, j, s;
/* Since NX and NY are big, it seemed wiser to use some memory allocation here */
for (i=0; i<NX; i++)
{
phi[i] = (double *)malloc(NY*sizeof(double));
psi[i] = (double *)malloc(NY*sizeof(double));
phi_tmp[i] = (double *)malloc(NY*sizeof(double));
psi_tmp[i] = (double *)malloc(NY*sizeof(double));
xy_in[i] = (short int *)malloc(NY*sizeof(short int));
}
/* initialise positions and radii of circles */
printf("initializing circle configuration\n");
if ((B_DOMAIN == D_CIRCLES)||(B_DOMAIN_B == D_CIRCLES)) init_circle_config_comp();
courant2 = COURANT*COURANT;
courantb2 = COURANTB*COURANTB;
/* initialize wave with a drop at one point, zero elsewhere */
int_planar_wave_comp(XMIN + 0.015, 0.0, phi, psi, xy_in);
// int_planar_wave_comp(XMIN + 0.5, 0.0, phi, psi, xy_in);
printf("initializing wave\n");
// int_planar_wave_comp(XMIN + 0.1, 0.0, phi, psi, xy_in);
// int_planar_wave_comp(XMIN + 1.0, 0.0, phi, psi, xy_in);
// init_wave(-1.5, 0.0, phi, psi, xy_in);
// init_wave(0.0, 0.0, phi, psi, xy_in);
/* add a drop at another point */
// add_drop_to_wave(1.0, 0.7, 0.0, phi, psi);
// add_drop_to_wave(1.0, -0.7, 0.0, phi, psi);
// add_drop_to_wave(1.0, 0.0, -0.7, phi, psi);
/* initialize energies */
if (COMPUTE_ENERGIES)
{
compute_energy_tblr(phi, psi, xy_in, energies);
top_energy = energies[0] + energies[1] + energies[2];
bottom_energy = energies[3] + energies[4] + energies[5];
}
blank();
glColor3f(0.0, 0.0, 0.0);
printf("drawing wave\n");
draw_wave_comp(phi, psi, xy_in, 1.0, 0);
printf("drawing billiard\n");
draw_billiard_comp();
glutSwapBuffers();
sleep(SLEEP1);
for (i=0; i<=INITIAL_TIME + NSTEPS; i++)
{
//printf("%d\n",i);
/* compute the variance of the field to adjust color scheme */
/* the color depends on the field divided by sqrt(1 + variance) */
if (SCALE)
{
scale = sqrt(1.0 + compute_variance(phi,psi, xy_in));
// printf("Scaling factor: %5lg\n", scale);
}
else scale = 1.0;
draw_wave_comp(phi, psi, xy_in, scale, i);
draw_billiard_comp();
if (COMPUTE_ENERGIES)
{
compute_energy_tblr(phi, psi, xy_in, energies);
if (i < INITIAL_TIME)
{
top_energy = energies[0] + energies[1] + energies[2];
bottom_energy = energies[3] + energies[4] + energies[5];
}
print_energies(energies, top_energy, bottom_energy);
}
for (j=0; j<NVID; j++)
{
evolve_wave(phi, psi, phi_tmp, psi_tmp, xy_in);
// if (i % 10 == 9) oscillate_linear_wave(0.2*scale, 0.15*(double)(i*NVID + j), -1.5, YMIN, -1.5, YMAX, phi, psi);
}
glutSwapBuffers();
if (MOVIE)
{
if (i >= INITIAL_TIME) save_frame();
else printf("Initial phase time %i of %i\n", i, INITIAL_TIME);
/* it seems that saving too many files too fast can cause trouble with the file system */
/* so this is to make a pause from time to time - parameter PAUSE may need adjusting */
if (i % PAUSE == PAUSE - 1)
{
printf("Making a short pause\n");
sleep(PSLEEP);
s = system("mv wave*.tif tif_wave/");
}
}
}
if (MOVIE)
{
for (i=0; i<20; i++) save_frame();
s = system("mv wave*.tif tif_wave/");
}
for (i=0; i<NX; i++)
{
free(phi[i]);
free(psi[i]);
free(phi_tmp[i]);
free(psi_tmp[i]);
free(xy_in[i]);
}
}
void display(void)
{
glPushMatrix();
blank();
glutSwapBuffers();
blank();
glutSwapBuffers();
animation();
sleep(SLEEP2);
glPopMatrix();
glutDestroyWindow(glutGetWindow());
}
int main(int argc, char** argv)
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
glutInitWindowSize(WINWIDTH,WINHEIGHT);
glutCreateWindow("Wave equation in a planar domain");
init();
glutDisplayFunc(display);
glutMainLoop();
return 0;
}