YouTube-simulations/wave_billiard.c

586 lines
21 KiB
C
Raw Normal View History

2021-05-05 22:05:38 +02:00
/*********************************************************************************/
/* */
/* Animation of wave equation in a planar domain */
/* */
2021-05-29 16:50:49 +02:00
/* N. Berglund, december 2012, may 2021 */
2021-05-05 22:05:38 +02:00
/* */
/* UPDATE 24/04: distinction between damping and "elasticity" parameters */
/* UPDATE 27/04: new billiard shapes, bug in color scheme fixed */
/* UPDATE 28/04: code made more efficient, with help of Marco Mancini */
/* */
/* Feel free to reuse, but if doing so it would be nice to drop a */
/* line to nils.berglund@univ-orleans.fr - Thanks! */
/* */
/* compile with */
/* gcc -o wave_billiard wave_billiard.c */
/* -L/usr/X11R6/lib -ltiff -lm -lGL -lGLU -lX11 -lXmu -lglut -O3 -fopenmp */
/* */
/* To make a video, set MOVIE to 1 and create subfolder tif_wave */
/* It may be possible to increase parameter PAUSE */
/* */
/* create movie using */
/* ffmpeg -i wave.%05d.tif -vcodec libx264 wave.mp4 */
/* */
/*********************************************************************************/
/*********************************************************************************/
/* */
/* NB: The algorithm used to simulate the wave equation is highly paralellizable */
/* One could make it much faster by using a GPU */
/* */
/*********************************************************************************/
#include <math.h>
#include <string.h>
#include <GL/glut.h>
#include <GL/glu.h>
#include <unistd.h>
#include <sys/types.h>
#include <tiffio.h> /* Sam Leffler's libtiff library. */
#include <omp.h>
#define MOVIE 0 /* set to 1 to generate movie */
/* General geometrical parameters */
#define WINWIDTH 1280 /* window width */
#define WINHEIGHT 720 /* window height */
2021-06-20 23:31:23 +02:00
#define NX 1280 /* number of grid points on x axis */
#define NY 720 /* number of grid points on y axis */
// #define NX 640 /* number of grid points on x axis */
// #define NY 360 /* number of grid points on y axis */
2021-05-05 22:05:38 +02:00
/* setting NX to WINWIDTH and NY to WINHEIGHT increases resolution */
/* but will multiply run time by 4 */
#define XMIN -2.0
#define XMAX 2.0 /* x interval */
#define YMIN -1.125
#define YMAX 1.125 /* y interval for 9/16 aspect ratio */
2021-06-20 23:31:23 +02:00
#define JULIA_SCALE 1.1 /* scaling for Julia sets */
2021-05-05 22:05:38 +02:00
/* Choice of the billiard table */
2021-06-20 23:31:23 +02:00
#define B_DOMAIN 16 /* choice of domain shape */
2021-05-05 22:05:38 +02:00
#define D_RECTANGLE 0 /* rectangular domain */
#define D_ELLIPSE 1 /* elliptical domain */
#define D_STADIUM 2 /* stadium-shaped domain */
#define D_SINAI 3 /* Sinai billiard */
#define D_DIAMOND 4 /* diamond-shaped billiard */
#define D_TRIANGLE 5 /* triangular billiard */
#define D_FLAT 6 /* flat interface */
#define D_ANNULUS 7 /* annulus */
#define D_POLYGON 8 /* polygon */
2021-05-29 16:50:49 +02:00
#define D_YOUNG 9 /* Young diffraction slits */
#define D_GRATING 10 /* diffraction grating */
#define D_EHRENFEST 11 /* Ehrenfest urn type geometry */
2021-05-05 22:05:38 +02:00
2021-06-20 23:31:23 +02:00
#define D_MENGER 15 /* Menger-Sierpinski carpet */
#define D_JULIA_INT 16 /* interior of Julia set */
/* Billiard tables for heat equation */
#define D_ANNULUS_HEATED 21 /* annulus with different temperatures */
#define D_MENGER_HEATED 22 /* Menger gasket with different temperatures */
#define D_MENGER_H_OPEN 23 /* Menger gasket with different temperatures and larger domain */
#define D_MANDELBROT 24 /* Mandelbrot set */
#define D_JULIA 25 /* Julia set */
#define D_MANDELBROT_CIRCLE 26 /* Mandelbrot set with circular conductor */
2021-05-29 16:50:49 +02:00
#define LAMBDA 1.0 /* parameter controlling the dimensions of domain */
#define MU 0.05 /* parameter controlling the dimensions of domain */
#define NPOLY 8 /* number of sides of polygon */
2021-05-05 22:05:38 +02:00
#define APOLY 1.0 /* angle by which to turn polygon, in units of Pi/2 */
2021-06-20 23:31:23 +02:00
#define MDEPTH 4 /* depth of computation of Menger gasket */
#define MRATIO 3 /* ratio defining Menger gasket */
#define MANDELLEVEL 1000 /* iteration level for Mandelbrot set */
#define MANDELLIMIT 10.0 /* limit value for approximation of Mandelbrot set */
2021-05-05 22:05:38 +02:00
#define FOCI 1 /* set to 1 to draw focal points of ellipse */
/* You can add more billiard tables by adapting the functions */
/* xy_in_billiard and draw_billiard below */
2021-06-20 23:31:23 +02:00
/* Physical parameters of wave equation */
2021-05-05 22:05:38 +02:00
2021-06-20 23:31:23 +02:00
#define OMEGA 0.9 /* frequency of periodic excitation */
2021-05-05 22:05:38 +02:00
#define COURANT 0.01 /* Courant number */
#define GAMMA 0.0 /* damping factor in wave equation */
// #define GAMMA 5.0e-10 /* damping factor in wave equation */
2021-06-20 23:31:23 +02:00
#define KAPPA 0.0 /* "elasticity" term enforcing oscillations */
// #define KAPPA 5.0e-6 /* "elasticity" term enforcing oscillations */
2021-05-05 22:05:38 +02:00
// #define KAPPA 5.0e-9 /* "elasticity" term enforcing oscillations */
// #define KAPPA 5.0e-8 /* "elasticity" term enforcing oscillations */
/* The Courant number is given by c*DT/DX, where DT is the time step and DX the lattice spacing */
/* The physical damping coefficient is given by GAMMA/(DT)^2 */
/* Increasing COURANT speeds up the simulation, but decreases accuracy */
/* For similar wave forms, COURANT^2*GAMMA should be kept constant */
2021-06-20 23:31:23 +02:00
/* Boundary conditions */
#define B_COND 2
#define BC_DIRICHLET 0 /* Dirichlet boundary conditions */
#define BC_PERIODIC 1 /* periodic boundary conditions */
#define BC_ABSORBING 2 /* absorbing boundary conditions (beta version) */
2021-05-05 22:05:38 +02:00
/* For debugging purposes only */
#define FLOOR 0 /* set to 1 to limit wave amplitude to VMAX */
#define VMAX 10.0 /* max value of wave amplitude */
/* Parameters for length and speed of simulation */
2021-06-20 23:31:23 +02:00
#define NSTEPS 4000 /* number of frames of movie */
2021-05-29 16:50:49 +02:00
#define NVID 25 /* number of iterations between images displayed on screen */
2021-05-05 22:05:38 +02:00
#define NSEG 100 /* number of segments of boundary */
#define PAUSE 1000 /* number of frames after which to pause */
#define PSLEEP 1 /* sleep time during pause */
#define SLEEP1 1 /* initial sleeping time */
#define SLEEP2 1 /* final sleeping time */
/* Color schemes */
2021-05-29 16:50:49 +02:00
#define BLACK 1 /* background */
2021-05-05 22:05:38 +02:00
#define COLOR_SCHEME 1 /* choice of color scheme */
#define C_LUM 0 /* color scheme modifies luminosity (with slow drift of hue) */
#define C_HUE 1 /* color scheme modifies hue */
2021-06-20 23:31:23 +02:00
#define SCALE 0 /* set to 1 to adjust color scheme to variance of field */
2021-05-05 22:05:38 +02:00
#define SLOPE 1.0 /* sensitivity of color on wave amplitude */
#define ATTENUATION 0.0 /* exponential attenuation coefficient of contrast with time */
#define COLORHUE 260 /* initial hue of water color for scheme C_LUM */
#define COLORDRIFT 0.0 /* how much the color hue drifts during the whole simulation */
#define LUMMEAN 0.5 /* amplitude of luminosity variation for scheme C_LUM */
#define LUMAMP 0.3 /* amplitude of luminosity variation for scheme C_LUM */
2021-06-20 23:31:23 +02:00
#define HUEMEAN 230.0 /* mean value of hue for color scheme C_HUE */
#define HUEAMP 50.0 /* amplitude of variation of hue for color scheme C_HUE */
2021-05-05 22:05:38 +02:00
// #define HUEMEAN 320.0 /* mean value of hue for color scheme C_HUE */
// #define HUEAMP 100.0 /* amplitude of variation of hue for color scheme C_HUE */
/* Basic math */
#define PI 3.141592654
#define DPI 6.283185307
#define PID 1.570796327
2021-06-20 23:31:23 +02:00
double julia_x = -0.5, julia_y = 0.5; /* parameters for Julia sets */
// double julia_x = 0.33267, julia_y = 0.06395; /* parameters for Julia sets */
// double julia_x = 0.37468, julia_y = 0.21115; /* parameters for Julia sets */
2021-05-29 16:50:49 +02:00
#include "sub_wave.c"
2021-05-05 22:05:38 +02:00
2021-05-29 16:50:49 +02:00
double courant2; /* Courant parameter squared */
2021-05-05 22:05:38 +02:00
void init_wave(x, y, phi, psi, xy_in)
/* initialise field with drop at (x,y) - phi is wave height, psi is phi at time t-1 */
double x, y, *phi[NX], *psi[NX]; short int * xy_in[NX];
{
int i, j;
double xy[2], dist2;
for (i=0; i<NX; i++)
for (j=0; j<NY; j++)
{
ij_to_xy(i, j, xy);
dist2 = (xy[0]-x)*(xy[0]-x) + (xy[1]-y)*(xy[1]-y);
xy_in[i][j] = xy_in_billiard(xy[0],xy[1]);
phi[i][j] = 0.2*exp(-dist2/0.001)*cos(-sqrt(dist2)/0.01);
psi[i][j] = 0.0;
}
}
2021-06-20 23:31:23 +02:00
void init_wave_flat(phi, psi, xy_in)
/* initialise flat field - phi is wave height, psi is phi at time t-1 */
double *phi[NX], *psi[NX]; short int * xy_in[NX];
{
int i, j;
double xy[2], dist2;
for (i=0; i<NX; i++)
for (j=0; j<NY; j++)
{
ij_to_xy(i, j, xy);
xy_in[i][j] = xy_in_billiard(xy[0],xy[1]);
phi[i][j] = 0.0;
psi[i][j] = 0.0;
}
}
2021-05-05 22:05:38 +02:00
void add_drop_to_wave(factor, x, y, phi, psi)
/* add drop at (x,y) to the field with given prefactor */
double factor, x, y, *phi[NX], *psi[NX];
{
int i, j;
double xy[2], dist2;
for (i=0; i<NX; i++)
for (j=0; j<NY; j++)
{
ij_to_xy(i, j, xy);
dist2 = (xy[0]-x)*(xy[0]-x) + (xy[1]-y)*(xy[1]-y);
phi[i][j] += 0.2*factor*exp(-dist2/0.001)*cos(-sqrt(dist2)/0.01);
}
}
2021-06-20 23:31:23 +02:00
void oscillate_linear_wave(amplitude, t, x1, y1, x2, y2, phi, psi)
/* oscillating boundary condition at (x,y) */
double amplitude, t, x1, y1, x2, y2, *phi[NX], *psi[NX];
{
int i, j, ij1[2], ij2[2], imin, imax, jmin, jmax, d = 5;
double xy[2], dist2;
xy_to_ij(x1, y1, ij1);
xy_to_ij(x2, y2, ij2);
imin = ij1[0] - d; if (imin < 0) imin = 0;
imax = ij2[0] + d; if (imax >= NX) imax = NX-1;
jmin = ij1[1] - d; if (jmin < 0) jmin = 0;
jmax = ij2[1] + d; if (jmax >= NY) jmax = NY-1;
for (i = imin; i < imax; i++)
for (j = jmin; j < jmax; j++)
{
ij_to_xy(i, j, xy);
dist2 = (xy[0]-x1)*(xy[0]-x1); /* to be improved */
// dist2 = (xy[0]-x)*(xy[0]-x) + (xy[1]-y)*(xy[1]-y);
// if (dist2 < 0.01)
if (dist2 < 0.001)
phi[i][j] = amplitude*exp(-dist2/0.001)*cos(-sqrt(dist2)/0.01)*cos(t*OMEGA);
// phi[i][j] += 0.2*exp(-dist2/0.001)*cos(-sqrt(dist2)/0.01)*cos(t*OMEGA);
}
}
2021-05-05 22:05:38 +02:00
/*********************/
/* animation part */
/*********************/
void draw_wave(phi, psi, xy_in, scale, time)
/* draw the field */
double *phi[NX], *psi[NX], scale;
short int *xy_in[NX];
int time;
{
int i, j;
double rgb[3], xy[2], x1, y1, x2, y2;
glBegin(GL_QUADS);
for (i=0; i<NX; i++)
for (j=0; j<NY; j++)
{
if (xy_in[i][j])
{
color_scheme(COLOR_SCHEME, phi[i][j], scale, time, rgb);
glColor3f(rgb[0], rgb[1], rgb[2]);
glVertex2i(i, j);
glVertex2i(i+1, j);
glVertex2i(i+1, j+1);
glVertex2i(i, j+1);
}
}
glEnd ();
}
2021-06-20 23:31:23 +02:00
void evolve_wave_half(phi_in, psi_in, phi_out, psi_out, xy_in)
/* time step of field evolution */
/* phi is value of field at time t, psi at time t-1 */
double *phi_in[NX], *psi_in[NX], *phi_out[NX], *psi_out[NX]; short int *xy_in[NX];
{
int i, j, iplus, iminus, jplus, jminus;
double delta, x, y, c, cc;
c = COURANT;
cc = courant2;
#pragma omp parallel for private(i,j,iplus,iminus,jplus,jminus,delta,x,y)
for (i=0; i<NX; i++){
for (j=0; j<NY; j++){
if (xy_in[i][j]){
/* discretized Laplacian */
if ((B_COND == BC_DIRICHLET)||(B_COND == BC_ABSORBING))
{
iplus = (i+1); if (iplus == NX) iplus = NX-1;
iminus = (i-1); if (iminus == -1) iminus = 0;
jplus = (j+1); if (jplus == NY) jplus = NY-1;
jminus = (j-1); if (jminus == -1) jminus = 0;
}
else if (B_COND == BC_PERIODIC)
{
iplus = (i+1) % NX;
iminus = (i-1) % NX;
if (iminus < 0) iminus += NX;
jplus = (j+1) % NY;
jminus = (j-1) % NY;
if (jminus < 0) jminus += NY;
}
delta = phi_in[iplus][j] + phi_in[iminus][j] + phi_in[i][jplus] + phi_in[i][jminus] - 4.0*phi_in[i][j];
x = phi_in[i][j];
y = psi_in[i][j];
/* evolve phi */
if (B_COND != BC_ABSORBING) phi_out[i][j] = -y + 2*x + cc*delta - KAPPA*x - GAMMA*(x-y);
else
{
if ((i>0)&&(i<NX-1)&&(j>0)&&(j<NY-1))
phi_out[i][j] = -y + 2*x + cc*delta - KAPPA*x - GAMMA*(x-y);
/* upper border */
else if (j==NY-1)
phi_out[i][j] = x - c*(x - phi_in[i][NY-2]) - KAPPA*x - GAMMA*(x-y);
/* lower border */
else if (j==0)
phi_out[i][j] = x - c*(x - phi_in[i][1]) - KAPPA*x - GAMMA*(x-y);
/* right border */
if (i==NX-1)
phi_out[i][j] = x - c*(x - phi_in[NX-2][j]) - KAPPA*x - GAMMA*(x-y);
/* left border */
else if (i==0)
phi_out[i][j] = x - c*(x - phi_in[1][j]) - KAPPA*x - GAMMA*(x-y);
}
psi_out[i][j] = x;
if (FLOOR)
{
if (phi_out[i][j] > VMAX) phi_out[i][j] = VMAX;
if (phi_out[i][j] < -VMAX) phi_out[i][j] = -VMAX;
if (psi_out[i][j] > VMAX) psi_out[i][j] = VMAX;
if (psi_out[i][j] < -VMAX) psi_out[i][j] = -VMAX;
}
}
}
}
// printf("phi(0,0) = %.3lg, psi(0,0) = %.3lg\n", phi[NX/2][NY/2], psi[NX/2][NY/2]);
}
void evolve_wave(phi, psi, phi_tmp, psi_tmp, xy_in)
/* time step of field evolution */
/* phi is value of field at time t, psi at time t-1 */
double *phi[NX], *psi[NX], *phi_tmp[NX], *psi_tmp[NX]; short int *xy_in[NX];
{
evolve_wave_half(phi, psi, phi_tmp, psi_tmp, xy_in);
evolve_wave_half(phi_tmp, psi_tmp, phi, psi, xy_in);
}
void old_evolve_wave(phi, psi, xy_in)
2021-05-05 22:05:38 +02:00
/* time step of field evolution */
/* phi is value of field at time t, psi at time t-1 */
double *phi[NX], *psi[NX]; short int *xy_in[NX];
{
int i, j, iplus, iminus, jplus, jminus;
double delta, x, y;
2021-05-29 16:50:49 +02:00
#pragma omp parallel for private(i,j,iplus,iminus,jplus,jminus,delta,x,y)
2021-05-05 22:05:38 +02:00
for (i=0; i<NX; i++){
for (j=0; j<NY; j++){
if (xy_in[i][j]){
/* discretized Laplacian */
iplus = (i+1) % NX;
iminus = (i-1) % NX;
if (iminus < 0) iminus += NX;
jplus = (j+1) % NY;
jminus = (j-1) % NY;
if (jminus < 0) jminus += NY;
delta = phi[iplus][j] + phi[iminus][j] + phi[i][jplus] + phi[i][jminus] - 4.0*phi[i][j];
x = phi[i][j];
y = psi[i][j];
/* evolve phi */
phi[i][j] = -y + 2*x + courant2*delta - KAPPA*x - GAMMA*(x-y);
/* Old versions of the simulation used this: */
// phi[i][j] = (-psi[i][j] + 2*phi[i][j] + courant2*delta)*damping;
// where damping = 1.0 - 0.0001;
psi[i][j] = x;
if (FLOOR)
{
if (phi[i][j] > VMAX) phi[i][j] = VMAX;
if (phi[i][j] < -VMAX) phi[i][j] = -VMAX;
if (psi[i][j] > VMAX) psi[i][j] = VMAX;
if (psi[i][j] < -VMAX) psi[i][j] = -VMAX;
}
}
}
}
// printf("phi(0,0) = %.3lg, psi(0,0) = %.3lg\n", phi[NX/2][NY/2], psi[NX/2][NY/2]);
}
double compute_variance(phi, psi, xy_in)
/* compute the variance of the field, to adjust color scheme */
double *phi[NX], *psi[NX]; short int * xy_in[NX];
{
int i, j, n = 0;
double variance = 0.0;
for (i=1; i<NX; i++)
for (j=1; j<NY; j++)
{
if (xy_in[i][j])
{
n++;
variance += phi[i][j]*phi[i][j];
}
}
if (n==0) n=1;
return(variance/(double)n);
}
void animation()
{
double time, scale;
2021-06-20 23:31:23 +02:00
double *phi[NX], *psi[NX], *phi_tmp[NX], *psi_tmp[NX];
2021-05-05 22:05:38 +02:00
short int *xy_in[NX];
int i, j, s;
/* Since NX and NY are big, it seemed wiser to use some memory allocation here */
for (i=0; i<NX; i++)
{
phi[i] = (double *)malloc(NY*sizeof(double));
psi[i] = (double *)malloc(NY*sizeof(double));
2021-06-20 23:31:23 +02:00
phi_tmp[i] = (double *)malloc(NY*sizeof(double));
psi_tmp[i] = (double *)malloc(NY*sizeof(double));
2021-05-05 22:05:38 +02:00
xy_in[i] = (short int *)malloc(NY*sizeof(short int));
}
courant2 = COURANT*COURANT;
/* initialize wave with a drop at one point, zero elsewhere */
2021-06-20 23:31:23 +02:00
// init_wave_flat(phi, psi, xy_in);
2021-05-05 22:05:38 +02:00
init_wave(0.0, 0.0, phi, psi, xy_in);
/* add a drop at another point */
// add_drop_to_wave(1.0, 0.7, 0.0, phi, psi);
// add_drop_to_wave(1.0, -0.7, 0.0, phi, psi);
// add_drop_to_wave(1.0, 0.0, -0.7, phi, psi);
blank();
glColor3f(0.0, 0.0, 0.0);
draw_wave(phi, psi, xy_in, 1.0, 0);
draw_billiard();
glutSwapBuffers();
sleep(SLEEP1);
for (i=0; i<=NSTEPS; i++)
{
//printf("%d\n",i);
/* compute the variance of the field to adjust color scheme */
/* the color depends on the field divided by sqrt(1 + variance) */
if (SCALE)
{
scale = sqrt(1.0 + compute_variance(phi,psi, xy_in));
// printf("Scaling factor: %5lg\n", scale);
}
else scale = 1.0;
2021-06-20 23:31:23 +02:00
// /* TO BE ADAPTED */
// scale = 1.0;
2021-05-05 22:05:38 +02:00
draw_wave(phi, psi, xy_in, scale, i);
2021-06-20 23:31:23 +02:00
for (j=0; j<NVID; j++)
{
evolve_wave(phi, psi, phi_tmp, psi_tmp, xy_in);
// if (i % 10 == 9) oscillate_linear_wave(0.2*scale, 0.15*(double)(i*NVID + j), -1.5, YMIN, -1.5, YMAX, phi, psi);
}
// for (j=0; j<NVID; j++) evolve_wave(phi, psi, phi_tmp, psi_tmp, xy_in);
2021-05-05 22:05:38 +02:00
draw_billiard();
glutSwapBuffers();
if (MOVIE)
{
save_frame();
/* it seems that saving too many files too fast can cause trouble with the file system */
/* so this is to make a pause from time to time - parameter PAUSE may need adjusting */
if (i % PAUSE == PAUSE - 1)
{
printf("Making a short pause\n");
sleep(PSLEEP);
s = system("mv wave*.tif tif_wave/");
}
}
}
2021-05-29 16:50:49 +02:00
if (MOVIE)
{
for (i=0; i<20; i++) save_frame();
s = system("mv wave*.tif tif_wave/");
}
2021-05-05 22:05:38 +02:00
for (i=0; i<NX; i++)
{
free(phi[i]);
free(psi[i]);
2021-06-20 23:31:23 +02:00
free(phi_tmp[i]);
free(psi_tmp[i]);
free(xy_in[i]);
2021-05-05 22:05:38 +02:00
}
}
void display(void)
{
glPushMatrix();
blank();
glutSwapBuffers();
blank();
glutSwapBuffers();
animation();
sleep(SLEEP2);
glPopMatrix();
glutDestroyWindow(glutGetWindow());
}
int main(int argc, char** argv)
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
glutInitWindowSize(WINWIDTH,WINHEIGHT);
glutCreateWindow("Wave equation in a planar domain");
init();
glutDisplayFunc(display);
glutMainLoop();
return 0;
}