55 lines
1.5 KiB
Python
55 lines
1.5 KiB
Python
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Sun May 11 20:47:52 2014
|
|
|
|
@author: rlabbe
|
|
"""
|
|
|
|
from DogSensor import DogSensor
|
|
from KalmanFilter import KalmanFilter
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import stats
|
|
|
|
def dog_tracking_filter(R,Q=0,cov=1.):
|
|
f = KalmanFilter (dim=2)
|
|
f.x = np.matrix([[0], [0]]) # initial state (location and velocity)
|
|
f.F = np.matrix([[1,1],[0,1]]) # state transition matrix
|
|
f.H = np.matrix([[1,0]]) # Measurement function
|
|
f.R = R # measurement uncertainty
|
|
f.P *= cov # covariance matrix
|
|
f.Q = Q
|
|
return f
|
|
|
|
|
|
def plot_track(noise, count, R, Q=0, plot_P=True, title='Kalman Filter'):
|
|
dog = DogSensor(velocity=1, noise=noise)
|
|
f = dog_tracking_filter(R=R, Q=Q, cov=10.)
|
|
|
|
ps = []
|
|
zs = []
|
|
cov = []
|
|
for t in range (count):
|
|
z = dog.sense()
|
|
f.measure (z)
|
|
#print (t,z)
|
|
ps.append (f.x[0,0])
|
|
cov.append(f.P)
|
|
zs.append(z)
|
|
f.predict()
|
|
|
|
p0, = plt.plot([0,count],[0,count],'g')
|
|
p1, = plt.plot(range(1,count+1),zs,c='r', linestyle='dashed')
|
|
p2, = plt.plot(range(1,count+1),ps, c='b')
|
|
plt.legend([p0,p1,p2], ['actual','measurement', 'filter'], 2)
|
|
plt.title(title)
|
|
|
|
for i,p in enumerate(cov):
|
|
print(i,p)
|
|
e = stats.sigma_ellipse (p, i+1, ps[i])
|
|
stats.plot_sigma_ellipse(e, axis_equal=False)
|
|
plt.xlim((-1,count))
|
|
plt.show()
|
|
|
|
|
|
plot_track (noise=30, R=5, Q=2, count=5) |