Kalman-and-Bayesian-Filters.../code/kf_internal.py
Roger Labbe 856775e906 Major rewrites due to discrete bayes changes.
I've derived the x + Ky form for the univariate kalman filter.
I completely reordered material, cutting about 10 pages (pdf)
of material. I made the connection between the bayesian form
and orthogonal form more explicit.

Probably there are a lot of grammatical errors, but I wanted to get
these checked in.

I also altered the css - mainly the font.
2016-01-18 18:16:20 -08:00

94 lines
2.7 KiB
Python

# -*- coding: utf-8 -*-
"""Copyright 2015 Roger R Labbe Jr.
Code supporting the book
Kalman and Bayesian Filters in Python
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
This is licensed under an MIT license. See the LICENSE.txt file
for more information.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import book_plots as bp
import filterpy.stats as stats
from math import sqrt
import matplotlib.pyplot as plt
import numpy as np
from numpy.random import randn, seed
def plot_dog_track(xs, dog, measurement_var, process_var):
N = len(xs)
bp.plot_track(dog)
bp.plot_measurements(xs, label='Sensor')
bp.set_labels('variance = {}, process variance = {}'.format(
measurement_var, process_var), 'time', 'pos')
plt.ylim([0, N])
bp.show_legend()
plt.show()
def print_gh(predict, update, z):
predict_template = ' {: 7.3f} {: 8.3f}'
update_template = '{: 7.3f} {: 7.3f}\t {:.3f}'
print(predict_template.format(predict[0], predict[1]),end='\t')
print(update_template.format(update[0], update[1], z))
def print_variance(positions):
print('Variance:')
for i in range(0, len(positions), 5):
print('\t{:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.format(
*[v[1] for v in positions[i:i+5]]))
def gaussian_vs_histogram():
seed(15)
xs = np.arange(0, 20, 0.1)
ys = np.array([stats.gaussian(x-10, 0, 2) for x in xs])
bar_ys = abs(ys + randn(len(xs)) * stats.gaussian(xs-10, 0, 10)/2)
plt.gca().bar(xs[::5]-.25, bar_ys[::5], width=0.5, color='g')
plt.plot(xs, ys, lw=3, color='k')
plt.xlim(5, 15)
class DogSimulation(object):
def __init__(self, x0=0, velocity=1,
measurement_var=0.0,
process_var=0.0):
""" x0 : initial position
velocity: (+=right, -=left)
measurement_var: variance in measurement m^2
process_var: variance in process (m/s)^2
"""
self.x = x0
self.velocity = velocity
self.meas_std = sqrt(measurement_var)
self.process_std = sqrt(process_var)
def move(self, dt=1.0):
"""Compute new position of the dog in dt seconds."""
dx = self.velocity + randn()*self.process_std
self.x += dx * dt
def sense_position(self):
""" Returns measurement of new position in meters."""
measurement = self.x + randn()*self.meas_std
return measurement
def move_and_sense(self):
""" Move dog, and return measurement of new position in meters"""
self.move()
return self.sense_position()