Got air drag working well, and a KF showing the errors due to the process model.
This commit is contained in:
parent
40debbd003
commit
38fa86d52c
File diff suppressed because one or more lines are too long
171
exp/ball.py
171
exp/ball.py
@ -7,89 +7,136 @@ Created on Sat Jul 5 16:07:29 2014
|
||||
|
||||
import numpy as np
|
||||
from KalmanFilter import KalmanFilter
|
||||
from math import radians, sin, cos
|
||||
from math import radians, sin, cos, sqrt, exp
|
||||
import numpy.random as random
|
||||
import matplotlib.markers as markers
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
class BallPath(object):
|
||||
def __init__(self, x0, y0, omega_deg, velocity, g=9.8, noise=[1.0,1.0]):
|
||||
omega = radians(omega_deg)
|
||||
self.vx0 = velocity * cos(omega)
|
||||
self.vy0 = velocity * sin(omega)
|
||||
|
||||
|
||||
self.x0 = x0
|
||||
self.y0 = y0
|
||||
|
||||
|
||||
self.g = g
|
||||
self.noise = noise
|
||||
|
||||
|
||||
def pos_at_t(self, t):
|
||||
""" returns (x,y) tuple of ball position at time t"""
|
||||
x = self.vx0*t + self.x0
|
||||
y = -0.5*self.g*t**2 + self.vy0*t + self.y0
|
||||
|
||||
|
||||
return (x +random.randn()*self.noise[0], y +random.randn()*self.noise[1])
|
||||
|
||||
|
||||
|
||||
class BaseballPath(object):
|
||||
def __init__(self, x0, y0, omega_deg, velocity, noise=[1.0,1.0]):
|
||||
omega = radians(omega_deg)
|
||||
self.v_x = velocity * cos(omega)
|
||||
self.v_y = velocity * sin(omega)
|
||||
|
||||
self.x = x0
|
||||
self.y = y0
|
||||
|
||||
self.noise = noise
|
||||
|
||||
|
||||
def drag_force (self, velocity):
|
||||
""" Returns the force on a baseball due to air drag at
|
||||
the specified velocity. Units are SI
|
||||
"""
|
||||
B_m = 0.0039 + 0.0058 / (1. + exp((velocity-35.)/5.))
|
||||
return B_m * velocity
|
||||
|
||||
|
||||
def update(self, dt, vel_wind=0.):
|
||||
""" compute the ball position based on the specified time step and
|
||||
wind velocity. Returns (x,y) position tuple.
|
||||
"""
|
||||
|
||||
# Euler equations for x and y
|
||||
self.x += self.v_x*dt
|
||||
self.y += self.v_y*dt
|
||||
|
||||
# force due to air drag
|
||||
v_x_wind = self.v_x - vel_wind
|
||||
v = sqrt (v_x_wind**2 + self.v_y**2)
|
||||
F = self.drag_force(v)
|
||||
|
||||
# Euler's equations for velocity
|
||||
self.v_x = self.v_x - F*v_x_wind*dt
|
||||
self.v_y = self.v_y - 9.81*dt - F*self.v_y*dt
|
||||
|
||||
return (self.x + random.randn()*self.noise[0],
|
||||
self.y + random.randn()*self.noise[1])
|
||||
|
||||
|
||||
|
||||
def test_baseball_path():
|
||||
ball = BaseballPath (0, 1, 35, 50)
|
||||
while ball.y > 0:
|
||||
ball.update (0.1, 0.)
|
||||
plt.scatter (ball.x, ball.y)
|
||||
|
||||
|
||||
|
||||
|
||||
y = 15
|
||||
x = 0
|
||||
omega = 0.
|
||||
noise = [1,1]
|
||||
v0 = 100.
|
||||
ball = BallPath (x0=x, y0=y, omega_deg=omega, velocity=v0, noise=noise)
|
||||
t = 0
|
||||
dt = 1
|
||||
g = 9.8
|
||||
|
||||
|
||||
f1 = KalmanFilter(dim=6)
|
||||
dt = 1/30. # time step
|
||||
|
||||
ay = -.5*dt**2
|
||||
|
||||
f1.F = np.mat ([[1, dt, 0, 0, 0, 0], # x=x0+dx*dt
|
||||
[0, 1, dt, 0, 0, 0], # dx = dx
|
||||
[0, 0, 0, 0, 0, 0], # ddx = 0
|
||||
[0, 0, 0, 1, dt, ay], # y = y0 +dy*dt+1/2*g*dt^2
|
||||
[0, 0, 0, 0, 1, dt], # dy = dy0 + ddy*dt
|
||||
[0, 0, 0, 0, 0, 1]]) # ddy = -g
|
||||
f1.B = 0.
|
||||
|
||||
f1.H = np.mat([
|
||||
[1, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 1, 0, 0]])
|
||||
|
||||
f1.R = np.eye(2) * 5
|
||||
f1.Q = np.eye(6) * 0.
|
||||
|
||||
omega = radians(omega)
|
||||
vx = cos(omega) * v0
|
||||
vy = sin(omega) * v0
|
||||
|
||||
f1.x = np.mat([x,vx,0,y,vy,-9.8]).T
|
||||
|
||||
f1.P = np.eye(6) * 500.
|
||||
|
||||
|
||||
|
||||
|
||||
z = np.mat([[0,0]]).T
|
||||
count = 0
|
||||
markers.MarkerStyle(fillstyle='none')
|
||||
|
||||
np.set_printoptions(precision=4)
|
||||
while f1.x[3,0] > 0:
|
||||
count += 1
|
||||
#f1.update (z)
|
||||
f1.predict()
|
||||
print f1.x[0,0], f1.x[3,0]
|
||||
#markers.set_fillstyle('none')
|
||||
plt.scatter(f1.x[0,0],f1.x[3,0], color='green')
|
||||
|
||||
def test_ball_path():
|
||||
|
||||
y = 15
|
||||
x = 0
|
||||
omega = 0.
|
||||
noise = [1,1]
|
||||
v0 = 100.
|
||||
ball = BallPath (x0=x, y0=y, omega_deg=omega, velocity=v0, noise=noise)
|
||||
dt = 1
|
||||
|
||||
|
||||
f1 = KalmanFilter(dim=6)
|
||||
dt = 1/30. # time step
|
||||
|
||||
ay = -.5*dt**2
|
||||
|
||||
f1.F = np.mat ([[1, dt, 0, 0, 0, 0], # x=x0+dx*dt
|
||||
[0, 1, dt, 0, 0, 0], # dx = dx
|
||||
[0, 0, 0, 0, 0, 0], # ddx = 0
|
||||
[0, 0, 0, 1, dt, ay], # y = y0 +dy*dt+1/2*g*dt^2
|
||||
[0, 0, 0, 0, 1, dt], # dy = dy0 + ddy*dt
|
||||
[0, 0, 0, 0, 0, 1]]) # ddy = -g
|
||||
f1.B = 0.
|
||||
|
||||
f1.H = np.mat([
|
||||
[1, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 1, 0, 0]])
|
||||
|
||||
f1.R = np.eye(2) * 5
|
||||
f1.Q = np.eye(6) * 0.
|
||||
|
||||
omega = radians(omega)
|
||||
vx = cos(omega) * v0
|
||||
vy = sin(omega) * v0
|
||||
|
||||
f1.x = np.mat([x,vx,0,y,vy,-9.8]).T
|
||||
|
||||
f1.P = np.eye(6) * 500.
|
||||
|
||||
z = np.mat([[0,0]]).T
|
||||
count = 0
|
||||
markers.MarkerStyle(fillstyle='none')
|
||||
|
||||
np.set_printoptions(precision=4)
|
||||
while f1.x[3,0] > 0:
|
||||
count += 1
|
||||
#f1.update (z)
|
||||
f1.predict()
|
||||
plt.scatter(f1.x[0,0],f1.x[3,0], color='green')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_baseball_path()
|
||||
#test_ball_path()
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user