Got air drag working well, and a KF showing the errors due to the process model.

This commit is contained in:
Roger Labbe 2014-07-06 10:57:17 -07:00
parent 40debbd003
commit 38fa86d52c
2 changed files with 384 additions and 149 deletions

File diff suppressed because one or more lines are too long

View File

@ -7,89 +7,136 @@ Created on Sat Jul 5 16:07:29 2014
import numpy as np
from KalmanFilter import KalmanFilter
from math import radians, sin, cos
from math import radians, sin, cos, sqrt, exp
import numpy.random as random
import matplotlib.markers as markers
import matplotlib.pyplot as plt
class BallPath(object):
def __init__(self, x0, y0, omega_deg, velocity, g=9.8, noise=[1.0,1.0]):
omega = radians(omega_deg)
self.vx0 = velocity * cos(omega)
self.vy0 = velocity * sin(omega)
self.x0 = x0
self.y0 = y0
self.g = g
self.noise = noise
def pos_at_t(self, t):
""" returns (x,y) tuple of ball position at time t"""
x = self.vx0*t + self.x0
y = -0.5*self.g*t**2 + self.vy0*t + self.y0
return (x +random.randn()*self.noise[0], y +random.randn()*self.noise[1])
class BaseballPath(object):
def __init__(self, x0, y0, omega_deg, velocity, noise=[1.0,1.0]):
omega = radians(omega_deg)
self.v_x = velocity * cos(omega)
self.v_y = velocity * sin(omega)
self.x = x0
self.y = y0
self.noise = noise
def drag_force (self, velocity):
""" Returns the force on a baseball due to air drag at
the specified velocity. Units are SI
"""
B_m = 0.0039 + 0.0058 / (1. + exp((velocity-35.)/5.))
return B_m * velocity
def update(self, dt, vel_wind=0.):
""" compute the ball position based on the specified time step and
wind velocity. Returns (x,y) position tuple.
"""
# Euler equations for x and y
self.x += self.v_x*dt
self.y += self.v_y*dt
# force due to air drag
v_x_wind = self.v_x - vel_wind
v = sqrt (v_x_wind**2 + self.v_y**2)
F = self.drag_force(v)
# Euler's equations for velocity
self.v_x = self.v_x - F*v_x_wind*dt
self.v_y = self.v_y - 9.81*dt - F*self.v_y*dt
return (self.x + random.randn()*self.noise[0],
self.y + random.randn()*self.noise[1])
def test_baseball_path():
ball = BaseballPath (0, 1, 35, 50)
while ball.y > 0:
ball.update (0.1, 0.)
plt.scatter (ball.x, ball.y)
y = 15
x = 0
omega = 0.
noise = [1,1]
v0 = 100.
ball = BallPath (x0=x, y0=y, omega_deg=omega, velocity=v0, noise=noise)
t = 0
dt = 1
g = 9.8
f1 = KalmanFilter(dim=6)
dt = 1/30. # time step
ay = -.5*dt**2
f1.F = np.mat ([[1, dt, 0, 0, 0, 0], # x=x0+dx*dt
[0, 1, dt, 0, 0, 0], # dx = dx
[0, 0, 0, 0, 0, 0], # ddx = 0
[0, 0, 0, 1, dt, ay], # y = y0 +dy*dt+1/2*g*dt^2
[0, 0, 0, 0, 1, dt], # dy = dy0 + ddy*dt
[0, 0, 0, 0, 0, 1]]) # ddy = -g
f1.B = 0.
f1.H = np.mat([
[1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0]])
f1.R = np.eye(2) * 5
f1.Q = np.eye(6) * 0.
omega = radians(omega)
vx = cos(omega) * v0
vy = sin(omega) * v0
f1.x = np.mat([x,vx,0,y,vy,-9.8]).T
f1.P = np.eye(6) * 500.
z = np.mat([[0,0]]).T
count = 0
markers.MarkerStyle(fillstyle='none')
np.set_printoptions(precision=4)
while f1.x[3,0] > 0:
count += 1
#f1.update (z)
f1.predict()
print f1.x[0,0], f1.x[3,0]
#markers.set_fillstyle('none')
plt.scatter(f1.x[0,0],f1.x[3,0], color='green')
def test_ball_path():
y = 15
x = 0
omega = 0.
noise = [1,1]
v0 = 100.
ball = BallPath (x0=x, y0=y, omega_deg=omega, velocity=v0, noise=noise)
dt = 1
f1 = KalmanFilter(dim=6)
dt = 1/30. # time step
ay = -.5*dt**2
f1.F = np.mat ([[1, dt, 0, 0, 0, 0], # x=x0+dx*dt
[0, 1, dt, 0, 0, 0], # dx = dx
[0, 0, 0, 0, 0, 0], # ddx = 0
[0, 0, 0, 1, dt, ay], # y = y0 +dy*dt+1/2*g*dt^2
[0, 0, 0, 0, 1, dt], # dy = dy0 + ddy*dt
[0, 0, 0, 0, 0, 1]]) # ddy = -g
f1.B = 0.
f1.H = np.mat([
[1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0]])
f1.R = np.eye(2) * 5
f1.Q = np.eye(6) * 0.
omega = radians(omega)
vx = cos(omega) * v0
vy = sin(omega) * v0
f1.x = np.mat([x,vx,0,y,vy,-9.8]).T
f1.P = np.eye(6) * 500.
z = np.mat([[0,0]]).T
count = 0
markers.MarkerStyle(fillstyle='none')
np.set_printoptions(precision=4)
while f1.x[3,0] > 0:
count += 1
#f1.update (z)
f1.predict()
plt.scatter(f1.x[0,0],f1.x[3,0], color='green')
if __name__ == '__main__':
test_baseball_path()
#test_ball_path()