Test code to perform KF on ball in vacuum.

This commit is contained in:
Roger Labbe 2014-07-06 01:31:40 -07:00
parent 7d7d500106
commit 40debbd003
2 changed files with 135 additions and 51 deletions

View File

@ -41,8 +41,6 @@ def rk4(y, x, dx, f):
dx is the difference in x (e.g. the time step)
f is a callable function (y, x) that you supply to compute dy/dx for
the specified values.
"""
k1 = dx * f(y, x)
@ -52,82 +50,73 @@ def rk4(y, x, dx, f):
return y + (k1 + 2*k2 + 2*k3 + k4) / 6
def fy(y, t):
""" returns velocity of ball at time t. """
return -9.8*t
def fx(y, t):
""" returns velocity of ball. Need to set vx.vel prior to first call"""
def fx(x,t):
return fx.vel
def fx2(x,t):
return fx2.vel
def fy2(y,t):
return fy2.vel - 9.8*t
def fy(y,t):
return fy.vel - 9.8*t
class BallRungeKutta(object):
def __init__(self, x=0, y=100., vel=10., omega = 0.0):
self.omega = math.radians(omega)
self.vx = math.cos(self.omega) * vel
self.vy = math.sin(self.omega) * vel
def __init__(self, x=0, y=100., vel=10., omega = 0.0):
self.x = x
self.y = y
self.t = 0
fx2.vel = self.vx
fy2.vel = self.vy
omega = math.radians(omega)
fx.vel = math.cos(omega) * vel
fy.vel = math.sin(omega) * vel
def step (self, dt):
self.x = rk4 (self.x, self.t, dt, fx2)
self.y = rk4 (self.y, self.t, dt, fy2)
self.t += dt
print self.x, self.y
self.x = rk4 (self.x, self.t, dt, fx)
self.y = rk4 (self.y, self.t, dt, fy)
self.t += dt
def ball_scipy(y0, vel, omega, dt):
vel_y = math.sin(math.radians(omega)) * vel
def f(t,y):
return vel_y-9.8*t
solver = ode(f).set_integrator('dopri5')
solver.set_initial_value(y0)
ys = [y0]
while brk.y >= 0:
t += dt
brk.step (dt)
ys.append(solver.integrate(t))
if __name__ == "__main__":
dt = 1./30
y0 = 15.
vel = 100.
omega = 10.
omega = 0.
vel_y = math.sin(math.radians(omega)) * vel
print vel_y
def f(t,y):
#print t,y
return vel_y-9.8*t
be = BallEuler (y=y0, vel=vel)
brk = BallRungeKutta (y=y0, vel=vel, omega=omega)
solver = ode(f).set_integrator('dopri5')
solver.set_initial_value(y0)
t = 0
y = y0
ball_rk = BallRungeKutta (y=y0, vel=vel, omega=omega)
while be.y >= 0:
be.step (dt)
#plt.scatter (be.x, be.y, color='red')
ball_rk.step(dt)
plt.scatter (be.x, be.y, color='red')
while brk.y >= 0:
t += dt
brk.step (dt)
y = solver.integrate(t)
plt.scatter (brk.x, brk.y, color='blue', marker='v')
plt.scatter (brk.x, y[0], color='green', marker='+')
plt.axis('equal')
plt.scatter (ball_rk.x, ball_rk.y, color='blue', marker='v')
#plt.scatter (brk.x, y[0], color='green', marker='+')
#plt.axis('equal')

95
exp/ball.py Normal file
View File

@ -0,0 +1,95 @@
# -*- coding: utf-8 -*-
"""
Created on Sat Jul 5 16:07:29 2014
@author: rlabbe
"""
import numpy as np
from KalmanFilter import KalmanFilter
from math import radians, sin, cos
import numpy.random as random
import matplotlib.markers as markers
class BallPath(object):
def __init__(self, x0, y0, omega_deg, velocity, g=9.8, noise=[1.0,1.0]):
omega = radians(omega_deg)
self.vx0 = velocity * cos(omega)
self.vy0 = velocity * sin(omega)
self.x0 = x0
self.y0 = y0
self.g = g
self.noise = noise
def pos_at_t(self, t):
""" returns (x,y) tuple of ball position at time t"""
x = self.vx0*t + self.x0
y = -0.5*self.g*t**2 + self.vy0*t + self.y0
return (x +random.randn()*self.noise[0], y +random.randn()*self.noise[1])
y = 15
x = 0
omega = 0.
noise = [1,1]
v0 = 100.
ball = BallPath (x0=x, y0=y, omega_deg=omega, velocity=v0, noise=noise)
t = 0
dt = 1
g = 9.8
f1 = KalmanFilter(dim=6)
dt = 1/30. # time step
ay = -.5*dt**2
f1.F = np.mat ([[1, dt, 0, 0, 0, 0], # x=x0+dx*dt
[0, 1, dt, 0, 0, 0], # dx = dx
[0, 0, 0, 0, 0, 0], # ddx = 0
[0, 0, 0, 1, dt, ay], # y = y0 +dy*dt+1/2*g*dt^2
[0, 0, 0, 0, 1, dt], # dy = dy0 + ddy*dt
[0, 0, 0, 0, 0, 1]]) # ddy = -g
f1.B = 0.
f1.H = np.mat([
[1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0]])
f1.R = np.eye(2) * 5
f1.Q = np.eye(6) * 0.
omega = radians(omega)
vx = cos(omega) * v0
vy = sin(omega) * v0
f1.x = np.mat([x,vx,0,y,vy,-9.8]).T
f1.P = np.eye(6) * 500.
z = np.mat([[0,0]]).T
count = 0
markers.MarkerStyle(fillstyle='none')
np.set_printoptions(precision=4)
while f1.x[3,0] > 0:
count += 1
#f1.update (z)
f1.predict()
print f1.x[0,0], f1.x[3,0]
#markers.set_fillstyle('none')
plt.scatter(f1.x[0,0],f1.x[3,0], color='green')