Added link to book in nbviewer to top of each page.
This commit is contained in:
parent
6b6e99a2b9
commit
0b37a768de
@ -1,7 +1,7 @@
|
||||
{
|
||||
"metadata": {
|
||||
"name": "",
|
||||
"signature": "sha256:effec8da00a64ca2176d7b2e8c409aebee9e9defbf38ad9d1908494be9694875"
|
||||
"signature": "sha256:92b908cbe06445f741a756723f6dfbc9dff00066e4025d0ca2351b1c6fcab4dd"
|
||||
},
|
||||
"nbformat": 3,
|
||||
"nbformat_minor": 0,
|
||||
@ -12,9 +12,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#Gaussian Probabilities\n",
|
||||
"\n",
|
||||
"Before we begin, we need to set the book's style."
|
||||
"<center>[Kalman Filters and Random Signals in Python](http://github.com/rlabbe/Kalman-Filters-and-Random-Signals-in-Python)</center>\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -238,18 +236,20 @@
|
||||
],
|
||||
"metadata": {},
|
||||
"output_type": "pyout",
|
||||
"prompt_number": 8,
|
||||
"prompt_number": 1,
|
||||
"text": [
|
||||
"<IPython.core.display.HTML at 0x3eb3dd0>"
|
||||
"<IPython.core.display.HTML at 0x2d937d0>"
|
||||
]
|
||||
}
|
||||
],
|
||||
"prompt_number": 8
|
||||
"prompt_number": 1
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#Gaussian Probabilities\n",
|
||||
"\n",
|
||||
"### Introduction\n",
|
||||
"\n",
|
||||
"The last chapter ended by discussing some of the drawbacks of the Discrete Bayesian filter. For many tracking and filtering problems our desire is to have a filter that is *unimodal* and *continuous*. That is, we want to model our system using floating point math (continuous) and to have only one belief represented (unimodal). For example, we want to say an aircraft is at (12.34381, -95.54321,2389.5) where that is latitude, longitude, and altidue. We do not want our filter to tell us \"it might be at (1,65,78) or at (34,656,98)\" That doesn't match our physical intuition of how the world works, and as we discussed, it is prohibitively expensive to compute.\n",
|
||||
|
@ -1,7 +1,7 @@
|
||||
{
|
||||
"metadata": {
|
||||
"name": "",
|
||||
"signature": "sha256:e0ecac7790474bde2b505f02a8ac90ba8b03bc7b61101e309b6e7ce83f8d7abc"
|
||||
"signature": "sha256:3387e32099123fdcfb3ec05bae2e0ebcbd26fc18d196ebfde1c597a02240f178"
|
||||
},
|
||||
"nbformat": 3,
|
||||
"nbformat_minor": 0,
|
||||
@ -12,7 +12,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Before we begin, we need to set the book's style."
|
||||
"<center>[Kalman Filters and Random Signals in Python](http://github.com/rlabbe/Kalman-Filters-and-Random-Signals-in-Python)</center>"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -249,7 +249,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#Introduction\n",
|
||||
"##### Version 0.1\n",
|
||||
"##### Version 0.0\n",
|
||||
"\n",
|
||||
"testthis\n",
|
||||
"\n",
|
||||
|
@ -1,7 +1,7 @@
|
||||
{
|
||||
"metadata": {
|
||||
"name": "",
|
||||
"signature": "sha256:f25d2a0f796f1111451e1f65bc09a5db2fa05d439022118e16d8410eb07e755f"
|
||||
"signature": "sha256:0c2ad6510d01279f1acade52799c2ef6e47a17779f7f6cce2784faed828a9fdf"
|
||||
},
|
||||
"nbformat": 3,
|
||||
"nbformat_minor": 0,
|
||||
@ -12,8 +12,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Kalman Filters\n",
|
||||
"Now that we understand the histogram filter and Gaussians we are prepared to implement a 1D Kalman filter. We will do this exactly as we did the histogram filter - rather than going into the theory we will just develop the code step by step. But first, let's set the book style."
|
||||
"<center>[Kalman Filters and Random Signals in Python](http://github.com/rlabbe/Kalman-Filters-and-Random-Signals-in-Python)</center>"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -237,13 +236,21 @@
|
||||
],
|
||||
"metadata": {},
|
||||
"output_type": "pyout",
|
||||
"prompt_number": 6,
|
||||
"prompt_number": 1,
|
||||
"text": [
|
||||
"<IPython.core.display.HTML at 0x3809290>"
|
||||
"<IPython.core.display.HTML at 0x2815750>"
|
||||
]
|
||||
}
|
||||
],
|
||||
"prompt_number": 6
|
||||
"prompt_number": 1
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Kalman Filters\n",
|
||||
"Now that we understand the histogram filter and Gaussians we are prepared to implement a 1D Kalman filter. We will do this exactly as we did the histogram filter - rather than going into the theory we will just develop the code step by step. But first, let's set the book style."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
|
@ -1,7 +1,7 @@
|
||||
{
|
||||
"metadata": {
|
||||
"name": "",
|
||||
"signature": "sha256:a6b3d341e235ad0a59766c340223d8f6a8c7a2128056e004ae5a109129dd293a"
|
||||
"signature": "sha256:93f2aa8528b9bbe96c77fd678d6f33b1dfde74509596240e46ec4c363f0db314"
|
||||
},
|
||||
"nbformat": 3,
|
||||
"nbformat_minor": 0,
|
||||
@ -12,9 +12,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<h1 align=\"center\">Multidimensional</h1>\n",
|
||||
"<h1 align=\"center\">Kalman Filters</h1>\n",
|
||||
"Before we begin, we need to set the book's style."
|
||||
"<center>[Kalman Filters and Random Signals in Python](http://github.com/rlabbe/Kalman-Filters-and-Random-Signals-in-Python)</center>"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -28,223 +26,15 @@
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"html": [
|
||||
"<style>\n",
|
||||
" div.cell{\n",
|
||||
" width: 850px;\n",
|
||||
" margin-left: 0% !important;\n",
|
||||
" margin-right: auto;\n",
|
||||
" }\n",
|
||||
" h1 {\n",
|
||||
" font-family: 'Open sans',verdana,arial,sans-serif;\n",
|
||||
"\t}\n",
|
||||
"\t\n",
|
||||
" div.input_area {\n",
|
||||
" background: #F6F6F9;\n",
|
||||
" border: 1px solid #586e75;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .text_cell_render h1 {\n",
|
||||
" font-weight: 200;\n",
|
||||
" font-size: 40pt;\n",
|
||||
" line-height: 100%;\n",
|
||||
" color:#c76c0c;\n",
|
||||
" margin-bottom: 0.5em;\n",
|
||||
" margin-top: 1em;\n",
|
||||
" display: block;\n",
|
||||
" white-space: nowrap;\n",
|
||||
" } \n",
|
||||
" h2 {\n",
|
||||
" font-family: 'Open sans',verdana,arial,sans-serif;\n",
|
||||
" text-indent:1em;\n",
|
||||
" }\n",
|
||||
" .text_cell_render h2 {\n",
|
||||
" font-weight: 200;\n",
|
||||
" font-size: 20pt;\n",
|
||||
" font-style: italic;\n",
|
||||
" line-height: 100%;\n",
|
||||
" color:#c76c0c;\n",
|
||||
" margin-bottom: 1.5em;\n",
|
||||
" margin-top: 0.5em;\n",
|
||||
" display: block;\n",
|
||||
" white-space: nowrap;\n",
|
||||
" } \n",
|
||||
" h3 {\n",
|
||||
" font-family: 'Open sans',verdana,arial,sans-serif;\n",
|
||||
" }\n",
|
||||
" .text_cell_render h3 {\n",
|
||||
" font-weight: 300;\n",
|
||||
" font-size: 18pt;\n",
|
||||
" line-height: 100%;\n",
|
||||
" color:#d77c0c;\n",
|
||||
" margin-bottom: 0.5em;\n",
|
||||
" margin-top: 2em;\n",
|
||||
" display: block;\n",
|
||||
" white-space: nowrap;\n",
|
||||
" }\n",
|
||||
" h4 {\n",
|
||||
" font-family: 'Open sans',verdana,arial,sans-serif;\n",
|
||||
" }\n",
|
||||
" .text_cell_render h4 {\n",
|
||||
" font-weight: 300;\n",
|
||||
" font-size: 16pt;\n",
|
||||
" color:#d77c0c;\n",
|
||||
" margin-bottom: 0.5em;\n",
|
||||
" margin-top: 0.5em;\n",
|
||||
" display: block;\n",
|
||||
" white-space: nowrap;\n",
|
||||
" }\n",
|
||||
" h5 {\n",
|
||||
" font-family: 'Open sans',verdana,arial,sans-serif;\n",
|
||||
" }\n",
|
||||
" .text_cell_render h5 {\n",
|
||||
" font-weight: 300;\n",
|
||||
" font-style: normal;\n",
|
||||
" color: #1d3b84;\n",
|
||||
" font-size: 16pt;\n",
|
||||
" margin-bottom: 0em;\n",
|
||||
" margin-top: 1.5em;\n",
|
||||
" display: block;\n",
|
||||
" white-space: nowrap;\n",
|
||||
" }\n",
|
||||
" div.text_cell_render{\n",
|
||||
" font-family: 'Open sans',verdana,arial,sans-serif;\n",
|
||||
" line-height: 135%;\n",
|
||||
" font-size: 125%;\n",
|
||||
" width:750px;\n",
|
||||
" margin-left:auto;\n",
|
||||
" margin-right:auto;\n",
|
||||
" text-align:justify;\n",
|
||||
" text-justify:inter-word;\n",
|
||||
" }\n",
|
||||
" div.output_subarea.output_text.output_pyout {\n",
|
||||
" overflow-x: auto;\n",
|
||||
" overflow-y: scroll;\n",
|
||||
" max-height: 300px;\n",
|
||||
" }\n",
|
||||
" div.output_subarea.output_stream.output_stdout.output_text {\n",
|
||||
" overflow-x: auto;\n",
|
||||
" overflow-y: scroll;\n",
|
||||
" max-height: 300px;\n",
|
||||
" }\n",
|
||||
" code{\n",
|
||||
" font-size: 78%;\n",
|
||||
" }\n",
|
||||
" .rendered_html code{\n",
|
||||
" background-color: transparent;\n",
|
||||
" }\n",
|
||||
" ul{\n",
|
||||
" margin: 2em;\n",
|
||||
" }\n",
|
||||
" ul li{\n",
|
||||
" padding-left: 0.5em; \n",
|
||||
" margin-bottom: 0.5em; \n",
|
||||
" margin-top: 0.5em; \n",
|
||||
" }\n",
|
||||
" ul li li{\n",
|
||||
" padding-left: 0.2em; \n",
|
||||
" margin-bottom: 0.2em; \n",
|
||||
" margin-top: 0.2em; \n",
|
||||
" }\n",
|
||||
" ol{\n",
|
||||
" margin: 2em;\n",
|
||||
" }\n",
|
||||
" ol li{\n",
|
||||
" padding-left: 0.5em; \n",
|
||||
" margin-bottom: 0.5em; \n",
|
||||
" margin-top: 0.5em; \n",
|
||||
" }\n",
|
||||
" ul li{\n",
|
||||
" padding-left: 0.5em; \n",
|
||||
" margin-bottom: 0.5em; \n",
|
||||
" margin-top: 0.2em; \n",
|
||||
" }\n",
|
||||
" a:link{\n",
|
||||
" font-weight: bold;\n",
|
||||
" color:#447adb;\n",
|
||||
" }\n",
|
||||
" a:visited{\n",
|
||||
" font-weight: bold;\n",
|
||||
" color: #1d3b84;\n",
|
||||
" }\n",
|
||||
" a:hover{\n",
|
||||
" font-weight: bold;\n",
|
||||
" color: #1d3b84;\n",
|
||||
" }\n",
|
||||
" a:focus{\n",
|
||||
" font-weight: bold;\n",
|
||||
" color:#447adb;\n",
|
||||
" }\n",
|
||||
" a:active{\n",
|
||||
" font-weight: bold;\n",
|
||||
" color:#447adb;\n",
|
||||
" }\n",
|
||||
" .rendered_html :link {\n",
|
||||
" text-decoration: none; \n",
|
||||
" }\n",
|
||||
" .rendered_html :hover {\n",
|
||||
" text-decoration: none; \n",
|
||||
" }\n",
|
||||
" .rendered_html :visited {\n",
|
||||
" text-decoration: none;\n",
|
||||
" }\n",
|
||||
" .rendered_html :focus {\n",
|
||||
" text-decoration: none;\n",
|
||||
" }\n",
|
||||
" .rendered_html :active {\n",
|
||||
" text-decoration: none;\n",
|
||||
" }\n",
|
||||
" .warning{\n",
|
||||
" color: rgb( 240, 20, 20 )\n",
|
||||
" } \n",
|
||||
" hr {\n",
|
||||
" color: #f3f3f3;\n",
|
||||
" background-color: #f3f3f3;\n",
|
||||
" height: 1px;\n",
|
||||
" }\n",
|
||||
" blockquote{\n",
|
||||
" display:block;\n",
|
||||
" background: #fcfcfc;\n",
|
||||
" border-left: 5px solid #c76c0c;\n",
|
||||
" font-family: 'Open sans',verdana,arial,sans-serif;\n",
|
||||
" width:680px;\n",
|
||||
" padding: 10px 10px 10px 10px;\n",
|
||||
" text-align:justify;\n",
|
||||
" text-justify:inter-word;\n",
|
||||
" }\n",
|
||||
" blockquote p {\n",
|
||||
" margin-bottom: 0;\n",
|
||||
" line-height: 125%;\n",
|
||||
" font-size: 100%;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<script>\n",
|
||||
" MathJax.Hub.Config({\n",
|
||||
" TeX: {\n",
|
||||
" extensions: [\"AMSmath.js\"]\n",
|
||||
" },\n",
|
||||
" tex2jax: {\n",
|
||||
" inlineMath: [ ['$','$'], [\"\\\\(\",\"\\\\)\"] ],\n",
|
||||
" displayMath: [ ['$$','$$'], [\"\\\\[\",\"\\\\]\"] ]\n",
|
||||
" },\n",
|
||||
" displayAlign: 'center', // Change this to 'center' to center equations.\n",
|
||||
" \"HTML-CSS\": {\n",
|
||||
" styles: {'.MathJax_Display': {\"margin\": 4}}\n",
|
||||
" }\n",
|
||||
" });\n",
|
||||
"</script>\n"
|
||||
],
|
||||
"metadata": {},
|
||||
"output_type": "pyout",
|
||||
"prompt_number": 25,
|
||||
"text": [
|
||||
"<IPython.core.display.HTML at 0x27fbb10>"
|
||||
]
|
||||
}
|
||||
],
|
||||
"prompt_number": 25
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<h1 align=\"center\">Multidimensional</h1>\n",
|
||||
"<h1 align=\"center\">Kalman Filters</h1>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
|
@ -1,7 +1,7 @@
|
||||
{
|
||||
"metadata": {
|
||||
"name": "",
|
||||
"signature": "sha256:82faa9340e18d14b79321a236acd20d0ba6eba274151ae39fd0fa04f7496473a"
|
||||
"signature": "sha256:96eeab1151a83e762e6d09fe5a29ed386267e49e5822fdb12c8694bd925f3d4b"
|
||||
},
|
||||
"nbformat": 3,
|
||||
"nbformat_minor": 0,
|
||||
@ -12,9 +12,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Building Intuition via Thought Experiments\n",
|
||||
"\n",
|
||||
"Before we begin, we need to set the book's style."
|
||||
"<center>[Kalman Filters and Random Signals in Python](http://github.com/rlabbe/Kalman-Filters-and-Random-Signals-in-Python)</center>"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -238,18 +236,20 @@
|
||||
],
|
||||
"metadata": {},
|
||||
"output_type": "pyout",
|
||||
"prompt_number": 16,
|
||||
"prompt_number": 1,
|
||||
"text": [
|
||||
"<IPython.core.display.HTML at 0x3793450>"
|
||||
"<IPython.core.display.HTML at 0xfc8350>"
|
||||
]
|
||||
}
|
||||
],
|
||||
"prompt_number": 16
|
||||
"prompt_number": 1
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Building Intuition via Thought Experiments\n",
|
||||
".\n",
|
||||
"Imagine we live in a world without scales - the devices you stand on to weigh yourself. One day at work a coworker comes running up to you and announces her invention to you. After she explains, you eagerly stand on it and announce the results: \"172 lbs\". You are estatic - for the first time in your life you know what you weigh. More importantly, dollar signs dance in your eyes as you imagine selling this device to weight loss clinics across the world! This is fantastic!\n",
|
||||
"\n",
|
||||
"Another coworker hears the commotion and walks over to find out what has you so excited. You explain the invention and once again step onto the scale, and proudly proclaim the result: \"161 lbs.\" And then you hesitate, confused.\n",
|
||||
|
@ -1,7 +1,7 @@
|
||||
{
|
||||
"metadata": {
|
||||
"name": "",
|
||||
"signature": "sha256:42bb8e5d1f668d44e5a23d83f81c99c39dd2677d0be5f61bf2fe32773e18d86f"
|
||||
"signature": "sha256:1c4f69bdeaf7cb502d55b13766010a7c6c8c1f59067e8fc0b1973c381d435c6b"
|
||||
},
|
||||
"nbformat": 3,
|
||||
"nbformat_minor": 0,
|
||||
@ -12,7 +12,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Before we begin, we need to set the book's style."
|
||||
"<center>[Kalman Filters and Random Signals in Python](http://github.com/rlabbe/Kalman-Filters-and-Random-Signals-in-Python)</center>"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user