Kalman-and-Bayesian-Filters.../code/DogSimulation.py

55 lines
1.5 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
"""Copyright 2015 Roger R Labbe Jr.
Code supporting the book
Kalman and Bayesian Filters in Python
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
2015-08-01 17:52:48 +02:00
This is licensed under an MIT license. See the LICENSE.txt file
for more information.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import math
from numpy.random import randn
class DogSimulation(object):
def __init__(self, x0=0, velocity=1,
measurement_var=0.0, process_var=0.0):
""" x0 - initial position
velocity - (+=right, -=left)
measurement_variance - variance in measurement m^2
process_variance - variance in process (m/s)^2
"""
self.x = x0
self.velocity = velocity
self.measurement_noise = math.sqrt(measurement_var)
self.process_noise = math.sqrt(process_var)
def move(self, dt=1.0):
'''Compute new position of the dog assuming `dt` seconds have
passed since the last update.'''
# compute new position based on velocity. Add in some
# process noise
velocity = self.velocity + randn() * self.process_noise
self.x += velocity * dt
def sense_position(self):
# simulate measuring the position with noise
measurement = self.x + randn() * self.measurement_noise
return measurement
def move_and_sense(self, dt=1.0):
self.move(dt)
return self.sense_position()