Compare commits
2 Commits
7c869a83ce
...
83bddc19e3
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
83bddc19e3 | ||
|
|
bf2d5f6c76 |
@ -311,7 +311,7 @@ This progression can be seen to be increasing. Cauchy, in his treatise, can see
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
(1 + \frac{1}{m})^n &= 1 + \frac{1}{1} + \frac{1}{1\cdot 2}(1 - \frac{1}{m}) + \\
|
||||
(1 + \frac{1}{m})^m &= 1 + \frac{1}{1} + \frac{1}{1\cdot 2}(1 - \frac{1}{m}) + \\
|
||||
& \frac{1}{1\cdot 2\cdot 3}(1 - \frac{1}{m})(1 - \frac{2}{m}) + \cdots \\
|
||||
&+
|
||||
\frac{1}{1 \cdot 2 \cdot \cdots \cdot m}(1 - \frac{1}{m}) \cdot \cdots \cdot (1 - \frac{m-1}{m}).
|
||||
|
||||
@ -380,7 +380,7 @@ this by the inverse property. Whereas, by expressing $a=b^{\log_b(a)}$ we have:
|
||||
|
||||
|
||||
$$
|
||||
a^{(\log_b(x)/\log_b(b))} = (b^{\log_b(a)})^{(\log_b(x)/\log_b(a))} =
|
||||
a^{(\log_b(x)/\log_b(a))} = (b^{\log_b(a)})^{(\log_b(x)/\log_b(a))} =
|
||||
b^{\log_b(a) \cdot \log_b(x)/\log_b(a) } = b^{\log_b(x)} = x.
|
||||
$$
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user