readme
This commit is contained in:
parent
7dfe24aa76
commit
f351e89421
58
functions.py
58
functions.py
@ -245,7 +245,7 @@ class Network:
|
||||
self.w[index] -= self.learning_rate * dw
|
||||
self.b[index] -= self.learning_rate * np.mean(delta, 0)
|
||||
|
||||
def fit(self, x, y_true, loss, epochs, batch_size, learning_rate=1e-3):
|
||||
def fit(self, x, y_true, loss, epochs, batch_size, learning_rate=2e-2):
|
||||
"""
|
||||
:param x: (array) Containing parameters
|
||||
:param y_true: (array) Containing one hot encoded labels.
|
||||
@ -289,22 +289,52 @@ if __name__ == "__main__":
|
||||
from sklearn import datasets
|
||||
import sklearn.metrics
|
||||
np.random.seed(1)
|
||||
data = datasets.load_digits()
|
||||
|
||||
# Load data
|
||||
data = datasets.load_iris()
|
||||
x = data["data"]
|
||||
x = (x - x.mean()) / x.std()
|
||||
y = data["target"]
|
||||
y = np.eye(10)[y]
|
||||
#y = np.expand_dims(data["target"], 1)
|
||||
|
||||
nn = Network((64, 10, 10), (Relu, Sigmoid))
|
||||
nn.fit(x, y, MSE, 100, 15, learning_rate=1e-3)
|
||||
# one hot encoding
|
||||
y = np.eye(3)[y]
|
||||
|
||||
y_ = nn.predict(x)
|
||||
a = np.argmax(y_, 1)
|
||||
from pprint import pprint
|
||||
|
||||
y_true = []
|
||||
y_pred = []
|
||||
for i in range(len(y)):
|
||||
y_pred.append(np.argmax(y_[i]))
|
||||
y_true.append(np.argmax(y[i]))
|
||||
nn = Network((2, 3, 1), (Relu, Sigmoid))
|
||||
|
||||
print(sklearn.metrics.classification_report(y_true, y_pred))
|
||||
print("Weights:")
|
||||
pprint(nn.w)
|
||||
|
||||
print("Biases:")
|
||||
pprint(nn.b)
|
||||
|
||||
pprint(nn.activations)
|
||||
|
||||
pprint()
|
||||
|
||||
#nn.fit(x[:2], y[:2], MSE, 1, batch_size=2)
|
||||
# nn.fit(x, y, MSE, 1000, 16)
|
||||
|
||||
# data = datasets.load_digits()
|
||||
#
|
||||
# x = data["data"]
|
||||
# y = data["target"]
|
||||
# y = np.eye(10)[y]
|
||||
#
|
||||
# nn = Network((64, 32, 10), (Relu, Sigmoid))
|
||||
# nn.fit(x, y, MSE, 100, 2)
|
||||
#
|
||||
# y_ = nn.predict(x)
|
||||
# a = np.argmax(y_, 1)
|
||||
#
|
||||
# for i in range(a.size):
|
||||
# print(a[i], y[i], "\t", np.round(y_[i], 3))
|
||||
#
|
||||
# y_true = []
|
||||
# y_pred = []
|
||||
# for i in range(len(y)):
|
||||
# y_pred.append(np.argmax(y_[i]))
|
||||
# y_true.append(np.argmax(y[i]))
|
||||
#
|
||||
# print(sklearn.metrics.classification_report(y_true, y_pred))
|
Loading…
Reference in New Issue
Block a user