No activation prime
This commit is contained in:
parent
43a8098031
commit
36ca828e6b
75
functions.py
75
functions.py
@ -122,6 +122,11 @@ class MSE:
|
||||
|
||||
|
||||
class NoActivation:
|
||||
"""
|
||||
This is a plugin function for no activation.
|
||||
|
||||
f(x) = x * 1
|
||||
"""
|
||||
@staticmethod
|
||||
def activation(z):
|
||||
"""
|
||||
@ -131,15 +136,13 @@ class NoActivation:
|
||||
return z
|
||||
|
||||
@staticmethod
|
||||
def prime(x):
|
||||
def prime(z):
|
||||
"""
|
||||
Linear relation. The prime is the input variable.
|
||||
z = w(x) + b
|
||||
z' = x
|
||||
:param x: (array) Input variable x
|
||||
:return: x: (array)
|
||||
The prime of z * 1 = 1
|
||||
:param z: (array)
|
||||
:return: z': (array)
|
||||
"""
|
||||
return x
|
||||
return np.ones_like(z)
|
||||
|
||||
|
||||
class Network:
|
||||
@ -277,40 +280,40 @@ if __name__ == "__main__":
|
||||
from sklearn import datasets
|
||||
import sklearn.metrics
|
||||
np.random.seed(1)
|
||||
# Load data
|
||||
data = datasets.load_iris()
|
||||
x = data["data"]
|
||||
x = (x - x.mean()) / x.std()
|
||||
y = data["target"]
|
||||
#y = np.expand_dims(data["target"], 1)
|
||||
|
||||
# one hot encoding
|
||||
y = np.eye(3)[y]
|
||||
|
||||
nn = Network((4, 8, 3), (Relu, Relu, Sigmoid))
|
||||
|
||||
#nn.fit(x[:2], y[:2], MSE, 1, batch_size=2)
|
||||
nn.fit(x, y, MSE, 1000, 16)
|
||||
|
||||
# data = datasets.load_digits()
|
||||
#
|
||||
# # Load data
|
||||
# data = datasets.load_iris()
|
||||
# x = data["data"]
|
||||
# x = (x - x.mean()) / x.std()
|
||||
# y = data["target"]
|
||||
# y = np.eye(10)[y]
|
||||
# #y = np.expand_dims(data["target"], 1)
|
||||
#
|
||||
# nn = Network((64, 32, 10), (Relu, Sigmoid))
|
||||
# nn.fit(x, y, MSE, 100, 2)
|
||||
# # one hot encoding
|
||||
# y = np.eye(3)[y]
|
||||
#
|
||||
# nn = Network((4, 8, 3), (Relu, Sigmoid))
|
||||
#
|
||||
# #nn.fit(x[:2], y[:2], MSE, 1, batch_size=2)
|
||||
# nn.fit(x, y, MSE, 1000, 16)
|
||||
|
||||
data = datasets.load_digits()
|
||||
|
||||
x = data["data"]
|
||||
y = data["target"]
|
||||
y = np.eye(10)[y]
|
||||
|
||||
nn = Network((64, 32, 10), (Relu, Sigmoid))
|
||||
nn.fit(x, y, MSE, 100, 2)
|
||||
|
||||
y_ = nn.predict(x)
|
||||
a = np.argmax(y_, 1)
|
||||
|
||||
# for i in range(a.size):
|
||||
# print(a[i], y[i], "\t", np.round(y_[i], 3))
|
||||
for i in range(a.size):
|
||||
print(a[i], y[i], "\t", np.round(y_[i], 3))
|
||||
|
||||
# y_true = []
|
||||
# y_pred = []
|
||||
# for i in range(len(y)):
|
||||
# y_pred.append(np.argmax(y_[3][i]))
|
||||
# y_true.append(np.argmax(y[i]))
|
||||
#
|
||||
# print(sklearn.metrics.classification_report(y_true, y_pred))
|
||||
y_true = []
|
||||
y_pred = []
|
||||
for i in range(len(y)):
|
||||
y_pred.append(np.argmax(y_[i]))
|
||||
y_true.append(np.argmax(y[i]))
|
||||
|
||||
print(sklearn.metrics.classification_report(y_true, y_pred))
|
Loading…
Reference in New Issue
Block a user