Reasonable bridge. And validation almost working. Maybe binary tree adding?.
This commit is contained in:
parent
32f7a9d341
commit
2aef7aaa86
@ -1,4 +1,5 @@
|
||||
import numpy as np
|
||||
import os
|
||||
import pickle
|
||||
from scipy.spatial.distance import euclidean
|
||||
from itertools import combinations, product
|
||||
@ -62,13 +63,16 @@ class DNA:
|
||||
|
||||
max_node_id = ids[np.argmax(x_range)]
|
||||
|
||||
middle_node_id = ss.nearest_node("both", np.array([(length + start) / 2, self.height]))
|
||||
for j in range(self.height):
|
||||
middle_node_id = ss.nearest_node("both", np.array([(length + start) / 2, self.height - j]))
|
||||
if middle_node_id:
|
||||
break
|
||||
|
||||
if middle_node_id is None:
|
||||
middle_node_id = ids[np.argmin(np.abs(np.array(x_range) - (length + start) / 2))]
|
||||
|
||||
ss.add_support_hinged(1)
|
||||
ss.add_support_roll(max_node_id)
|
||||
ss.add_support_hinged(max_node_id)
|
||||
ss.point_load(middle_node_id, Fz=-100)
|
||||
|
||||
builds[i] = ss
|
||||
@ -85,14 +89,16 @@ class DNA:
|
||||
|
||||
for i in range(builds.shape[0]):
|
||||
if validate_calc(builds[i]):
|
||||
|
||||
w = np.abs(builds[i].get_node_displacements(middle_node[i])["uy"])
|
||||
|
||||
x_range = builds[i].nodes_range('x')
|
||||
length = max(x_range) - min(x_range)
|
||||
fitness_w[i] = 1.0 / (w / ((100 * length**3) / (48 * builds[i].EI)))
|
||||
|
||||
fitness_n = (1 / fitness_n) * 250
|
||||
fitness_n = (400 / fitness_n)**2
|
||||
|
||||
return fitness_w + fitness_l**2 / 5 + fitness_n, fitness_w
|
||||
return fitness_l**2 + fitness_n + fitness_w, fitness_w, fitness_n
|
||||
|
||||
def crossover(self, parent, pop, fitness):
|
||||
if np.random.rand() < self.cross_rate:
|
||||
@ -132,8 +138,9 @@ def rank_selection(pop, fitness):
|
||||
|
||||
def validate_calc(ss):
|
||||
try:
|
||||
a = ss.validate()
|
||||
displacement_matrix = ss.solve()
|
||||
return not np.any(np.abs(displacement_matrix) > 1e9)
|
||||
return not np.any(np.abs(displacement_matrix) > 1e9) and a
|
||||
except (np.linalg.LinAlgError, AttributeError):
|
||||
return False
|
||||
|
||||
@ -167,28 +174,52 @@ def mirror(v, m_x):
|
||||
return np.array([m_x + m_x - v[0], v[1]])
|
||||
|
||||
|
||||
a = DNA(10, 3, 200, cross_rate=0.8, mutation_rate=0.05)
|
||||
plt.ion()
|
||||
a = DNA(10, 6, 200, cross_rate=0.8, mutation_rate=0.05)
|
||||
# plt.ion()
|
||||
|
||||
# with open("save.pkl", "rb") as f:
|
||||
# a = pickle.load(f)
|
||||
# a.mutation_rate = 0.1
|
||||
# a.cross_rate= 0.8
|
||||
|
||||
for i in range(150):
|
||||
fitness, w = a.get_fitness()
|
||||
base_dir = "/home/ritchie46/code/machine_learning/vanilla-machine-learning/genetic_algorithms/img/"
|
||||
name = "n3"
|
||||
os.makedirs(os.path.join(base_dir, f"best_{name}"), exist_ok=1)
|
||||
|
||||
with open(os.path.join(base_dir, f"best_{name}", "save.pkl"), "rb") as f:
|
||||
a = pickle.load(f)
|
||||
# a.mutation_rate = 0.1
|
||||
# a.cross_rate= 0.8
|
||||
f, w, n = a.get_fitness()
|
||||
f[np.argwhere(w == 0)] = 0
|
||||
idx = np.argmax(f)
|
||||
print(w[idx], n[idx])
|
||||
a.builds[idx].show_bending_moment()
|
||||
|
||||
last_fitness = 0
|
||||
|
||||
for i in range(100, 150):
|
||||
fitness, w, n = a.get_fitness()
|
||||
|
||||
fitness[np.argwhere(w == 0)] = 0
|
||||
|
||||
a.evolve(fitness)
|
||||
|
||||
index_max = np.argmax(fitness)
|
||||
print("gen", i, "max fitness", fitness[index_max], "w", w[index_max])
|
||||
max_idx = np.argmax(fitness)
|
||||
print("gen", i, "max fitness", fitness[max_idx], "w", w[max_idx], "n", n[max_idx])
|
||||
|
||||
if i % 1 == 0:
|
||||
|
||||
if i % 2 == 0:
|
||||
plt.cla()
|
||||
fig = a.builds[index_max].show_structure(show=False)
|
||||
|
||||
plt.pause(0.5)
|
||||
if last_fitness != fitness[max_idx]:
|
||||
try:
|
||||
fig = a.builds[max_idx].show_structure(show=False, verbosity=1)
|
||||
plt.title(f"fitness = {round(fitness[max_idx], 3)}")
|
||||
fig.savefig(os.path.join(base_dir, f"best_{name}", f"ga{i}.png"))
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
if i % 20 == 0:
|
||||
with open("save.pkl", "wb") as f:
|
||||
last_fitness = fitness[max_idx]
|
||||
# plt.pause(0.5)
|
||||
|
||||
if i % 1 == 0:
|
||||
with open(os.path.join(base_dir, f"best_{name}", "save.pkl"), "wb") as f:
|
||||
pickle.dump(a, f)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user