Update Exercises 2 and 3 (Multiple Regression).
This commit is contained in:
parent
b265c7afe0
commit
a9b065ab5f
@ -100,9 +100,10 @@ normal distribution with mean 0.0 and standard deviation 2.0, and sample
|
||||
## Task 1
|
||||
|
||||
1. Generate $n=20$ covariates $\mathbf{x}$ randomly.
|
||||
2. Given these covariates and true parameters $\beta_0=-3$, $\beta_1=2$
|
||||
and $\sigma=0.5$, simulate responses from a linear model and
|
||||
estimate the coefficients $\beta_0$ and $\beta_1$.
|
||||
2. Given these covariates and the true parameters $\beta_0=-3$,
|
||||
$\beta_1=2$ and $\sigma=0.5$, simulate responses from a linear model
|
||||
(with normally distributed errors) and estimate the coefficients
|
||||
$\beta_0$ and $\beta_1$.
|
||||
3. Play with different choices of the parameters above (including the
|
||||
sample size $n$) to see the effects on the parameter estimates and
|
||||
the $p$-values.
|
||||
@ -189,10 +190,18 @@ regression model, but we provide explicit formulas now:
|
||||
p\text{-value} = \mathbb{P}(|T| > t_i), \quad \text{where } T \sim t_{n-p}
|
||||
$$
|
||||
|
||||
**Task 2**: Implement functions that estimate the $\beta$-parameters,
|
||||
the corresponding standard errors and the $t$-statistics. Test your
|
||||
functions with the \`\`\`tree''' data set and try to reproduce the
|
||||
::: {.callout-caution collapse="false"}
|
||||
|
||||
## Task 2
|
||||
|
||||
1. Implement functions that estimate the $\beta$-parameters,
|
||||
the corresponding standard errors and the $t$-statistics.
|
||||
2. Test your functions with the `tree' data set and try to reproduce the
|
||||
output above.
|
||||
:::
|
||||
|
||||
Which model is the best? For linear models, one often uses the $R^2$ characteristic.
|
||||
Roughly speaking, it gives the percentage (between 0 and 1) of the variance that can be explained by the linear model.
|
||||
|
||||
``` julia
|
||||
r2(linmod1)
|
||||
@ -305,10 +314,11 @@ model = glm(@formula(participation ~ age^2),
|
||||
SwissLabor, Binomial(), ProbitLink())
|
||||
```
|
||||
|
||||
::: callout-task
|
||||
**Task 3**:
|
||||
::: {.callout-caution collapse="false"}
|
||||
|
||||
##Task 3:
|
||||
|
||||
1. Reproduce the results of our data analysis of the `tree` data set
|
||||
using a generalized linear model with normal distribution family.
|
||||
2. Generate
|
||||
2. Generate $n=20$ random covariates $\mathbf{x}$ and Poisson-distributed counting data with parameters $\beta_0 + \beta_1 x_i$. Re-estimate the parameters by a generalized linear model.
|
||||
:::
|
||||
|
Loading…
Reference in New Issue
Block a user