Another update
This commit is contained in:
parent
08951f610d
commit
39892ad1c1
@ -10,7 +10,7 @@ editor:
|
||||
|
||||
### Introductory Example: tree dataset from R
|
||||
|
||||
``` julia
|
||||
``` julia
|
||||
using Statistics
|
||||
using Plots
|
||||
using RDatasets
|
||||
@ -25,7 +25,7 @@ scatter(trees.Volume, trees.Girth,
|
||||
the *explanatory variable/covariate* `girth`? Can we predict the volume
|
||||
of a tree given its girth?
|
||||
|
||||
``` julia
|
||||
``` julia
|
||||
scatter(trees.Girth, trees.Volume,
|
||||
legend=false, xlabel="Girth", ylabel="Volume")
|
||||
plot!(x -> -37 + 5*x)
|
||||
@ -68,7 +68,7 @@ rather use Julia to solve the problem.
|
||||
\[use Julia code (existing package) to perform linear regression for
|
||||
`volume ~ girth`\]
|
||||
|
||||
``` julia
|
||||
``` julia
|
||||
lm(@formula(Volume ~ Girth), trees)
|
||||
```
|
||||
|
||||
@ -183,7 +183,7 @@ the corresponding standard errors and the $t$-statistics. Test your
|
||||
functions with the \`\`\`tree''' data set and try to reproduce the
|
||||
output above.
|
||||
|
||||
``` julia
|
||||
``` julia
|
||||
r2(linmod1)
|
||||
r2(linmod2)
|
||||
|
||||
@ -232,31 +232,33 @@ $$
|
||||
|
||||
For the models above, these are:
|
||||
|
||||
+--------------+---------------------+--------------------+
|
||||
| Type of Data | Distribution Family | Link Function |
|
||||
+==============+=====================+====================+
|
||||
| continuous | Normal | identity: |
|
||||
| | | |
|
||||
| | | $$ |
|
||||
| | | g(x)=x |
|
||||
| | | $$ |
|
||||
+--------------+---------------------+--------------------+
|
||||
| count | Poisson | log: |
|
||||
| | | |
|
||||
| | | $$ |
|
||||
| | | g(x) = \log(x) |
|
||||
| | | $$ |
|
||||
+--------------+---------------------+--------------------+
|
||||
| binary | Bernoulli | logit: |
|
||||
| | | |
|
||||
| | | $$ |
|
||||
| | | g(x) = \log\left |
|
||||
| | | ( |
|
||||
| | | \ |
|
||||
| | | f |
|
||||
| | | rac{x}{1-x}\right) |
|
||||
| | | $$ |
|
||||
+--------------+---------------------+--------------------+
|
||||
+---------------+-------------------+------------------+
|
||||
| Type of Data | Distribution | Link Function |
|
||||
| | Family | |
|
||||
+===============+===================+==================+
|
||||
| continuous | Normal | identity: |
|
||||
| | | |
|
||||
| | | $$ |
|
||||
| | | g(x)=x |
|
||||
| | | $$ |
|
||||
+---------------+-------------------+------------------+
|
||||
| count | Poisson | log: |
|
||||
| | | |
|
||||
| | | $$ |
|
||||
| | | g(x) = \log(x) |
|
||||
| | | $$ |
|
||||
+---------------+-------------------+------------------+
|
||||
| binary | Bernoulli | logit: |
|
||||
| | | |
|
||||
| | | $$ |
|
||||
| | | g(x) = \log\left |
|
||||
| | | ( |
|
||||
| | | \ |
|
||||
| | | f |
|
||||
| | | ra |
|
||||
| | | c{x}{1-x}\right) |
|
||||
| | | $$ |
|
||||
+---------------+-------------------+------------------+
|
||||
|
||||
In general, the parameter vector $\beta$ is estimated via maximizing the
|
||||
likelihood, i.e.,
|
||||
@ -274,7 +276,7 @@ $$
|
||||
In the Gaussian case, the maximum likelihood estimator is identical to
|
||||
the least squares estimator considered above.
|
||||
|
||||
``` julia
|
||||
``` julia
|
||||
using CSV
|
||||
using HTTP
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user