Adding a final note on LMMs.
This commit is contained in:
parent
b2fb8271a2
commit
1517319b19
@ -44,7 +44,7 @@ $$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \qquad i=1,...,n,$$
|
||||
where $\varepsilon_i \sim \mathcal{N}(0,\sigma^2)$ are independent
|
||||
normally distributed errors with unknown variance $\sigma^2$.
|
||||
|
||||
*Task:* Find the straight line that fits best, i.e., find the *optimal*
|
||||
*Aim:* Find the straight line that fits best, i.e., find the *optimal*
|
||||
estimators for $\beta_0$ and $\beta_1$.
|
||||
|
||||
*Typical choice*: Least squares estimator (= maximum likelihood
|
||||
@ -191,17 +191,17 @@ regression model, but we provide explicit formulas now:
|
||||
$$
|
||||
|
||||
::: {.callout-caution collapse="false"}
|
||||
|
||||
## Task 2
|
||||
|
||||
1. Implement functions that estimate the $\beta$-parameters,
|
||||
the corresponding standard errors and the $t$-statistics.
|
||||
2. Test your functions with the `tree' data set and try to reproduce the
|
||||
output above.
|
||||
1. Implement functions that estimate the $\beta$-parameters, the
|
||||
corresponding standard errors and the $t$-statistics.
|
||||
2. Test your functions with the \`tree' data set and try to reproduce
|
||||
the output above.
|
||||
:::
|
||||
|
||||
Which model is the best? For linear models, one often uses the $R^2$ characteristic.
|
||||
Roughly speaking, it gives the percentage (between 0 and 1) of the variance that can be explained by the linear model.
|
||||
Which model is the best? For linear models, one often uses the $R^2$
|
||||
characteristic. Roughly speaking, it gives the percentage (between 0
|
||||
and 1) of the variance that can be explained by the linear model.
|
||||
|
||||
``` julia
|
||||
r2(linmod1)
|
||||
@ -212,8 +212,11 @@ linmod3 = lm(@formula(Volume ~ Girth + Height + Girth*Height), trees)
|
||||
r2(linmod3)
|
||||
```
|
||||
|
||||
::: {.callout-note}
|
||||
The more covariates you add the more variance can be explained by the linear model - $R^2$ increases. In order to balance goodness-of-fit of a model and its complexity, information criteria such as `aic` are considered.
|
||||
::: callout-note
|
||||
The more covariates you add the more variance can be explained by the
|
||||
linear model - $R^2$ increases. In order to balance goodness-of-fit of a
|
||||
model and its complexity, information criteria such as `aic` are
|
||||
considered.
|
||||
:::
|
||||
|
||||
## Generalized Linear Models
|
||||
@ -256,30 +259,30 @@ $$
|
||||
|
||||
For the models above, these are:
|
||||
|
||||
+----------------+------------------+--------------------------+
|
||||
| Type of Data | Distribution | Link Function |
|
||||
| | Family | |
|
||||
+================+==================+==========================+
|
||||
| continuous | Normal | identity: |
|
||||
| | | |
|
||||
| | | $$ |
|
||||
| | | g(x)=x |
|
||||
| | | $$ |
|
||||
+----------------+------------------+--------------------------+
|
||||
| count | Poisson | log: |
|
||||
| | | |
|
||||
| | | $$ |
|
||||
| | | g(x) = \log(x) |
|
||||
| | | $$ |
|
||||
+----------------+------------------+--------------------------+
|
||||
| binary | Bernoulli | logit: |
|
||||
| | | |
|
||||
| | | $$ |
|
||||
| | | g(x) = \log\left( |
|
||||
| | | \frac{x}{1-x} |
|
||||
| | | \right) |
|
||||
| | | $$ |
|
||||
+----------------+------------------+--------------------------+
|
||||
+----------------+-----------------+-------------------------+
|
||||
| Type of Data | Distribution | Link Function |
|
||||
| | Family | |
|
||||
+================+=================+=========================+
|
||||
| continuous | Normal | identity: |
|
||||
| | | |
|
||||
| | | $$ |
|
||||
| | | g(x)=x |
|
||||
| | | $$ |
|
||||
+----------------+-----------------+-------------------------+
|
||||
| count | Poisson | log: |
|
||||
| | | |
|
||||
| | | $$ |
|
||||
| | | g(x) = \log(x) |
|
||||
| | | $$ |
|
||||
+----------------+-----------------+-------------------------+
|
||||
| binary | Bernoulli | logit: |
|
||||
| | | |
|
||||
| | | $$ |
|
||||
| | | g(x) = \log\left( |
|
||||
| | | \frac{x}{1-x} |
|
||||
| | | \right) |
|
||||
| | | $$ |
|
||||
+----------------+-----------------+-------------------------+
|
||||
|
||||
In general, the parameter vector $\beta$ is estimated via maximizing the
|
||||
likelihood, i.e.,
|
||||
@ -311,10 +314,33 @@ model = glm(@formula(participation ~ age^2),
|
||||
```
|
||||
|
||||
::: {.callout-caution collapse="false"}
|
||||
|
||||
## Task 3:
|
||||
|
||||
1. Reproduce the results of our data analysis of the `tree` data set
|
||||
using a generalized linear model with normal distribution family.
|
||||
2. Generate $n=20$ random covariates $\mathbf{x}$ and Poisson-distributed counting data with parameters $\beta_0 + \beta_1 x_i$. Re-estimate the parameters by a generalized linear model.
|
||||
2. Generate $n=20$ random covariates $\mathbf{x}$ and
|
||||
Poisson-distributed counting data with parameters
|
||||
$\beta_0 + \beta_1 x_i$. Re-estimate the parameters by a generalized
|
||||
linear model.
|
||||
:::
|
||||
|
||||
## Outlook: Linear Mixed Models
|
||||
|
||||
In the linear regression models so far, we assumed that the response
|
||||
variable $\mathbf{y}$ depends on the design matrix of covariates
|
||||
$\mathbf{X}$ - which are assumed to be given/fixed - multiplied by the
|
||||
so-called *fixed effects* coefficients $\mathbf{X}\beta$ and independent
|
||||
errors $\varepsilon$. However, in many situations, there are also random
|
||||
effects on several components of the response variable. These can be
|
||||
included in the model by adding another design matrix $\mathbf{Z}$
|
||||
multiplied by a random vector $u$, the so-called *random effects*
|
||||
coefficients, that are assumed to be jointly normally distributed with
|
||||
mean vector $0$ and variance-covariance matrix $\Sigma$ (typically *not*
|
||||
a diagonal matrix). In matrix notation, we have the following form:
|
||||
|
||||
$$
|
||||
\mathbf{y} = \mathbf{X} \beta + \mathbf{Z}u + \varepsilon
|
||||
$$
|
||||
|
||||
Maximizing the likelihood, we can estimate $\beta$ and optimally
|
||||
predict the random vector $u$.
|
||||
|
Loading…
Reference in New Issue
Block a user