pytudes/ipynb/Sudoku.java
2021-10-24 18:50:19 -07:00

488 lines
21 KiB
Java

import java.io.*;
import java.lang.Integer.*;
import java.util.*;
import java.util.stream.*;
import java.lang.StringBuilder;
import java.util.concurrent.CountDownLatch;
//////////////////////////////// Solve Sudoku Puzzles ////////////////////////////////
//////////////////////////////// @author Peter Norvig ////////////////////////////////
/** There are two representations of puzzles that we will use:
** 1. A gridstring is 81 chars, with characters '0' or '.' for blank and '1' to '9' for digits.
** 2. A puzzle grid is an int[81] with a digit d (1-9) represented by the integer (1 << (d - 1));
** that is, a bit pattern that has a single 1 bit representing the digit.
** A blank is represented by the OR of all the digits 1-9, meaning that any digit is possible.
** While solving the puzzle, some of these digits are eliminated, leaving fewer possibilities.
** The puzzle is solved when every square has only a single possibility.
**
** Search for a solution with `search`:
** - Fill an empty square with a guessed digit and do constraint propagation.
** - If the guess is consistent, search deeper; if not, try a different guess for the square.
** - If all guesses fail, back up to the previous level.
** - In selecting an empty square, we pick one that has the minimum number of possible digits.
** - To be able to back up, we need to keep the grid from the previous recursive level.
** But we only need to keep one grid for each level, so to save garbage collection,
** we pre-allocate one grid per level (there are 81 levels) in a `gridpool`.
** Do constraint propagation with `arcConsistent`, `dualConsistent`, and `nakedPairs`.
**/
public class Sudoku {
//////////////////////////////// main; command line options //////////////////////////////
static final String usage = String.join("\n",
"usage: java Sudoku -(no)[fghnprstuv] | -[RT]<number> | <filename> ...",
"E.g., -v turns verify flag on, -nov turns it off. -R and -T require a number. The options:\n",
" -f(ile) Print summary stats for each file (default on)",
" -g(rid) Print each puzzle grid and solution grid (default off)",
" -h(elp) Print this usage message",
" -n(aked) Run naked pairs (default on)",
" -p(uzzle) Print summary stats for each puzzle (default off)",
" -r(everse) Solve the reverse of each puzzle as well as each puzzle itself (default off)",
" -s(earch) Run search (default on, but some puzzles can be solved with CSP methods alone)",
" -t(hread) Print summary stats for each thread (default off)",
" -u(nitTest)Run a suite of unit tests (default off)",
" -v(erify) Verify each solution is valid (default on)",
" -T<number> Concurrently run <number> threads (default 26)",
" -R<number> Repeat each puzzle <number> times (default 1)",
" <filename> Solve all puzzles in filename, which has one puzzle per line");
boolean printFileStats = true; // -f
boolean printGrid = false; // -g
boolean runNakedPairs = true; // -n
boolean printPuzzleStats = false; // -p
boolean reversePuzzle = false; // -r
boolean runSearch = true; // -s
boolean printThreadStats = false; // -t
boolean verifySolution = true; // -v
int nThreads = 26; // -T
int repeat = 1; // -R
int backtracks = 0; // count total backtracks
/** Parse command line args and solve puzzles in files. **/
public static void main(String[] args) throws IOException {
Sudoku s = new Sudoku();
for (String arg: args) {
if (!arg.startsWith("-")) {
s.solveFile(arg);
} else {
boolean value = !arg.startsWith("-no");
switch(arg.charAt(value ? 1 : 3)) {
case 'f': s.printFileStats = value; break;
case 'g': s.printGrid = value; break;
case 'h': System.out.println(usage); break;
case 'n': s.runNakedPairs = value; break;
case 'p': s.printPuzzleStats = value; break;
case 'r': s.reversePuzzle = value; break;
case 's': s.runSearch = value; break;
case 't': s.printThreadStats = value; break;
case 'u': s.runUnitTests(); break;
case 'v': s.verifySolution = value; break;
case 'T': s.nThreads = Integer.parseInt(arg.substring(2)); break;
case 'R': s.repeat = Integer.parseInt(arg.substring(2)); break;
default: System.out.println("Unrecognized option: " + arg + "\n" + usage);
}
}
}
}
//////////////////////////////// Handling Lists of Puzzles ////////////////////////////////
/** Solve all the puzzles in a file. Report timing statistics. **/
void solveFile(String filename) throws IOException {
List<int[]> grids = readFile(filename);
long startFileTime = System.nanoTime();
switch(nThreads) {
case 1: solveList(grids); break;
default: solveListThreaded(grids, nThreads); break;
}
if (printFileStats) printStats(grids.size() * repeat, startFileTime, filename);
}
/** Solve a list of puzzles in a single thread.
** repeat -R<number> times; print each puzzle's stats if -p; print grid if -g; verify if -v. **/
void solveList(List<int[]> grids) {
int[] puzzle = new int[N * N]; // Used to save a copy of the original grid
int[][] gridpool = new int[N * N][N * N]; // Reuse grids during the search
for (int g=0; g<grids.size(); ++g) {
int grid[] = grids.get(g);
System.arraycopy(grid, 0, puzzle, 0, grid.length);
for (int i = 0; i < repeat; ++i) {
long startTime = printPuzzleStats ? System.nanoTime() : 0;
int[] solution = initialize(grid); // All the real work is
if (runSearch) solution = search(solution, gridpool, 0); // on these 2 lines.
if (printPuzzleStats) {
printStats(1, startTime, "Puzzle " + (g + 1));
}
if (i == 0 && (printGrid || (verifySolution && !verify(solution, puzzle)))) {
printGrids("Puzzle " + (g + 1), grid, solution);
}
}
}
}
/** Break a list of puzzles into nThreads sublists and solve each sublist in a separate thread. **/
void solveListThreaded(List<int[]> grids, int nThreads) {
try {
final long startTime = System.nanoTime();
int nGrids = grids.size();
final CountDownLatch latch = new CountDownLatch(nThreads);
int size = nGrids / nThreads;
for (int c = 0; c < nThreads; ++c) {
int end = c == nThreads - 1 ? nGrids : (c + 1) * size;
final List<int[]> sublist = grids.subList(c * size, end);
new Thread() {
public void run() {
solveList(sublist);
latch.countDown();
if (printThreadStats) {
printStats(repeat * sublist.size(), startTime, "Thread");
}
}
}.start();
}
latch.await(); // Wait for all threads to finish
} catch (InterruptedException e) {
System.err.println("And you may ask yourself, 'Well, how did I get here?'");
}
}
//////////////////////////////// Utility functions ////////////////////////////////
/** Return an array of all squares in the intersection of these rows and cols **/
int[] cross(int[] rows, int[] cols) {
int[] result = new int[rows.length * cols.length];
int i = 0;
for (int r: rows) { for (int c: cols) { result[i++] = N * r + c; } }
return result;
}
/** Return true iff item is an element of array, or of array[0:end]. **/
boolean member(int item, int[] array) { return member(item, array, array.length); }
boolean member(int item, int[] array, int end) {
for (int i = 0; i<end; ++i) {
if (array[i] == item) { return true; }
}
return false;
}
//////////////////////////////// Constants ////////////////////////////////
final int N = 9; // Number of cells on a side of grid.
final int[] DIGITS = {1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1<<8};
final int ALL_DIGITS = Integer.parseInt("111111111", 2);
final int[] ROWS = IntStream.range(0, N).toArray();
final int[] COLS = ROWS;
final int[] SQUARES = IntStream.range(0, N * N).toArray();
final int[][] BLOCKS = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}};
final int[][] ALL_UNITS = new int[3 * N][];
final int[][][] UNITS = new int[N * N][3][N];
final int[][] PEERS = new int[N * N][20];
final int[] NUM_DIGITS = new int[ALL_DIGITS + 1];
final int[] HIGHEST_DIGIT = new int[ALL_DIGITS + 1];
{
// Initialize ALL_UNITS to be an array of the 27 units: rows, columns, and blocks
int i = 0;
for (int r: ROWS) {ALL_UNITS[i++] = cross(new int[] {r}, COLS); }
for (int c: COLS) {ALL_UNITS[i++] = cross(ROWS, new int[] {c}); }
for (int[] rb: BLOCKS) {for (int[] cb: BLOCKS) {ALL_UNITS[i++] = cross(rb, cb); } }
// Initialize each UNITS[s] to be an array of the 3 units for square s.
for (int s: SQUARES) {
i = 0;
for (int[] u: ALL_UNITS) {
if (member(s, u)) UNITS[s][i++] = u;
}
}
// Initialize each PEERS[s] to be an array of the 20 squares that are peers of square s.
for (int s: SQUARES) {
i = 0;
for (int[] u: UNITS[s]) {
for (int s2: u) {
if (s2 != s && !member(s2, PEERS[s], i)) {
PEERS[s][i++] = s2;
}
}
}
}
// Initialize NUM_DIGITS[val] to be the number of 1 bits in the bitset val
// and HIGHEST_DIGIT[val] to the highest bit set in the bitset val
for (int val = 0; val <= ALL_DIGITS; val++) {
NUM_DIGITS[val] = Integer.bitCount(val);
HIGHEST_DIGIT[val] = Integer.highestOneBit(val);
}
}
//////////////////////////////// Search algorithm ////////////////////////////////
/** Search for a solution to grid. If there is an unfilled square, select one
** and try--that is, search recursively--every possible digit for the square. **/
int[] search(int[] grid, int[][] gridpool, int level) {
if (grid == null) {
return null;
}
int s = select_square(grid);
if (s == -1) {
return grid; // No squares to select means we are done!
}
for (int d: DIGITS) {
// For each possible digit d that could fill square s, try it
if ((d & grid[s]) > 0) {
// Copy grid's contents into gridpool[level], and use that at the next level
System.arraycopy(grid, 0, gridpool[level], 0, grid.length);
int[] result = search(fill(gridpool[level], s, d), gridpool, level + 1);
if (result != null) {
return result;
}
backtracks += 1;
}
}
return null;
}
/** Verify that grid is a solution to the puzzle. **/
boolean verify(int[] grid, int[] puzzle) {
if (grid == null) { return false; }
// Check that all squares have a single digit, and
// no filled square in the puzzle was changed in the solution.
for (int s: SQUARES) {
if ((NUM_DIGITS[grid[s]] != 1) || (NUM_DIGITS[puzzle[s]] == 1 && grid[s] != puzzle[s])) {
return false;
}
}
// Check that each unit is a permutation of digits
for (int[] u: ALL_UNITS) {
int unit_digits = 0; // All the digits in a unit.
for (int s : u) {unit_digits |= grid[s]; }
if (unit_digits != ALL_DIGITS) {
return false;
}
}
return true;
}
/** Choose an unfilled square with the minimum number of possible values.
** If all squares are filled, return -1 (which means the puzzle is complete). **/
int select_square(int[] grid) {
int square = -1;
int min = N + 1;
for (int s: SQUARES) {
int c = NUM_DIGITS[grid[s]];
if (c == 2) {
return s; // Can't get fewer than 2 possible digits
} else if (c > 1 && c < min) {
square = s;
min = c;
}
}
return square;
}
/** fill grid[s] = d. If this leads to contradiction, return null. **/
int[] fill(int[] grid, int s, int d) {
if ((grid == null) || ((grid[s] & d) == 0)) { return null; } // d not possible for grid[s]
grid[s] = d;
for (int p: PEERS[s]) {
if (!eliminate(grid, p, d)) { // If we can't eliminate d from all peers of s, then fail
return null;
}
}
return grid;
}
/** Eliminate digit d as a possibility for grid[s].
** Run the 3 constraint propagation routines.
** If constraint propagation detects a contradiction, return false. **/
boolean eliminate(int[] grid, int s, int d) {
if ((grid[s] & d) == 0) { return true; } // d already eliminated from grid[s]
grid[s] -= d;
return arc_consistent(grid, s) && dual_consistent(grid, s, d) && naked_pairs(grid, s);
}
//////////////////////////////// Constraint Propagation ////////////////////////////////
/** Check if square s is consistent: that is, it has multiple possible values, or it has
** one possible value which we can consistently fill. **/
boolean arc_consistent(int[] grid, int s) {
int count = NUM_DIGITS[grid[s]];
return count >= 2 || (count == 1 && (fill(grid, s, grid[s]) != null));
}
/** After we eliminate d from possibilities for grid[s], check each unit of s
** and make sure there is some position in the unit where d can go.
** If there is only one possible place for d, fill it with d. **/
boolean dual_consistent(int[] grid, int s, int d) {
for (int[] u: UNITS[s]) {
int dPlaces = 0; // The number of possible places for d within unit u
int dplace = -1; // Try to find a place in the unit where d can go
for (int s2: u) {
if ((grid[s2] & d) > 0) { // s2 is a possible place for d
dPlaces++;
if (dPlaces > 1) break;
dplace = s2;
}
}
if (dPlaces == 0 || (dPlaces == 1 && (fill(grid, dplace, d) == null))) {
return false;
}
}
return true;
}
/** Look for two squares in a unit with the same two possible values, and no other values.
** For example, if s and s2 both have the possible values 8|9, then we know that 8 and 9
** must go in those two squares. We don't know which is which, but we can eliminate
** 8 and 9 from any other square s3 that is in the unit. **/
boolean naked_pairs(int[] grid, int s) {
if (!runNakedPairs) { return true; }
int val = grid[s];
if (NUM_DIGITS[val] != 2) { return true; } // Doesn't apply
for (int s2: PEERS[s]) {
if (grid[s2] == val) {
// s and s2 are a naked pair; find what unit(s) they share
for (int[] u: UNITS[s]) {
if (member(s2, u)) {
for (int s3: u) { // s3 can't have either of the values in val (e.g. 8|9)
if (s3 != s && s3 != s2) {
int d = HIGHEST_DIGIT[val];
int d2 = val - d;
if (!eliminate(grid, s3, d) || !eliminate(grid, s3, d2)) {
return false;
}
}
}
}
}
}
}
return true;
}
//////////////////////////////// Input ////////////////////////////////
/** The method `readFile` reads one puzzle per file line and returns a List of puzzle grids. **/
List<int[]> readFile(String filename) throws IOException {
BufferedReader in = new BufferedReader(new FileReader(filename));
List<int[]> grids = new ArrayList<int[]>(1000);
String gridstring;
while ((gridstring = in.readLine()) != null) {
grids.add(parseGrid(gridstring));
if (reversePuzzle) {
grids.add(parseGrid(new StringBuilder(gridstring).reverse().toString()));
}
}
return grids;
}
/** Parse a gridstring into a puzzle grid: an int[] with values DIGITS[0-9] or ALL_DIGITS. **/
int[] parseGrid(String gridstring) {
int[] grid = new int[N * N];
int s = 0;
for (int i = 0; i<gridstring.length(); ++i) {
char c = gridstring.charAt(i);
if ('1' <= c && c <= '9') {
grid[s++] = DIGITS[c - '1']; // A single-bit set to represent a digit
} else if (c == '0' || c == '.') {
grid[s++] = ALL_DIGITS; // Any digit is possible
}
}
assert s == N * N;
return grid;
}
/** Initialize a grid from a puzzle.
** First initialize every square in the new grid to ALL_DIGITS, meaning any value is possible.
** Then, call `fill` on the puzzle's filled squares to initiate constraint propagation. **/
int[] initialize(int[] puzzle) {
int[] grid = new int[N * N]; Arrays.fill(grid, ALL_DIGITS);
for (int s: SQUARES) { if (puzzle[s] != ALL_DIGITS) { fill(grid, s, puzzle[s]); } }
return grid;
}
//////////////////////////////// Output and Tests ////////////////////////////////
boolean headerPrinted = false;
/** Print stats on puzzles solved, average time, frequency, threads used, and name. **/
void printStats(int nGrids, long startTime, String name) {
double usecs = (System.nanoTime() - startTime) / 1000.;
String line = String.format("%7d %6.1f %7.3f %7d %10.1f %s",
nGrids, usecs / nGrids, 1000 * nGrids / usecs, nThreads, backtracks * 1. / nGrids, name);
synchronized (this) { // So that printing from different threads doesn't get garbled
if (!headerPrinted) {
System.out.println("Puzzles μsec KHz Threads Backtracks Name\n"
+ "======= ====== ======= ======= ========== ====");
headerPrinted = true;
}
System.out.println(line);
backtracks = 0;
}
}
/** Print the original puzzle grid and the solution grid. **/
void printGrids(String name, int[] puzzle, int[] solution) {
String bar = "------+-------+------";
String gap = " "; // Space between the puzzle grid and solution grid
if (solution == null) solution = new int[N * N];
synchronized (this) { // So that printing from different threads doesn't get garbled
System.out.format("\n%-22s%s%s\n", name + ":", gap,
(verify(solution, puzzle) ? "Solution:" : "FAILED:"));
for (int r = 0; r < N; ++r) {
System.out.println(rowString(puzzle, r) + gap + rowString(solution, r));
if (r == 2 || r == 5) System.out.println(bar + gap + " " + bar);
}
}
}
/** Return a String representing a row of this puzzle. **/
String rowString(int[] grid, int r) {
String row = "";
for (int s = r * 9; s < (r + 1) * 9; ++s) {
row += (char) ((NUM_DIGITS[grid[s]] == 9) ? '.' : (NUM_DIGITS[grid[s]] != 1) ? '?' :
('1' + Integer.numberOfTrailingZeros(grid[s])));
row += (s % 9 == 2 || s % 9 == 5 ? " | " : " ");
}
return row;
}
/** Unit Tests. Just getting started with these. **/
void runUnitTests() {
assert N == 9;
assert SQUARES.length == 81;
for (int s: SQUARES) {
assert UNITS[s].length == 3;
assert PEERS[s].length == 20;
}
assert Arrays.equals(PEERS[19],
new int[] {18, 20, 21, 22, 23, 24, 25, 26, 1, 10, 28, 37, 46, 55, 64, 73, 0, 2, 9, 11});
assert Arrays.deepToString(UNITS[19]).equals(
"[[18, 19, 20, 21, 22, 23, 24, 25, 26], [1, 10, 19, 28, 37, 46, 55, 64, 73], [0, 1, 2, 9, 10, 11, 18, 19, 20]]");
System.out.println("Unit tests pass.");
}
}