477 lines
18 KiB
Java
477 lines
18 KiB
Java
import java.io.*;
|
|
import java.lang.Integer.*;
|
|
import java.util.*;
|
|
import java.util.stream.*;
|
|
import java.lang.StringBuilder;
|
|
import java.util.concurrent.CountDownLatch;
|
|
|
|
//////////////////////////////// Solve Sudoku Puzzles ////////////////////////////////
|
|
//////////////////////////////// See http://norvig.com/CQ ////////////////////////////////
|
|
//////////////////////////////// @author Peter Norvig ////////////////////////////////
|
|
|
|
/** There are two representations of puzzles that we will use:
|
|
** 1. A gridstring is 81 chars, with characters '0' or '.' for blank and '1' to '9' for digits.
|
|
** 2. A puzzle grid is an int[81] with a digit d (1-9) represented by the integer (1 << (d - 1));
|
|
** that is, a bit pattern that has a single 1 bit representing the digit.
|
|
** A blank is represented by the OR of all the digits 1-9, meaning that any digit is possible.
|
|
** While solving the puzzle, some of these digits are eliminated, leaving fewer possibilities.
|
|
** The puzzle is solved when every square has only a single possibility.
|
|
**
|
|
** Search for a solution with `search`:
|
|
** - Fill an empty square with a guessed digit and do constraint propagation.
|
|
** - If the guess is consistent, search deeper; if not, try a different guess for the square.
|
|
** - If all guesses fail, back up to the previous level.
|
|
** - In selecting an empty square, we pick one that has the minimum number of possible digits.
|
|
** - To be able to back up, we need to keep the grid from the previous recursive level.
|
|
** But we only need to keep one grid for each level, so to save garbage collection,
|
|
** we pre-allocate one grid per level (there are 81 levels) in a `gridpool`.
|
|
** Do constraint propagation with `arcConsistent`, `dualConsistent`, and `nakedPairs`.
|
|
**/
|
|
|
|
public class Sudoku {
|
|
|
|
//////////////////////////////// main; command line options //////////////////////////////
|
|
|
|
static final String usage = String.join("\n",
|
|
"usage: java Sudoku -help | -(no)[fptgadnsrv] | -[RT]<number> | <filename> ...",
|
|
"E.g., -v turns verify flag on, -nov turns it off. -R and -T require a number. The args are:\n",
|
|
" -h(elp) Print this usage message",
|
|
" -f(ile) Print summary stats for each file (default on)",
|
|
" -p(uzzle) Print summary stats for each puzzle (default off)",
|
|
" -t(hread) Print summary stats for each thread (default off)",
|
|
" -g(rid) Print each puzzle grid and solution grid (default off)",
|
|
" -a(rc) Run arc consistency (default on)",
|
|
" -d(ual) Run dual consistency (default on)",
|
|
" -n(aked) Run naked pairs (default on)",
|
|
" -s(earch) Run search (default on, but some puzzles can be solved with CSP methods alone)",
|
|
" -r(everse) Solve the reverse of each puzzle as well as each puzzle itself (default off)",
|
|
" -v(erify) Verify each solution is valid (default off)",
|
|
" -T<number> Concurrently run <number> threads (default 26)",
|
|
" -R<number> Repeat each puzzle <number> times (default 1)",
|
|
" <filename> Solve all puzzles in filename, which has one puzzle per line");
|
|
|
|
boolean printFileStats = true; // -f
|
|
boolean printPuzzleStats = false; // -p
|
|
boolean printThreadStats = false; // -t
|
|
boolean printGrid = false; // -g
|
|
boolean runArcCons = true; // -a
|
|
boolean runDualCons = true; // -d
|
|
boolean runNakedPairs = true; // -n
|
|
boolean runSearch = true; // -s
|
|
boolean reversePuzzle = false; // -r
|
|
boolean verifySolution = false; // -v
|
|
int nThreads = 26; // -T
|
|
int repeat = 1; // -R
|
|
|
|
/** Parse command line args and solve puzzles in files. **/
|
|
public static void main(String[] args) throws IOException {
|
|
Sudoku s = new Sudoku();
|
|
for (String arg: args) {
|
|
if (!arg.startsWith("-")) {
|
|
s.solveFile(arg);
|
|
} else {
|
|
boolean value = !arg.startsWith("-no");
|
|
switch(arg.charAt(value ? 1 : 3)) {
|
|
case 'h': if (value) { System.out.println(usage); } break;
|
|
case 'f': s.printFileStats = value; break;
|
|
case 'p': s.printPuzzleStats = value; break;
|
|
case 't': s.printThreadStats = value; break;
|
|
case 'a': s.runArcCons = value; break;
|
|
case 'g': s.printGrid = value; break;
|
|
case 'd': s.runDualCons = value; break;
|
|
case 's': s.runSearch = value; break;
|
|
case 'n': s.runNakedPairs = value; break;
|
|
case 'r': s.reversePuzzle = value; break;
|
|
case 'v': s.verifySolution = value; break;
|
|
case 'T': s.nThreads = Integer.parseInt(arg.substring(2)); break;
|
|
case 'R': s.repeat = Integer.parseInt(arg.substring(2)); break;
|
|
default: System.out.println("Unrecognized option: " + arg + "\n" + usage);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//////////////////////////////// Handling Lists of Puzzles ////////////////////////////////
|
|
|
|
/** Solve all the puzzles in a file. Report timing statistics. **/
|
|
void solveFile(String filename) throws IOException {
|
|
List<int[]> grids = readFile(filename);
|
|
long startTime = System.nanoTime();
|
|
switch(nThreads) {
|
|
case 1: solveList(grids); break;
|
|
default: solveListThreaded(grids, nThreads); break;
|
|
}
|
|
if (printFileStats) printStats(grids.size() * repeat, startTime, filename);
|
|
}
|
|
|
|
|
|
/** Solve a list of puzzles in a single thread.
|
|
** repeat -R<number> times; print each puzzle's stats if -p; print grid if -g; verify if -v. **/
|
|
void solveList(List<int[]> grids) {
|
|
int[] puzzle = new int[N * N]; // Used to save a copy of the original grid
|
|
int[][] gridpool = new int[N * N][N * N]; // Reuse grids during the search
|
|
for (int g=0; g<grids.size(); ++g) {
|
|
int grid[] = grids.get(g);
|
|
System.arraycopy(grid, 0, puzzle, 0, grid.length);
|
|
for (int i = 0; i < repeat; ++i) {
|
|
long startTime = printPuzzleStats ? System.nanoTime() : 0;
|
|
int[] solution = initialize(grid); // All the real work is
|
|
if (runSearch) search(solution, gridpool, 0); // on these 2 lines.
|
|
if (printPuzzleStats) {
|
|
printStats(1, startTime, "Puzzle " + (g + 1));
|
|
}
|
|
if (i == 0 && (printGrid || (verifySolution && !isSolution(solution, puzzle)))) {
|
|
printGrids("Puzzle " + (g + 1), grid, solution);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/** Break a list of puzzles into nThreads sublists and solve each sublist in a separate thread. **/
|
|
void solveListThreaded(List<int[]> grids, int nThreads) {
|
|
try {
|
|
final long startTime = System.nanoTime();
|
|
int nGrids = grids.size();
|
|
final CountDownLatch latch = new CountDownLatch(nThreads);
|
|
int size = nGrids / nThreads;
|
|
for (int c = 0; c < nThreads; ++c) {
|
|
final List<int[]> sublist = grids.subList(c * size,
|
|
c == nThreads - 1 ? nGrids : (c + 1) * size);
|
|
new Thread() {
|
|
public void run() {
|
|
solveList(sublist);
|
|
latch.countDown();
|
|
if (printThreadStats) {
|
|
printStats(repeat * sublist.size(), startTime, "Thread");
|
|
}
|
|
}
|
|
}.start();
|
|
}
|
|
latch.await(); // Wait for all threads to finish
|
|
} catch (InterruptedException e) {
|
|
System.err.println("And you may ask yourself, 'Well, how did I get here?'");
|
|
}
|
|
}
|
|
|
|
|
|
//////////////////////////////// Utility functions ////////////////////////////////
|
|
|
|
/** Return an array of ints {0, 1, ..., n-1} **/
|
|
int[] range(int n) {
|
|
int[] result = new int[n];
|
|
for (int i = 0; i<n; ++i) { result[i] = i; }
|
|
return result;
|
|
}
|
|
|
|
|
|
/** Return an array of all squares in the intersection of these rows and cols **/
|
|
int[] cross(int[] rows, int[] cols) {
|
|
int[] result = new int[rows.length * cols.length];
|
|
int i = 0;
|
|
for (int r: rows) { for (int c: cols) { result[i++] = N * r + c; } }
|
|
return result;
|
|
}
|
|
|
|
|
|
/** Return true iff item is an element of array, or array[0:end]. **/
|
|
boolean member(int item, int[] array) { return member(item, array, array.length); }
|
|
boolean member(int item, int[] array, int end) {
|
|
for (int i = 0; i<end; ++i) {
|
|
if (array[i] == item) { return true; }
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
//////////////////////////////// Constants ////////////////////////////////
|
|
|
|
final int N = 9; // Number of cells on a side of grid.
|
|
final int[] DIGITS = {1<< 0, 1<< 1, 1<< 2, 1<< 3, 1<< 4, 1<< 5, 1<< 6, 1<< 7, 1<< 8};
|
|
final int ALL_DIGITS = Integer.parseInt("111111111", 2);
|
|
final int[] ROWS = range(N);
|
|
final int[] COLS = ROWS;
|
|
final int[] SQUARES = range(N * N);
|
|
final int[][] BLOCKS = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}};
|
|
final int[][] ALL_UNITS = new int[3 * N][];
|
|
final int[][][] UNITS = new int[N * N][3][N];
|
|
final int[][] PEERS = new int[N * N][20];
|
|
final int[] NUM_DIGITS = new int[ALL_DIGITS + 1];
|
|
final int[] HIGHEST_DIGIT = new int[ALL_DIGITS + 1];
|
|
|
|
{
|
|
// Initialize ALL_UNITS to be an array of the 27 units: rows, columns, and blocks
|
|
int i = 0;
|
|
for (int r: ROWS) {ALL_UNITS[i++] = cross(new int[] {r}, COLS); }
|
|
for (int c: COLS) {ALL_UNITS[i++] = cross(ROWS, new int[] {c}); }
|
|
for (int[] rb: BLOCKS) {for (int[] cb: BLOCKS) {ALL_UNITS[i++] = cross(rb, cb); } }
|
|
|
|
// Initialize each UNITS[s] to be an array of the 3 units for square s.
|
|
for (int s: SQUARES) {
|
|
i = 0;
|
|
for (int[] u: ALL_UNITS) {
|
|
if (member(s, u)) UNITS[s][i++] = u;
|
|
}
|
|
}
|
|
|
|
// Initialize each PEERS[s] to be an array of the 20 squares that are peers of square s.
|
|
for (int s: SQUARES) {
|
|
i = 0;
|
|
for (int[] u: UNITS[s]) {
|
|
for (int s2: u) {
|
|
if (s2 != s && !member(s2, PEERS[s], i)) {
|
|
PEERS[s][i++] = s2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Initialize NUM_DIGITS[val] to be the number of 1 bits in the bitset val
|
|
// and HIGHEST_DIGIT[val] to the highest bit set in the bitset val
|
|
for (int val = 0; val <= ALL_DIGITS; val++) {
|
|
NUM_DIGITS[val] = Integer.bitCount(val);
|
|
HIGHEST_DIGIT[val] = Integer.highestOneBit(val);
|
|
}
|
|
}
|
|
|
|
|
|
//////////////////////////////// Search algorithm ////////////////////////////////
|
|
|
|
/** Search for a solution to grid. If there is an unfilled square, select one
|
|
** and try--that is, search recursively--every possible digit for the square. **/
|
|
int[] search(int[] grid, int[][] gridpool, int level) {
|
|
if (grid == null) {
|
|
return null;
|
|
}
|
|
int s = select_square(grid);
|
|
if (s == -1) {
|
|
return grid; // No squares to select means we are done!
|
|
}
|
|
for (int d: DIGITS) {
|
|
// For each possible digit d that could fill square s, try it
|
|
if ((d & grid[s]) > 0) {
|
|
// Copy grid's contents into the gridpool to be used at the next level
|
|
System.arraycopy(grid, 0, gridpool[level], 0, grid.length);
|
|
int[] result = search(assign(gridpool[level], s, d), gridpool, level + 1);
|
|
if (result != null) {
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
|
|
|
|
/** Check if grid is a solution to the puzzle. **/
|
|
boolean isSolution(int[] grid, int[] puzzle) {
|
|
if (grid == null) {
|
|
return false;
|
|
}
|
|
// Check that all squares have a single digit, and
|
|
// no filled square in the puzzle was changed in the solution.
|
|
for (int s: SQUARES) {
|
|
if (NUM_DIGITS[grid[s]] != 1 || (NUM_DIGITS[puzzle[s]] == 1 && grid[s] != puzzle[s])) return false;
|
|
}
|
|
// Check that each unit is a permutation of digits
|
|
for (int[] u: ALL_UNITS) {
|
|
if (IntStream.of(u).sum() != ALL_DIGITS) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/** Choose an unfilled square with the minimum number of possible values.
|
|
** If all squares are filled, return -1 (which means the puzzle is complete). **/
|
|
int select_square(int[] grid) {
|
|
int square = -1;
|
|
int min = N + 1;
|
|
for (int s: SQUARES) {
|
|
int c = NUM_DIGITS[grid[s]];
|
|
if (c == 2) {
|
|
return s; // Can't get fewer than 2 possible digits
|
|
} else if (c > 1 && c < min) {
|
|
square = s;
|
|
min = c;
|
|
}
|
|
}
|
|
return square;
|
|
}
|
|
|
|
|
|
/** Assign grid[s] = d. If this leads to contradiction, return null. **/
|
|
int[] assign(int[] grid, int s, int d) {
|
|
if ((grid == null) || ((grid[s] & d) == 0)) { return null; } // d not possible for grid[s]
|
|
grid[s] = d;
|
|
for (int p: PEERS[s]) {
|
|
if (!eliminate(grid, p, d)) { // If we can't eliminate d from all peers of s, then fail
|
|
return null;
|
|
}
|
|
}
|
|
return grid;
|
|
}
|
|
|
|
|
|
/** Remove digit d from possibilities for grid[s].
|
|
** Run the 3 constraint propagation routines (unless a command line flag says not to).
|
|
** If constraint propagation detects a contradiction return false. **/
|
|
boolean eliminate(int[] grid, int s, int d) {
|
|
if ((grid[s] & d) == 0) { return true; } // d already eliminated from grid[s]
|
|
grid[s] -= d;
|
|
return ((!runArcCons || arc_consistent(grid, s))
|
|
&& (!runDualCons || dual_consistent(grid, s, d))
|
|
&& (!runNakedPairs || naked_pairs(grid, s)));
|
|
}
|
|
|
|
|
|
//////////////////////////////// Constraint Propagation ////////////////////////////////
|
|
|
|
/** Check if square s is ok: that is, it has multiple possible values, or it has
|
|
** one possible value which we can consistently assign. **/
|
|
boolean arc_consistent(int[] grid, int s) {
|
|
int c = NUM_DIGITS[grid[s]];
|
|
return c >= 2 || (c == 1 && (assign(grid, s, grid[s]) != null));
|
|
}
|
|
|
|
|
|
/** After we eliminate d from possibilities for grid[s], check each unit of s
|
|
** and make sure there is some position in the unit where d can go.
|
|
** If there is only one possible place for d, assign it. **/
|
|
boolean dual_consistent(int[] grid, int s, int d) {
|
|
for (int[] u: UNITS[s]) {
|
|
int dPlaces = 0; // The number of possible places for d within unit u
|
|
int dplace = -1; // Try to find a place in the unit where d can go
|
|
for (int s2: u) {
|
|
if ((grid[s2] & d) > 0) { // s2 is a possible place for d
|
|
dPlaces++;
|
|
if (dPlaces > 1) break;
|
|
dplace = s2;
|
|
}
|
|
}
|
|
if (dPlaces == 0 || (dPlaces == 1 && (assign(grid, dplace, d) == null))) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/** Look for two squares in a unit with the same two possible values, and no other values.
|
|
** For example, if s and s2 both have the possible values 8|9, then we know that 8 and 9
|
|
** must go in those two squares. We don't know which is which, but we can eliminate
|
|
** 8 and 9 from any other square s3 that is in the unit. **/
|
|
boolean naked_pairs(int[] grid, int s) {
|
|
int val = grid[s];
|
|
if (NUM_DIGITS[val] != 2) { return true; } // Doesn't apply
|
|
for (int s2: PEERS[s]) {
|
|
if (grid[s2] == val) {
|
|
// s and s2 are a naked pair; find what unit(s) they share
|
|
for (int[] u: UNITS[s]) {
|
|
if (member(s2, u)) {
|
|
for (int s3: u) { // s3 can't have either of the values in val (e.g. 8|9)
|
|
if (s3 != s && s3 != s2) {
|
|
int d = HIGHEST_DIGIT[val];
|
|
int d2 = val - d;
|
|
if (!eliminate(grid, s3, d) || !eliminate(grid, s3, d2)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
//////////////////////////////// Input ////////////////////////////////
|
|
|
|
/** The method `readFile` reads one puzzle per file line and returns a List of puzzle grids. **/
|
|
List<int[]> readFile(String filename) throws IOException {
|
|
BufferedReader in = new BufferedReader(new FileReader(filename));
|
|
List<int[]> grids = new ArrayList<int[]>(260000);
|
|
String gridstring;
|
|
while ((gridstring = in.readLine()) != null) {
|
|
grids.add(parseGrid(gridstring));
|
|
if (reversePuzzle) {
|
|
grids.add(parseGrid(new StringBuilder(gridstring).reverse().toString()));
|
|
}
|
|
}
|
|
return grids;
|
|
}
|
|
|
|
|
|
/** Parse a gridstring into a puzzle grid: an int[] with values 0-9. **/
|
|
int[] parseGrid(String gridstring) {
|
|
int[] grid = new int[N * N];
|
|
int s = 0;
|
|
for (int i = 0; i<gridstring.length(); ++i) {
|
|
char c = gridstring.charAt(i);
|
|
if ('1' <= c && c <= '9') {
|
|
grid[s++] = DIGITS[c - '1']; // A single-bit set to represent a digit
|
|
} else if (c == '0' || c == '.') {
|
|
grid[s++] = ALL_DIGITS; // Any digit is possible
|
|
}
|
|
}
|
|
assert s == N * N;
|
|
return grid;
|
|
}
|
|
|
|
|
|
/** Initialize a grid from a puzzle.
|
|
** First initialize every square in the new grid to ALL_DIGITS, meaning any value is possible.
|
|
** Then, call `assign` on the puzzle's filled squares to initiate constraint propagation. **/
|
|
int[] initialize(int[] puzzle) {
|
|
int[] grid = new int[N * N];
|
|
for (int s: SQUARES) { grid[s] = ALL_DIGITS; }
|
|
for (int s: SQUARES) { if (puzzle[s] != ALL_DIGITS) { assign(grid, s, puzzle[s]); } }
|
|
return grid;
|
|
}
|
|
|
|
|
|
//////////////////////////////// Output ////////////////////////////////
|
|
|
|
boolean headerPrinted = false;
|
|
|
|
/** Print stats on puzzles solved, average time, frequency, threads used, and name. **/
|
|
void printStats(int nGrids, long startTime, String name) {
|
|
double usecs = (System.nanoTime() - startTime) / 1000.;
|
|
String line = String.format("%7d %8.1f %7.3f %7d %s",
|
|
nGrids, usecs / nGrids, 1000 * nGrids / usecs, nThreads, name);
|
|
synchronized (this) { // So that printing from different threads doesn't get garbled
|
|
if (!headerPrinted) {
|
|
System.out.println("Puzzles Avg μsec KHz Threads Name\n"
|
|
+ "======= ======== ======= ======= ====");
|
|
headerPrinted = true;
|
|
}
|
|
System.out.println(line);
|
|
}
|
|
}
|
|
|
|
|
|
/** Print the original puzzle grid and the solution grid. **/
|
|
void printGrids(String name, int[] puzzle, int[] solution) {
|
|
String bar = "------+-------+------";
|
|
String gap = " "; // Space between the puzzle grid and solution grid
|
|
if (solution == null) solution = new int[N * N];
|
|
synchronized (this) { // So that printing from different threads doesn't get garbled
|
|
System.out.format("\n%-22s%s%s\n", name + ":", gap,
|
|
(isSolution(solution, puzzle) ? "Solution:" : "FAILED:"));
|
|
for (int r = 0; r < N; ++r) {
|
|
System.out.println(rowString(puzzle, r) + gap + rowString(solution, r));
|
|
if (r == 2 || r == 5) System.out.println(bar + gap + bar);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/** Return a String representing a row of this puzzle. **/
|
|
String rowString(int[] grid, int r) {
|
|
String row = "";
|
|
for (int s = r * 9; s < (r + 1) * 9; ++s) {
|
|
row += (char) ((NUM_DIGITS[grid[s]] != 1) ? '.' : ('1' + Integer.numberOfTrailingZeros(grid[s])));
|
|
row += (s % 9 == 2 || s % 9 == 5 ? " | " : " ");
|
|
}
|
|
return row;
|
|
}
|
|
} |