\n",
"\n",
"# Advent of Code 2024\n",
"\n",
"I enjoy doing the [**Advent of Code**](https://adventofcode.com/) (AoC) programming puzzles, so here we go for 2024! This is the 10th year, so congratulations to puzzle creator [**Eric Wastl**](https://adventofcode.com/2024/about). Our old friend [**Gary Grady**](https://find.sciences.social/search/accounts/@garygrady@mastodon.social) is here to provide illustrations:\n",
"\n",
"\n",
"\n",
"Even before December 1st I can start by loading up my [**AdventUtils.ipynb**](AdventUtils.ipynb) notebook (same as last time except for the `current_year`):"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "ed82ed5b-a42d-468b-8f6e-288d3c2de20b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.12.7 | packaged by Anaconda, Inc. | (main, Oct 4 2024, 08:22:19) [Clang 14.0.6 ]\n"
]
}
],
"source": [
"%run AdventUtils.ipynb\n",
"current_year = 2024\n",
"\n",
"print(sys.version)"
]
},
{
"cell_type": "markdown",
"id": "dfecffd7-6955-45ba-9dc2-1ec805baba85",
"metadata": {},
"source": [
"Each day's solution consists of these parts, making use of my `parse` and `answer` utilities:\n",
"- **Reading the input**: Parse the input file with, e.g. `pairs = parse(1, ints)`. \n",
"- **Solving Part One**: Find the solution and record it with, e.g., `answer(1.1, 4, lambda: 2 + 2)`.\n",
"- **Solving Part Two**: Find the solution and record it with, e.g., `answer(1.2, 9, lambda: 3 * 3)`.\n",
"- *(Optional Part Three: On some days, I'll add some further exploration, visualization, or verification.)*\n",
"\n",
"The function `parse` assumes that the input is a sequence of sections (default one per line), each of which should be parsed in some way and then returned as a tuple. The parsing method `ints` says to treat each section as a tuple of integers. The function `answer` checks that the correct answer is computed (useful for regression testing), and records the run time (that's why a `lambda:` is used). You can read the [**AdventUtils.ipynb**](AdventUtils.ipynb) notebook for more on these functions (and the other utilities used throughout this notebook, such as the `Grid` class).\n",
"\n",
"To fully understand each day's puzzle, and to follow along the drama involving Santa, the elves, the reindeer, some elephants, the Chief Historian, and all the rest, you need to read the puzzle descriptions on the [**AoC**](https://adventofcode.com/) site, as linked in the header for each day's solutions (e.g. [**Day 1**](https://adventofcode.com/2023/day/1) below). "
]
},
{
"cell_type": "markdown",
"id": "4c6120a1-3129-44ff-935c-30c1d81ae028",
"metadata": {},
"source": [
"# [Day 1](https://adventofcode.com/2024/day/1) Historian Hysteria\n",
"\n",
"According to the narrative, North Pole Historians created two lists of **location IDs**. We can parse them as a sequence of pairs of integers, and then use the transpose function, `T`, from my [AdventUtils](AdventUtils.ipynb) to get two tuples of ID numbers:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "22e5d621-a152-4712-866f-f8b962b5dd14",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Puzzle input ➜ 1000 strs:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"38665 13337\n",
"84587 21418\n",
"93374 50722\n",
"68298 57474\n",
"54771 18244\n",
"49242 83955\n",
"66490 44116\n",
"65908 51323\n",
"...\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Parsed representation ➜ 1000 tuples:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"(38665, 13337)\n",
"(84587, 21418)\n",
"(93374, 50722)\n",
"(68298, 57474)\n",
"(54771, 18244)\n",
"(49242, 83955)\n",
"(66490, 44116)\n",
"(65908, 51323)\n",
"...\n"
]
}
],
"source": [
"left, right = T(parse(1, ints))"
]
},
{
"cell_type": "markdown",
"id": "63cf2940-e251-49e4-8bc9-f1bcd599f8f4",
"metadata": {},
"source": [
"\n",
"\n",
"### Part 1: What is the total distance between your lists?\n",
"\n",
"The **distance** between two numbers is defined as the absolute value of their difference, and the **total distance** between two lists is the sum of the distances between respective pairs, where \"respective\" means to sort each list and then take the distance between the first element of each list, plus the distance between the second element of each list, and so on. (I use the transpose utility function, `T`, to turn the input sequence of 1000 pairs into two lists, each of 1000 integers.)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "8d6bc9f5-5fa1-4dad-bd43-d957833d8ea9",
"metadata": {},
"outputs": [],
"source": [
"def total_distance(left: Ints, right: Ints) -> int:\n",
" \"\"\"Total distance between respective list elements, after sorting.\"\"\"\n",
" return sum(abs(a - b) for a, b in zip(sorted(left), sorted(right)))"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "6ada5e5b-2fb7-4198-a5bb-7b2af4b9270a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 1.1: .000 seconds, answer 1830467 ok"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(1.1, 1830467, lambda:\n",
" total_distance(left, right))"
]
},
{
"cell_type": "markdown",
"id": "88e26234-f1d2-4a62-86b0-2ad9251215eb",
"metadata": {},
"source": [
"### Part 2: What is their similarity score?\n",
"\n",
"The **similarity score** is defined as the sum of each element of the left list times the number of times that value appears in the right list."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "0131e096-38d1-4c13-9e9c-b0d09839a5cf",
"metadata": {},
"outputs": [],
"source": [
"def similarity_score(left: Ints, right: Ints) -> int:\n",
" \"\"\"The sum of each x in `left` times the number of times x appears in `right`.\"\"\"\n",
" counts = Counter(right)\n",
" return sum(x * counts[x] for x in left)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "6f6c298a-53a1-4d80-8747-7dd713d4d4f0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 1.2: .000 seconds, answer 26674158 ok"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(1.2, 26674158, lambda:\n",
" similarity_score(left, right))"
]
},
{
"cell_type": "markdown",
"id": "b895bb80-2269-423f-a33c-abaa3d96561a",
"metadata": {},
"source": [
"As usual, the first day is something of a warm-up, coding up a solution is easy, and both parts run in under a millisecond (I don't need to know anything more precise than that)."
]
},
{
"cell_type": "markdown",
"id": "b9fa4fe0-4194-47d7-b815-b571af98caee",
"metadata": {},
"source": [
"# [Day 2](https://adventofcode.com/2024/day/2): Red-Nosed Reports\n",
"\n",
"Today's input is a sequence of engineering safety **reports**, each of which consists of a sequence of integers:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "10e1ab83-a6ec-4143-ad9a-eaae220adcde",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Puzzle input ➜ 1000 strs:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"74 76 78 79 76\n",
"38 40 43 44 44\n",
"1 2 4 6 8 9 13\n",
"65 68 70 72 75 76 81\n",
"89 91 92 95 93 94\n",
"15 17 16 18 19 17\n",
"46 47 45 48 51 52 52\n",
"77 78 79 82 79 83\n",
"...\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Parsed representation ➜ 1000 tuples:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"(74, 76, 78, 79, 76)\n",
"(38, 40, 43, 44, 44)\n",
"(1, 2, 4, 6, 8, 9, 13)\n",
"(65, 68, 70, 72, 75, 76, 81)\n",
"(89, 91, 92, 95, 93, 94)\n",
"(15, 17, 16, 18, 19, 17)\n",
"(46, 47, 45, 48, 51, 52, 52)\n",
"(77, 78, 79, 82, 79, 83)\n",
"...\n"
]
}
],
"source": [
"reports = parse(2, ints)"
]
},
{
"cell_type": "markdown",
"id": "5dfd72c2-06c6-4c71-ae37-0c2c84074091",
"metadata": {},
"source": [
"### Part 1: How many reports are safe?\n",
"\n",
"A report is **safe** if it is monotonically strictly increasing or strictly decreasing, and if no jump between adjacent numbers is greater than 3 in absolute value."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "0f6b6744-e93d-47cf-accd-daab9f3650d0",
"metadata": {},
"outputs": [],
"source": [
"def is_safe(report: Ints) -> bool:\n",
" \"\"\"A report is safe if all adjacent-number-jumps are either in {1, 2, 3} or in {-1, -2, -3}.\"\"\"\n",
" jumps = set_of_jumps(report)\n",
" return jumps.issubset({1, 2, 3}) or jumps.issubset({-1, -2, -3})\n",
" \n",
"def set_of_jumps(numbers: Ints) -> Set[int]:\n",
" \"\"\"The set of differences between adjacent numbers.\"\"\"\n",
" return {numbers[i] - numbers[i - 1] for i in range(1, len(numbers))}"
]
},
{
"cell_type": "markdown",
"id": "5625ad98-f571-4451-ad19-8614833dfb10",
"metadata": {},
"source": [
"Here are examples of how these functions work:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "c0cc052b-e9ef-4757-a860-4cd34dd00fb8",
"metadata": {},
"outputs": [],
"source": [
"assert set_of_jumps((7, 6, 4, 2, 1)) == {-1, -2}\n",
"assert is_safe((7, 6, 4, 2, 1)) == True"
]
},
{
"cell_type": "markdown",
"id": "051c71b7-4375-4812-b7cc-0c50adf20a09",
"metadata": {},
"source": [
"And here is the answer to the puzzle:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "e662bf10-4d6a-40f1-95ce-dfc39f5b3fc2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 2.1: .000 seconds, answer 257 ok"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(2.1, 257, lambda:\n",
" quantify(reports, is_safe))"
]
},
{
"cell_type": "markdown",
"id": "ee48bf63-8a67-407b-9a73-df097811eabc",
"metadata": {},
"source": [
"Note: I used my [AdventUtils](AdventUtils.ipynb) function `quantify` (adapted from the [itertools recipes](https://docs.python.org/3/library/itertools.html#itertools-recipes)). `quantify(reports, is_safe)` counts the number of items in `reports` for which `is_safe` is true.\n",
"\n",
"### Part 2: How many reports are safe using the Problem Dampener?\n",
"\n",
"The **problem dampener** says that a report is safe if there is some way to drop one number and get a safe report. So I'll generate all ways of dropping one number and check each one for safety."
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "6c78f864-5425-472f-9740-6f44650a98ca",
"metadata": {},
"outputs": [],
"source": [
"def is_safe_with_dampener(report: Ints) -> bool:\n",
" \"\"\"Is there any way to drop one element of `report` to get a safe report?\"\"\"\n",
" return any(map(is_safe, drop_one(report)))\n",
"\n",
"def drop_one(seq: Sequence) -> Iterable[Sequence]:\n",
" \"\"\"All ways of dropping one element of the input sequence.\"\"\"\n",
" return (seq[:i] + seq[i + 1:] for i in range(len(seq)))"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "7f492898-a704-4fb4-a93f-824f655d1f51",
"metadata": {},
"outputs": [],
"source": [
"assert set(drop_one('1234')) == {'234', '134', '124', '123'}"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "d1b9ffb5-af7a-465f-a063-c31df2d0605c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 2.2: .002 seconds, answer 328 ok"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(2.2, 328, lambda:\n",
" quantify(reports, is_safe_with_dampener))"
]
},
{
"cell_type": "markdown",
"id": "54d6a0c2-a8ed-404d-abc0-72aa28a49f5d",
"metadata": {},
"source": [
"# [Day 3](https://adventofcode.com/2024/day/3): Mull It Over\n",
"\n",
"Today's input is a computer program with some corrupted characters. The program has multiple lines, but newlines don't matter in this programming language, so I will concatenate them into one big string:"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "78080200-0f9f-4492-9bee-c936737ee96f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Puzzle input ➜ 6 strs:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"where(536,162)~'what()what()how(220,399){ mul(5,253);mul(757,101)$where()@why()who()&when()from( ...\n",
"}?~who()select()-mul(316,505)&%*how()mul(363,589)>?%-:)where()~{{mul(38,452)select()%>[{]%>%mul( ...\n",
"?>where(911,272)'mul(894,309)~+%@#}@#why()mul(330,296)what()mul(707,884)mul;&}<{>where()$why()]m ...\n",
"> (when()[where()/#!/usr/bin/perl,@;mul(794,217)select():'])select()mul(801,192)why()&]why()/:]* ...\n",
",+who():mul(327,845)/ >@[>@}}mul(86,371)!~&&~how(79,334)mul(637,103)why()mul(358,845)-#~?why(243 ...\n",
"where()#{*,!?:$mul(204,279)what()!{ what()mul(117,94)!select()>:mul(665,432)#don't()!!\n",
"\n",
"\n",
"### Part 1: What do you get if you add up all of the results of the multiplications?\n",
"\n",
"For Part 1, just look for instructions of the form \"mul(*digits*,*digits*)\", using a regular expression and `re.findall`. Perform each of these multiplications and add them up, and ignore all other characters/instructions:"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "bf6366b1-6952-47d8-8b3c-09f8d05ec093",
"metadata": {},
"outputs": [],
"source": [
"def execute(program: str) -> int:\n",
" \"\"\"The sum of the results of the multiply instructions.\"\"\"\n",
" return sum(prod(ints(m)) for m in all_multiplications(program))\n",
"\n",
"all_multiplications = re.compile(r'mul\\(\\d+,\\d+\\)').findall"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "2032c903-5f23-4c16-ba68-410b6c1750e1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 3.1: .001 seconds, answer 156388521 ok"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(3.1, 156388521, lambda: \n",
" execute(program))"
]
},
{
"cell_type": "markdown",
"id": "622d7010-145e-422a-a592-d4b446afcc0f",
"metadata": {},
"source": [
"### Part 2: What do you get if you add up all of the results of just the enabled multiplications?\n",
"\n",
"For Part 2, the instruction \"`don't()`\" says to **disable** (ignore) following multiply instructions until a \"`do()`\" instruction **enables** them again. I will define the function `enabled`, which returns the part of the program that is enabled, by susbstituting a space for the \"`don't()...do()`\" sequence (or a \"`don't()...`\" sequence that goes to the end of the file)."
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "4525d01a-bac0-41c2-92b8-baf0fd395e88",
"metadata": {},
"outputs": [],
"source": [
"def enabled_part(program: str) -> str:\n",
" \"\"\"Just the part of the program that is enabled; remove \"don't()...do()\" text.\"\"\"\n",
" return re.sub(r\"don't\\(\\).*?(do\\(\\)|$)\", \" \", program)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "ce40f258-ca76-48c3-9965-27a6979a4243",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 3.2: .000 seconds, answer 75920122 ok"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(3.2, 75920122, lambda:\n",
" execute(enabled_part(program)))"
]
},
{
"cell_type": "markdown",
"id": "81b1ed3a-5bdb-4ef9-957d-25bcb19e3a00",
"metadata": {},
"source": [
"### Part 3: Verification\n",
"\n",
"Regular expressions are [always tricky](https://blog.codinghorror.com/regular-expressions-now-you-have-two-problems/), so here are some assertions to give us more confidence that we got the components right (and to show some examples of their use)."
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "1cb1b8e5-1ad7-4364-8816-73669f9c0777",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"assert all_multiplications(\"mul(1,2) + mul(34,5) - mul(67,89] / mul(x,15)\") == ['mul(1,2)', 'mul(34,5)']\n",
"assert enabled_part(\"testing(1,2,3)\") == \"testing(1,2,3)\"\n",
"assert enabled_part(\"preamble don't() middle part do() final\") == 'preamble final'\n",
"enabled_part(\"preamble don't() middle part no do, final\") == 'preamble ' # Make sure it works without a closing \"do()\""
]
},
{
"cell_type": "markdown",
"id": "e1448343-6488-45ad-b03d-d7928feb75cd",
"metadata": {},
"source": [
"# [Day 4](https://adventofcode.com/2024/day/4): Ceres Search\n",
"\n",
"Today's puzzle is a 2D word-search puzzle:"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "a0d903b9-018e-4861-9314-cafed59055fd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Puzzle input ➜ 140 strs:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"MASAMXMSSXXMAMXXMXMASXMASXMMSMSMMMAXMASASMMSSMSXAXMASMMSMMMSSMSASMSSSSMSMSMXXMXMAXAMXMSMSSXSAMXM ...\n",
"MASMMXMASAXASMSMMMSAMXSMSAMXAAAAAXAMXASXAMAAAAMMSMMMMMASXAAAAMMAMAMMASAAAAXMXMSSSSSSMMSAMAXAXXSM ...\n",
"MMXAXMMMSXMAMAAXAAXAAAXXSMMSMSMSMXAXMXSMMMMSSMXAMXAAXMAMMMMSSMMAMAMMAMMMMMXSAAXAAMMAXXSAMXMSMAXM ...\n",
"SXSAMASASMSXMSMSMSSMMMMMMXAMXMMXMASMMMMAXXAAAMMMSSSSSMASXXAAXASMSXXMXSXSXSASMSMMSMSAMMMAMXAAMASX ...\n",
"AAAXXXMASASXMXMAXXMMASAASMXSASASXAAAAMSSMMMSXMAAMMMMMXAXMMMMSAMXAMASAMXSAMASXXAXAAMAMXSAMXSXSMMA ...\n",
"MSMMXXMMMAMAMMMMMMXSAXXAMMMMXSAXMMXXAMXAAMMXMASXMAAASMMXAAMXAXAMMMAMAMAMAMXMASXMMXMAAXMAXMAMXMSA ...\n",
"MXAXAMXXMMMMSAMAASMMMSMMASASAMAMAXMSXMSMMXAMXAXMMSSXSASXSSSMAMSMXMXSAMSSSMAMXMXAMAXXMMSAXAXMMXMA ...\n",
"ASXMMXSAMXAASXXMXSAAAXASAMMMASMSSSMAAMMXMMSSMASAMAMMMAMMAXMAXMASXMAXMSAAASASAMXSSMXSAAXSSMXAAXXA ...\n",
"...\n"
]
}
],
"source": [
"xmas_grid = Grid(parse(4))"
]
},
{
"cell_type": "markdown",
"id": "16d56872-be2c-4e9d-8821-a0fe9f66970b",
"metadata": {},
"source": [
"### Part 1: How many times does XMAS appear?\n",
"\n",
"We just have to find how many times the word \"XMAS\" appears in the grid, horizontally, vertically, or diagonally, forwards or backwards. The variable `directions8` contains those eight directions (as (delta-x, delta-y) pairs). So examine each square of the grid and if it contains \"X\", see in how many of the directions it spells \"XMAS\". (Note that locations in the grid are denoted by `(x, y)` coordinates, as are directions (e.g., `(1, 0)` is the `East` direction. (The functions `add` and `mul` do addition and scalar multiplication on these 2D vectors.)"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "72d48abb-7a82-452f-b91d-838b3836a90f",
"metadata": {},
"outputs": [],
"source": [
"def word_search(grid: Grid, word='XMAS') -> int:\n",
" \"\"\"How many times does the given word appear in the grid?\"\"\"\n",
" return quantify(grid_can_spell(grid, start, dir, word) \n",
" for start in grid \n",
" if grid[start] == word[0]\n",
" for dir in directions8)\n",
"\n",
"def grid_can_spell(grid, start, dir, word):\n",
" \"\"\"Does `word` appear in grid starting at `start` and going in direction `dir`?\"\"\"\n",
" return all(grid[add(start, mul(dir, i))] == ch \n",
" for i, ch in enumerate(word))"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "6175362b-d8b4-45d1-b70c-d8575a0fe188",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 4.1: .021 seconds, answer 2401 ok"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(4.1, 2401, lambda:\n",
" word_search(xmas_grid))"
]
},
{
"cell_type": "markdown",
"id": "eabe90c4-b668-4d9e-a345-b09f4b8ee42b",
"metadata": {},
"source": [
"### Part 2: How many times does an X-MAS appear?\n",
"\n",
"Upon further review, the goal is not to find \"XMAS\" byt rather X-\"MAS\"; that is, two \"MAS\" words in an X pattern. The pattern can be any of these four:\n",
"\n",
" M.S S.M M.M S.S\n",
" .A. .A. .A. .A.\n",
" M.S S.M S.S M.M\n",
"\n",
"I decided to find these by first looking for each the middle letter (\"A\") in the grid, and then, for each \"A\" and for each of the four pairs of diagonal directions, see if the target word (\"MAS\") can be spelled in both directions:"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "3d8a051f-cf7b-4e8c-b0fb-78c3f089989d",
"metadata": {},
"outputs": [],
"source": [
"diagonal_pairs = ([SE, NE], [SW, NW], [SE, SW], [NE, NW])\n",
"\n",
"def x_search(grid: Grid, word='MAS') -> int:\n",
" \"\"\"How many times does an X-MAS appear in the grid?\"\"\"\n",
" A_positions = grid.findall(word[1]) # All positions where an 'A' (the mid-letter 'MAS') appears\n",
" return quantify((grid_can_spell(grid, sub(mid_pos, dir1), dir1, word) and\n",
" grid_can_spell(grid, sub(mid_pos, dir2), dir2, word))\n",
" for mid_pos in A_positions\n",
" for dir1, dir2 in diagonal_pairs)"
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "64cde1d9-f58c-4633-b5da-87908a02f76d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 4.2: .015 seconds, answer 1822 ok"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(4.2, 1822, lambda:\n",
" x_search(xmas_grid))"
]
},
{
"cell_type": "markdown",
"id": "0249ce80-e649-44b3-8c02-613fc7652110",
"metadata": {},
"source": [
"# [Day 5](https://adventofcode.com/2024/day/5): Print Queue\n",
"\n",
"Today's puzzle involves some **sleigh launch safety manuals** that need to be updated with new printings. The day's input is in two sections: the first a set of **rules** such as \"47|53\", which means that if an update prints both page 47 and page 53, then it must print 47 sometime before 53. The second section is a list of **updates** of the form \"75,47,61,53,29\", meaning that for one version of the safety manual, those are the pages that need to be printed, and that is the suggested order of printing.\n",
"\n",
"\n",
"\n",
"I mostly like my `parse` function: it is easy to tell it how to break the input into sections and how to parse every section, if all the sections are the same. But I admit my `parse` is not ideal when an input file has sections with two different formats. I'll parse the two sections as paragraphs, and then call `parse` again on each paragraph:"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "b77a5a1f-a43b-4ce8-a60c-94d69a595505",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Puzzle input ➜ 1366 strs:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"48|39\n",
"39|84\n",
"39|23\n",
"95|51\n",
"95|76\n",
"95|61\n",
"14|52\n",
"14|49\n",
"...\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Parsed representation ➜ 2 strs:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"48|39\n",
"39|84\n",
"39|23\n",
"95|51\n",
"95|76\n",
"95|61\n",
"14|52\n",
"14|49\n",
"14|39\n",
"14|53\n",
"85|19\n",
"85|25\n",
"85|61\n",
"85|35\n",
"85|58\n",
"74|86\n",
" ...\n",
"61,58,51,32,12,14,71\n",
"58,25,54,14,12,94,32,76,39\n",
"35,53,26,77,14,71,25,76,85,55,51,49,95\n",
"32,91,76, ...\n"
]
}
],
"source": [
"manual = parse(5, sections=paragraphs)\n",
"rules = set(parse(manual[0], ints))\n",
"updates = parse(manual[1], ints)"
]
},
{
"cell_type": "markdown",
"id": "c6e4d0b6-c69e-4284-9757-cf3ce51b196c",
"metadata": {},
"source": [
"Here I show what the rules and updates look like:"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "4c85a23e-686a-4129-a14c-ff6f6a88b9ac",
"metadata": {},
"outputs": [],
"source": [
"assert (48, 39) in rules # `rules` is a set of (earlier, later) page number pairs\n",
"assert updates[0] == (61, 58, 51, 32, 12, 14, 71) # `updates` is a sequence of page number tuples"
]
},
{
"cell_type": "markdown",
"id": "d6b6d374-cbe9-4b84-a1dd-d9df927c7182",
"metadata": {},
"source": [
"### Part 1: What do you get if you add up the middle page number from the correctly-ordered updates?\n",
"\n",
"An update is correct if no combination of two pages in the update violates any of the rules. I'll define `is_correct` to implement this check, and `sum_of_correct_middles` to add up the middle numbers of the correct updates:"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "78898d37-46ff-4367-9d89-b2a107a90aa1",
"metadata": {},
"outputs": [],
"source": [
"def sum_of_correct_middles(rules: Set[Ints], updates: Tuple[Ints]) -> int:\n",
" \"\"\"The sum of the middle elements of each update that is correct.\"\"\"\n",
" return sum(middle(update) for update in updates if is_correct(update, rules))\n",
"\n",
"def is_correct(update: Ints, rules: Set[Ints]) -> bool:\n",
" \"\"\"An update is correct if no pair of pages violates a rule in the rules set.\"\"\"\n",
" return not any((second, first) in rules for (first, second) in combinations(update, 2))\n",
"\n",
"def middle(seq: Sequence) -> object: return seq[len(seq) // 2]"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "b1c87359-1d2d-4a90-8305-9d152ce5d547",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 5.1: .001 seconds, answer 5762 ok"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(5.1, 5762, lambda:\n",
" sum_of_correct_middles(rules, updates))"
]
},
{
"cell_type": "markdown",
"id": "80da4fd9-b11e-4dbb-8d22-2071d1a89827",
"metadata": {},
"source": [
"### Part 2: What do you get if you add up the middle page numbers of the correction of each incorrect update?\n",
"\n",
"In Part 2 we have to find the incorrect updates, re-order them into a correct order, and sum the middle page numbers of just these corrected updates.\n",
"Since I have already defined `is_correct`, I could just generate all permutations of each update and find one that `is_correct`. That would work great if the longest update consists of only 5 pages, as it does in the example input. But what is the longest update in *my* input?"
]
},
{
"cell_type": "code",
"execution_count": 51,
"id": "d8718c3e-0b3b-49ce-8cca-abd82aa788d7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"23"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"max(map(len, updates))"
]
},
{
"cell_type": "markdown",
"id": "4449200f-dd19-48f1-94b2-7304daa9fa00",
"metadata": {},
"source": [
"That's not great. With 23 page numbers there are 23! permutations, which is over 25 sextillion. So instead, here's my strategy:\n",
"\n",
"- Instead of generating all permutations, `correction` will **sort** an update, returning a corrected reordering that obeys all the rules. This is a [topological sort](https://en.wikipedia.org/wiki/Topological_sorting) and is guaranteed to give a correct reordering (unless the rules contain a contradiction like \"2 must be before 3 and 3 must be before 2\"). There may be multiple correct orderings (for example, if there are no rules involving the pages in the update, then any ordering is correct). It used to be that Python's `sort` method allowed a `cmp` keyword to compare two values; there is vestigial support for this with the `functools.cmp_to_key` function. I will sort each update so that page *m* comes before page *n* if (*m*, *n*) is in the rules, and *m* comes after *n* if (*n*, *m*) is in the rules. Sorting will be about a sextillion times faster than enumerating permutations.\n",
"- `corrected` will find all the incorrect updates and correct them."
]
},
{
"cell_type": "code",
"execution_count": 53,
"id": "7222dc1c-067f-4bb5-84e1-3c2fc72fd53a",
"metadata": {},
"outputs": [],
"source": [
"def correction(update: Ints, rules) -> Ints:\n",
" \"\"\"Reorder the update to make it correctly obey all the rules.\"\"\"\n",
" def rule_lookup(m, n): return +1 if (m, n) in rules else -1 if (n, m) in rules else 0\n",
" return sorted(update, key=functools.cmp_to_key(rule_lookup))\n",
"\n",
"def corrected(updates, rules) -> List[Ints]:\n",
" \"\"\"Returns a list of corrected versions of all the incorrect rules.\"\"\"\n",
" return [correction(update, rules) for update in updates if not is_correct(update, rules)]"
]
},
{
"cell_type": "code",
"execution_count": 54,
"id": "494cda6e-6b07-4054-9b03-45f61bd4f973",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 5.2: .001 seconds, answer 4130 ok"
]
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(5.2, 4130, lambda:\n",
" sum_of_correct_middles([], corrected(updates, rules)))"
]
},
{
"cell_type": "markdown",
"id": "53b1ccbc-01ae-43d0-a75f-3f9389fdd3c9",
"metadata": {},
"source": [
"I have to say, I'm pleased that so far I've had no bugs (other than simple typos like not closing a paren). Today I was worried I might have my `+1` and `-1` backwards in `cmp_to_key`, but so far, everything has gone smoothly. However, I have no chance of showing up on the leaderboard; I'm still *way* slower than skilled contest programmers, not to mention the automated large language models that some people are using."
]
},
{
"cell_type": "markdown",
"id": "38258423-e3b8-4bae-8aeb-28f07f0d5a35",
"metadata": {},
"source": [
"# [Day 6](https://adventofcode.com/2024/day/6): Guard Gallivant\n",
"\n",
"Today's input is a 2D map of the manufacturing lab, with \"`.`\" indicating an empty space, \"`#`\" indicating an obstruction, and \"`^`\" indicating the position of the security guard, and the fact that the guard is initially facing North."
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "6ec71cf8-c43d-457e-8e14-0e9eb99b956a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Puzzle input ➜ 130 strs:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"........#........................................#......#........#.............................. ...\n",
"....................................#......#.....#............#.............#..........#........ ...\n",
"......................#.......................................................#................. ...\n",
".......#..#..#....#...#...#....#..............#......#.......#...#................#.......#..... ...\n",
"......................#....##...#.......#....#.......................................#.......... ...\n",
"...#............................#........................................#...................... ...\n",
"....................#............#...............#......#.........#...........#................. ...\n",
"............................#......#...#................#.............#......................... ...\n",
"...\n"
]
}
],
"source": [
"lab_grid = Grid(parse(6))"
]
},
{
"cell_type": "markdown",
"id": "4ba233f4-90aa-4249-9569-10288c34940d",
"metadata": {},
"source": [
"### Part 1: How many distinct positions will the guard visit before leaving the mapped area?\n",
"\n",
"The guard follows this protocol: \n",
"- If there is something directly in front of you, turn right 90 degrees.\n",
"- Otherwise, take a step forward.\n",
"\n",
"I'll define `follow_path` to return a list of all the positions the guard occupies. I realize the puzzle is only asking for a *count* of the positions, but the path might be useful for Part 2, or for debugging, so I'll return it. I worried that it is also possible for a path to become a loop, but the puzzle statement specifically says that can't happen (the guard will always march off the grid), so I won't test for it."
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "95f0b409-a6d6-47bc-8ce5-1c2df80f2b18",
"metadata": {},
"outputs": [],
"source": [
"def follow_path(grid: Grid, guard='^', facing=North) -> List[Point]:\n",
" \"\"\"A list of all points in the path followed by the guard.\n",
" The guard turns right when there is an obstacle ahead, otherwise goes forward.\"\"\"\n",
" path = grid.findall(guard) # A list of exactly one position, e.g. [(3, 4)]\n",
" while (ahead := add(path[-1], facing)) in grid:\n",
" if grid[ahead] == '#':\n",
" facing = make_turn(facing, 'R')\n",
" else:\n",
" path.append(ahead)\n",
" return path"
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "f4be3d1f-7f24-4d55-8221-df0026178e1e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 6.1: .002 seconds, answer 5329 ok"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(6.1, 5329, lambda: \n",
" len(set(follow_path(lab_grid))))"
]
},
{
"cell_type": "markdown",
"id": "eaf72ac3-ade0-4479-a090-1d0f292ecc27",
"metadata": {},
"source": [
"I initially had a **bug**; I took the **length** of the path, not the \"distinct positions\", which I get by taking the length of the **set** of positions. For a path that crosses itself these two numbers are different.\n",
" \n",
"### Part 2: How many different positions could you choose for an obstruction to put the guard in a loop?\n",
"\n",
"The historians would like to place a single obstacle so that the guard *will* get stuck in a loop, rather than exiting the grid. They want to know all possible positions for the obstacle. What do we know about such positions?\n",
"- An obstacle position must be somewhere on the guard's path, otherwise it would have no effect.\n",
"- The instructions say it can't be the guard's initial position.\n",
"- A loop is when the guard's path returns to the same position with the same facing. This means my Part 1 solution, which returns the list of visited positions, without the facing directions, is not immediately helpful. \n",
"- I can detect a loop by keeping a set of previously visited (position, facing) pairs.\n",
"- I can save time and space by only storing the *corners* of the path: the places where the guard turns.\n",
" - If the guiard is in a loop, the guard must turn the same way at the same corner.\n",
"- The simplest approach for finding obstacle positions is to temporarily place an obstacle on each point on the path, one at a time, and see if it leads to a loop.\n",
"- There are 5,329 positions on the path, so the runtime could be about 5,000 times longer than Part 1; on the order of 10 seconds or so.\n",
" - I'll try it, and if it seems too slow, I'll think of something else."
]
},
{
"cell_type": "code",
"execution_count": 62,
"id": "1718fecb-aa3e-4162-9948-1c06d4ec5e8a",
"metadata": {},
"outputs": [],
"source": [
"def is_loopy_path(grid: Grid, guard_pos, facing=North) -> bool:\n",
" \"\"\"Does the path followed by the guard form a loop?\"\"\"\n",
" previous_positions = {(guard_pos, facing)}\n",
" while (ahead := add(guard_pos, facing)) in grid:\n",
" if grid[ahead] == '#':\n",
" facing = make_turn(facing, 'R')\n",
" if (guard_pos, facing) in previous_positions:\n",
" return True # Found a loop\n",
" previous_positions.add((guard_pos, facing))\n",
" else:\n",
" guard_pos = ahead\n",
" return False\n",
" \n",
"def find_loopy_obstacles(grid: Grid) -> Iterable[Point]:\n",
" \"\"\"All positions in which placing an obstacle would result in a loopy path for the guard.\"\"\"\n",
" guard_pos = the(grid.findall('^'))\n",
" for pos in set(follow_path(grid)) - {guard_pos}:\n",
" grid[pos] = '#' # Temporarily place an obstacle \n",
" if is_loopy_path(grid, guard_pos):\n",
" yield pos\n",
" grid[pos] = '.' # Remove the temporarily-placed obstacle"
]
},
{
"cell_type": "code",
"execution_count": 63,
"id": "36196264-eb33-4fc0-95d5-06c985105ebf",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 6.2: 1.980 seconds, answer 2162 ok"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(6.2, 2162, lambda:\n",
" quantify(find_loopy_obstacles(lab_grid)))"
]
},
{
"cell_type": "markdown",
"id": "9f3ee6f9-7ec7-4248-ae52-1804fdc81dbd",
"metadata": {},
"source": [
"That was my first run time over a second, but still faster than I thought it would be. I guess many of the obstacles force the guard into a small, fast loop, or an early exit from the grid. Note that in `the(grid.findall('^'))`, `findall` is a method from my `Grid` class that finds all locations where a `'^'` character resides, and `the` is my utility function that returns the first element of a one-element list (and raises an error if there is not exactly one element).\n",
"\n",
"I had a **bug** initially, and never figured out what it was; it went away when I refactored to make the program nicer."
]
},
{
"cell_type": "markdown",
"id": "9eae8cf2-8c97-418e-b00b-3ea0187da526",
"metadata": {},
"source": [
"# [Day 7](https://adventofcode.com/2024/day/7): Bridge Repair\n",
"\n",
"The narrative for today involves fixing a bridge, and each line of our input represents a **calibration equation** for the bridge. Unfortunately, some nearby elephants stole all the operators from the equations, so all that is left are the integers:"
]
},
{
"cell_type": "code",
"execution_count": 66,
"id": "c1c6cee8-122c-43c9-8c7d-ed8980ea2b76",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Puzzle input ➜ 850 strs:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"202998336: 686 9 7 62 2 673\n",
"19275222: 361 3 7 170 65 5 223\n",
"23101: 7 694 916 4 6\n",
"2042426: 6 34 2 423 3\n",
"40369523: 8 880 91 45 23\n",
"46629044796: 990 471 4 4 796\n",
"1839056: 3 42 2 4 3 258 703 4 8\n",
"26205: 2 9 5 9 9 4 3 7 44 5 8 7\n",
"...\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Parsed representation ➜ 850 tuples:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"(202998336, 686, 9, 7, 62, 2, 673)\n",
"(19275222, 361, 3, 7, 170, 65, 5, 223)\n",
"(23101, 7, 694, 916, 4, 6)\n",
"(2042426, 6, 34, 2, 423, 3)\n",
"(40369523, 8, 880, 91, 45, 23)\n",
"(46629044796, 990, 471, 4, 4, 796)\n",
"(1839056, 3, 42, 2, 4, 3, 258, 703, 4, 8)\n",
"(26205, 2, 9, 5, 9, 9, 4, 3, 7, 44, 5, 8, 7)\n",
"...\n"
]
}
],
"source": [
"equations = parse(7, ints)"
]
},
{
"cell_type": "markdown",
"id": "be207b67-a970-4f79-85be-5d62b7cedd9f",
"metadata": {},
"source": [
" "
]
},
{
"cell_type": "markdown",
"id": "2e31d28f-97b1-4a3d-a298-18fcad297150",
"metadata": {},
"source": [
"### Part 1: What is the total calibration result of possibly true equations?\n",
"\n",
"Our task is to find operators to balance each equation. The input \"`3267: 81 40 27`\" can be made into the equation \"`3267 = 81 + 40 * 27`\", with the understanding that all evaluations are done left-to-right, so this is \"`3267 = ((81 + 40) * 27)`\". The two allowable operators are addition and multiplication. Our task is to compute the sum of all the equations that can be balanced.\n",
"\n",
"The straightforward approach is to try both operators on every number. If there are *n* numbers in an equation, then there are *n* - 1 numbers on the right-hand side, and *n* - 2 missing operators, so there will be 2*n*-2 possible equations. Is that going to be a problem?"
]
},
{
"cell_type": "code",
"execution_count": 69,
"id": "6fa3907c-0e1a-4d4a-9fc3-f809b9325674",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"13"
]
},
"execution_count": 69,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"max(map(len, equations))"
]
},
{
"cell_type": "markdown",
"id": "e0d9b0b2-fe1e-434e-b84e-c044da3d3673",
"metadata": {},
"source": [
"No problem! With 13 numbers on a line there are just 211 = 2048 equations; a small number. I'll define `can_be_calibrated` to try all possible operator combinations. It goes left-to-right, one number at a time, keeping a list of partial `results` which is updated for each new number in the equation. \n",
"\n",
"Although the puzzle instructions are a bit vague, it appears that when they say \"numbers\" they mean \"positive integers\". Therefore, neither addition nor multiplication can cause a partal result to decrease, so once a partial result exceeds the target, we can drop it."
]
},
{
"cell_type": "code",
"execution_count": 71,
"id": "5dfe0edf-cf29-4623-bb2c-6180f832f4d7",
"metadata": {},
"outputs": [],
"source": [
"def can_be_calibrated(equation: ints, operators=(operator.add, operator.mul)) -> bool:\n",
" \"\"\"Can the equation be balanced using '+' and '*' operators?\"\"\"\n",
" target, first, *rest = equation\n",
" results = [first] # A list of all possible results of the partial computation\n",
" for y in rest:\n",
" results = [op(x, y) for x in results if x <= target for op in operators]\n",
" return target in results\n",
"\n",
"def lhs(equation) -> int: \"Left-hand side\"; return equation[0]"
]
},
{
"cell_type": "code",
"execution_count": 72,
"id": "3085596d-f5ec-4ba8-b05a-cf70cf276a0c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 7.1: .014 seconds, answer 1985268524462 ok"
]
},
"execution_count": 72,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(7.1, 1985268524462, lambda:\n",
" sum(lhs(equation) for equation in equations if can_be_calibrated(equation)))"
]
},
{
"cell_type": "markdown",
"id": "62a5fe5f-e23f-4420-87a8-47d8be02fbc0",
"metadata": {},
"source": [
"### Part 2: What is the total calibration result of possibly true equations, allowing concatenation?\n",
"\n",
"In Part 2, a third operator is allowed: **concatentation**. The equation \"`192: 17 8 14`\" can be balanced by concatenated 17 and 8 to get 178, and then adding 14 to get 192: \"`192 = ((17 || 8) + 14)`\". With three possible operators, the equation with 11 missing operator slots now has 311 = 177,147 possibilities, almost 100 times more than Part 1, so this will take longer:"
]
},
{
"cell_type": "code",
"execution_count": 74,
"id": "393a50cf-f136-446a-a97e-c501669ce89f",
"metadata": {},
"outputs": [],
"source": [
"operators3 = (operator.add, operator.mul, lambda x, y: int(str(x) + str(y))) "
]
},
{
"cell_type": "code",
"execution_count": 75,
"id": "f8e75ea3-e8ba-4b33-8efe-8bf74357e35d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 7.2: .810 seconds, answer 150077710195188 ok"
]
},
"execution_count": 75,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(7.2, 150077710195188, lambda:\n",
" sum(lhs(equation) for equation in equations if can_be_calibrated(equation, operators3)))"
]
},
{
"cell_type": "markdown",
"id": "128b4857-ed3e-49f5-97f5-9d9afd46408d",
"metadata": {},
"source": [
"That was easy, but it is the second-slowest runtime so far. I can make it faster by implementing concatenation by multiplying and adding rather than by string operations."
]
},
{
"cell_type": "code",
"execution_count": 77,
"id": "6fe6adad-a3a6-49b8-b49e-6098b27e3a44",
"metadata": {},
"outputs": [],
"source": [
"operators3 = (operator.add, operator.mul, lambda x, y: (x * 10 ** num_digits(y)) + y)\n",
"\n",
"def num_digits(n: int) -> int:\n",
" \"\"\"The number of digits in a positive integer.\"\"\"\n",
" if n < 10: return 1 ## Three special cases cover most calls\n",
" elif n < 100: return 2\n",
" elif n < 1000: return 3\n",
" result = 1\n",
" while n >= 10:\n",
" result += 1\n",
" n /= 10\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": 78,
"id": "ffb673f1-af9d-4d15-8f8d-92e29489dd78",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 7.2: .611 seconds, answer 150077710195188 ok"
]
},
"execution_count": 78,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(7.2, 150077710195188, lambda:\n",
" sum(numbers[0] for numbers in equations if can_be_calibrated(numbers, operators3)))"
]
},
{
"cell_type": "markdown",
"id": "2e5693b7-dab8-4f89-a000-c69ee75a11c9",
"metadata": {},
"source": [
"# [Day 8](https://adventofcode.com/2024/day/8): Resonant Collinearity\n",
"\n",
"Another grid input, this one a map of antenna locations. Each different non-\"`.`\" character denotes an antenna of a given frequency."
]
},
{
"cell_type": "code",
"execution_count": 80,
"id": "cf6361a7-e3bc-42ec-ae16-f9eec166055e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Puzzle input ➜ 50 strs:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"..................................................\n",
".................................C................\n",
".e..........7O....................................\n",
".....................................z............\n",
"......................t.........C.......k.........\n",
"............h................................9....\n",
".............5.7....O.............9C..............\n",
".......5.O................T.......................\n",
"...\n"
]
}
],
"source": [
"antennas = Grid(parse(8))"
]
},
{
"cell_type": "markdown",
"id": "c8e1006d-37bc-432e-bf1f-7a639287382a",
"metadata": {},
"source": [
"### Part 1: How many unique locations within the bounds of the map contain an antinode?\n",
"\n",
"An **antinode** is defined as a point that is perfectly in line with two antennas of the same frequency, but only when one of the antennas is twice as far away as the other.\n",
"\n",
"That means that if two antennas are at points *A* and *B*, then the two antinodal points are at 2*A* - *B* and 2*B* - A. If there are three or more antennas with the same frequency then we consider each pair of them in turn. So all we have to do is group the antennas by frequency, compute the antinodes for each pair with the same frequency, and determine which of those antinodal points are on the grid."
]
},
{
"cell_type": "code",
"execution_count": 82,
"id": "22180ce8-5d03-4aee-8c73-62f2afbddf71",
"metadata": {},
"outputs": [],
"source": [
"def antinodes(antennas: Grid) -> Set[Point]:\n",
" \"\"\"The set of all antinodal points for all antennas in the grid.\n",
" (That is, points that are of distance d and 2d from same frequency antennas.)\"\"\"\n",
" groups = [antennas.findall(f) for f in set(antennas.values()) if f != '.']\n",
" return union(antinodes2(A, B, antennas)\n",
" for points in groups\n",
" for A, B in combinations(points, 2))\n",
"\n",
"def antinodes2(A: Point, B: Point, antennas: Grid) -> Set[Point]:\n",
" \"\"\"The set of antinodal points for two antenna points, A and B.\"\"\"\n",
" candidates = [sub(mul(A, 2), B), sub(mul(B, 2), A)]\n",
" return {P for P in candidates if P in antennas}"
]
},
{
"cell_type": "code",
"execution_count": 83,
"id": "dd173ce9-cbbb-4282-b43f-c7cff662bd90",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 8.1: .002 seconds, answer 220 ok"
]
},
"execution_count": 83,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(8.1, 220, lambda:\n",
" len(antinodes(antennas)))"
]
},
{
"cell_type": "markdown",
"id": "ff79d605-813a-46ac-8473-a1198be0e99f",
"metadata": {},
"source": [
"### Part 2: How many unique locations within the bounds of the map contain an resonant antinode?\n",
"\n",
"For Part 2, a Historian tells us to consider **resonant antinodes**, which can occur at *any* point that is exactly on line with two antennas of the same frequency, regardless of distance. So if the two antennas are *A* and *B* then the antinodal points can be found by starting at *A* and going step by step in the direction of the vector *A* - *B* and also in the direction *B* - *A*, going as far as you can while staying on the grid. The `Grid.follow_line` method facilitates that.\n",
"\n",
"I'll refactor `antinodes` to take an `antinodes2` parameter so it can handle both parts:"
]
},
{
"cell_type": "code",
"execution_count": 85,
"id": "d30f8ce9-f186-46a0-a2e7-f74eceae6905",
"metadata": {},
"outputs": [],
"source": [
"def antinodes(antennas: Grid, antinodes2=antinodes2) -> Set[Point]:\n",
" \"\"\"The set of all antinodal points in the grid, according to the `antinode2` function.\"\"\"\n",
" groups = [antennas.findall(f) for f in set(antennas.values()) if f != '.']\n",
" return union(antinodes2(A, B, antennas)\n",
" for points in groups\n",
" for A, B in combinations(points, 2))\n",
"\n",
"def resonant_antinodes2(A: Point, B: Point, antennas: Grid) -> Set[Point]:\n",
" \"\"\"The set of resonant antinodal points for two antenna points, A and B.\"\"\"\n",
" return (set(antennas.follow_line(A, sub(A, B))) | \n",
" set(antennas.follow_line(A, sub(B, A))))"
]
},
{
"cell_type": "code",
"execution_count": 86,
"id": "6bf85b57-8b8f-4196-9903-6d5fe082f404",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 8.1: .003 seconds, answer 220 ok"
]
},
"execution_count": 86,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(8.1, 220, lambda:\n",
" len(antinodes(antennas)))"
]
},
{
"cell_type": "code",
"execution_count": 87,
"id": "f232952c-5fc6-4696-a8b1-d0b54137ac02",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 8.2: .003 seconds, answer 813 ok"
]
},
"execution_count": 87,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(8.2, 813, lambda:\n",
" len(antinodes(antennas, resonant_antinodes2)))"
]
},
{
"cell_type": "markdown",
"id": "4ff92b7f-f9e9-4664-9fc5-0e9998aca47e",
"metadata": {},
"source": [
"### Part 3: Visualization\n",
"\n",
"Here I show what the grid look like with all the resonant antinodes depicted with the same letter as their antenna."
]
},
{
"cell_type": "code",
"execution_count": 89,
"id": "4642cbba-16c1-4aa8-b39d-a104a475cbe6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"..........E7...xH..s....B.C........4..W..........5\n",
".........4O.T..H3...t..h....3.s..C.3..zo..35b.....\n",
".e.....x..x.7OH.x....t..8....CT...z.o5............\n",
"5...........X7...s...t.....s...5j...8z.T.3........\n",
"...........EH...ex.Tj3t.35....3.C....E..k.K....c.w\n",
".30........Hh...Kb.5.t.cs......O.S..z..k3....9..Eo\n",
".......3..H..5.7..x.O..B..........9C3..zcb....o.wX\n",
".......5.H.x.3.......st9..3...4C3j..W..3...o.G....\n",
".5.0....H...9......3.........o...c....z.o......w..\n",
".9H....H.c...sex.7s...tj.3.....b...E.o3..K.....w..\n",
"......H..........67.x.....cO..C3.T3.5..8.C..E.w..S\n",
"sW..0H....H...5s.........B6....o..S..3b.z..c......\n",
".s..HO.....s.HHx...7.xBt....o.......8.....e3Cw..S.\n",
"..sH.k..H...s.....H..H.t.o.e.C......3..zT.......X3\n",
"T.Hs.0.....ke.......H7x..4j..H...EO..9..K.z.w..C..\n",
".H..s....T.H.....k.o.7..H.H........3.H..E.G..0....\n",
"H....s.......1E5o.T.x.7x...eC.j.4..b..3C.z.w.HST..\n",
".O....4......oH....x....t..T.k....3S....e08.z.....\n",
".......s..o..........B.77.........HHT.H0zOw..S....\n",
"...s...os.e......H.......b.C5j.E.3C.70.K3kHz.T31.J\n",
"..g.o..0.s.....o........tx.........0E....w..S.zX..\n",
"so...s....s.....5...4....7....K.30w....3.Cz...H.J.\n",
"....KS...o.s..........Ex.tC7X..0........9K3S.3..8.\n",
"........0...s6.........Hkx.7.9.3...5Sj.Gez.....Jz.\n",
".4.s....e....s..E...BT....w71E..j.....Kw..S.z8....\n",
".E....O.....K.s..........Ct...38E.j......W..3.J...\n",
"....h...o0.g...s.8.....e.w..xb7.......wT3S8z.....j\n",
"02.8........S...s.wW.0....txT3.......wj...5.cJX..Z\n",
"..J...k.......84.s.0K...Ct...xW......w.8S.z...3..G\n",
"...0E.e...0......0sk.......t3...H..j.S......JzT...\n",
"..........w....0.gks.....kttE.x777.ww..S...9..GG..\n",
".....O0......0.Tw.5.sE.C..b3K......HG..j.3.JzC..35\n",
"S2..2......0......ESg9.....t...x.C.w..S....GG..z..\n",
"B.w4...E.0..........8ws...3.t...17....H...Jz...X..\n",
"....e.B0.....h.......1Cs.E....8.x.w.7SjWG.T..XZ...\n",
"6....0..S.4.B.k.........s3..W.........S.jJ.......z\n",
"...0...w.6.......WB5...b.st8....ww.7SG....3..z.C..\n",
".0..O.W2..E....0..6..C..3.s.tT.w...C.7..J...K.....\n",
".........T...0..S.......8..stgB.w.GS...7....z.9...\n",
"..e...............0....3....st...G.KB7.J.j....EH..\n",
"...2W...............C8.......s.Gg.Sx.b...EB..S....\n",
"........28..j90W....b03.S.....s.....E.JS...3X.z.BC\n",
".....4..k.2..2...B8...h...WjGtws.S.gx..7..7..T...z\n",
"..oO...h..........2C.3..0.ESt...s....J....j..zg...\n",
"e.....G........8.....S.2.G.w.w..SsK..xg.x.7Jj...W.\n",
"...T....w....jGSE...3......w2..tC.s.J..1.7.......X\n",
".........S.E8....bC..5G.....w..S.2.s..x..G..37.X.9\n",
"...Sk.E...B..2..0..2.....S....G....Js.2.Sb.x.X....\n",
".E.......8......B..G..E....w..St.....sGxZ..Xg.z...\n",
"4.O..6..G........C3E....W....2..tKJ.g.C..X....Gj2.\n"
]
}
],
"source": [
"def show_antinodes(antennas: Grid, antinodes2=resonant_antinodes2):\n",
" \"\"\"Put antinodes on the grid and print.\"\"\"\n",
" antennas = antennas.copy() # Don't alter the original\n",
" groups = {f: antennas.findall(f) for f in set(antennas.values()) if f != '.'}\n",
" for f, points in groups.items():\n",
" for A, B in combinations(points, 2):\n",
" for p in antinodes2(A, B, antennas):\n",
" antennas[p] = f\n",
" antennas.print()\n",
" \n",
"show_antinodes(antennas.copy())"
]
},
{
"cell_type": "markdown",
"id": "d4835cad-7777-4636-b9af-52cc9782b2b8",
"metadata": {},
"source": [
"# [Day 9](https://adventofcode.com/2024/day/9): Disk Fragmenter\n",
"\n",
"Today we're confronted with a computer disk that needs to be compressed to gain some contiguous free space. The contents of the disk is represented in the **disk map** format: a string of digits, where the digits alternate between the number of blocks of a file, followed by the number of blocks of free space. We'll parse that as a tuple of digits:"
]
},
{
"cell_type": "code",
"execution_count": 91,
"id": "0e944f9e-5c16-440c-b12e-178058a87048",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Puzzle input ➜ 1 str:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"692094513253604282899448234539616972499153261626907217394161512944107098953354935354419233821564 ...\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Parsed representation ➜ 1 tuple:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"(6, 9, 2, 0, 9, 4, 5, 1, 3, 2, 5, 3, 6, 0, 4, 2, 8, 2, 8, 9, 9, 4, 4, 8, 2, 3, 4, 5, 3, 9, 6, 1, ...\n"
]
}
],
"source": [
"disk_map = the(parse(9, digits))"
]
},
{
"cell_type": "markdown",
"id": "99d40379-65e1-4872-8c68-17ba4925c24e",
"metadata": {},
"source": [
"\n",
"\n",
"### Part 1: Compress the hard drive. What is the resulting filesystem checksum? \n",
"\n",
"We will deal with two formats to represent disks. Consider this **disk map** format:\n",
"\n",
" 1, 2, 3, 4, 5 ## Disk map format\n",
"\n",
"This means that there is 1 block for the first file (which has ID number 0), followed by 2 empty blocks, then 3 blocks for the second file (with ID number 1), followed by 4 empty blocks, and finally 5 blocks for the third file (with ID number 2). \n",
"\n",
"It makes sense to convert this into a **disk layout** format: which would be \"`\", where \"`.`\" represents an empty block.\n",
"\n",
" 0..111....22222 ## Disk layout format\n",
"\n",
"Here the integers represent file ID numbers, and the `.` indicates an empty block.\n",
"\n",
"To **compress** a disk layout, move file blocks one at a time starting by taking the rightmost non-empty block and moving it to the leftmost empty position; repeat until no more moves are possible. For the example above, that would give us:\n",
"\n",
" 022111222...... ## Disk layout format (compressed)\n",
"\n",
"The final answer to the puzzle is a **checksum** of the compressed disk: the sum of the product of the block position times the file ID number for all non-empty blocks."
]
},
{
"cell_type": "code",
"execution_count": 93,
"id": "76e8454d-a2f3-4b6b-92df-182116cf46e0",
"metadata": {},
"outputs": [],
"source": [
"empty = -1 # An empty block\n",
"\n",
"def disk_layout(disk_map: Ints) -> list:\n",
" \"\"\"Convert a disk map into a disk layout.\"\"\"\n",
" def empties(j) -> int: return (disk_map[j] if j < len(disk_map) else 0)\n",
" return append(disk_map[i] * [id] + empties(i + 1) * [empty]\n",
" for id, i in enumerate(range(0, len(disk_map), 2)))\n",
"\n",
"def compress_layout(layout: list) -> list:\n",
" \"\"\"Mutate layout by moving blocks one at a time from the end to the leftmost free space.\"\"\"\n",
" N = len(layout)\n",
" free = -1 # Start looking for free space from the left\n",
" end = N # Start looking for non-empty blocks from the right\n",
" while True:\n",
" free = first(i for i in range(free + 1, N) if layout[i] is empty)\n",
" end = first(i for i in range(end - 1, 0, -1) if layout[i] is not empty)\n",
" if free is None or free >= end:\n",
" return layout\n",
" layout[free], layout[end] = layout[end], empty\n",
"\n",
"def checksum(layout: list) -> list:\n",
" \"\"\"The sum of the product of the block position times the file ID number for all non-empty blocks.\"\"\"\n",
" return sum(i * id for i, id in enumerate(layout) if id is not empty)"
]
},
{
"cell_type": "code",
"execution_count": 94,
"id": "2aa7e2b9-844e-49ed-b41b-4a4cecff86b7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 9.1: .019 seconds, answer 6332189866718 ok"
]
},
"execution_count": 94,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(9.1, 6332189866718, lambda:\n",
" checksum(compress_layout(disk_layout(disk_map))))"
]
},
{
"cell_type": "markdown",
"id": "2c05a497-cc66-4698-b88b-25c33eea224a",
"metadata": {},
"source": [
"### Part 2: Compress the hard drive with the new method. What is the resulting filesystem checksum? \n",
"\n",
"In Part 2, there is a new method of compressing the disk, where we move full files rather than a block at a time. Again we start on the right, and try to move a file to the leftmost position where it will fit. If there is no such position, the file doesn't move. `compress_layout2` implements this new method, performing a move by swapping two [**slices**](https://docs.python.org/3/library/functions.html#slice) of the disk layout: \n",
"\n",
" layout[file], layout[free] = layout[free], layout[file]`\n",
"\n",
"To find all the slices that indicate files, it is easier to run through the disk map than the disk layout. The function `file_slices` quickly finds all such slices.\n",
"\n",
"Finding a free space for a file is more difficult than finding a single free block, because we need to find free space that is big enough. At first I coded a solution that ran through the whole layout from left-to-right each time, looking for the first sufficiently-large free space. That made it *O*(*n*2), but it should be *O*(*n*) So I added a table: `starts[length]` that tells me where to start looking for an empty space of size `length`, and updated the table every time I move a file. That speeds things up by a factor of 100."
]
},
{
"cell_type": "code",
"execution_count": 96,
"id": "8d34e96a-8ea9-4f92-b0aa-839b216ea14b",
"metadata": {},
"outputs": [],
"source": [
"def compress_layout2(disk_map: Ints) -> list:\n",
" \"\"\"Mutate layout by moving files one at a time from the end to the leftmost free space.\"\"\"\n",
" layout = disk_layout(disk_map)\n",
" starts = defaultdict(int)\n",
" for file in file_slices(disk_map):\n",
" if free := find_freespace(layout, file, starts):\n",
" layout[file], layout[free] = layout[free], layout[file]\n",
" return layout\n",
"\n",
"def file_slices(disk_map: Ints) -> List[slice]:\n",
" \"\"\"Given a disk map, find all the slice positions of files in the disk layout (last one first).\"\"\"\n",
" slices = []\n",
" block = 0\n",
" for i, length in enumerate(disk_map):\n",
" if i % 2 == 0:\n",
" slices.append(slice(block, block + length))\n",
" block += length\n",
" slices.reverse()\n",
" return slices\n",
"\n",
"def find_freespace(layout, file_slice, starts) -> Optional[slice]:\n",
" \"\"\"Find a slice position big enough to fit the given file slice, or return None if there is no position.\"\"\"\n",
" length = file_slice.stop - file_slice.start\n",
" run = 0 # The number of consecutive empty spaces we have found so far\n",
" for i in range(layout.index(empty, starts[length]), len(layout)):\n",
" starts[length] = i\n",
" if i >= file_slice.start:\n",
" return None # We only want to move a file left, not right\n",
" elif layout[i] is empty: # Look for empty spaces one by one\n",
" run += 1\n",
" if run == length:\n",
" return slice(i + 1 - length, i + 1)\n",
" else:\n",
" run = 0\n",
" return None"
]
},
{
"cell_type": "code",
"execution_count": 97,
"id": "e3036875-88d0-496e-9d2f-facd0e80a5b2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 9.2: .021 seconds, answer 6353648390778 ok"
]
},
"execution_count": 97,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(9.2, 6353648390778, lambda:\n",
" checksum(compress_layout2(disk_map)))"
]
},
{
"cell_type": "markdown",
"id": "24c0e7d7-6ac7-4e4b-9557-bd4e215ad0a9",
"metadata": {},
"source": [
"I got the right answer, but I confess I had an off-by-one **bug** in `find_freespace` on the first try, and another bug where I didn't check if `if i >= file_slice.start`, and was sometimes moving a large file to the right (thereby *uncompressing* the disk) rather than leaving it in place."
]
},
{
"cell_type": "markdown",
"id": "7a900425-fe22-4d2f-8d1d-46c319c109e9",
"metadata": {},
"source": [
"# [Day 10](https://adventofcode.com/2024/day/10): Hoof It\n",
"\n",
"Today's input is a topological map of hiking paths on Lava Island, with digits indicating the elevation of each terrain position."
]
},
{
"cell_type": "code",
"execution_count": 100,
"id": "5804fb03-05f3-402f-b6cc-6804c5d22512",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Puzzle input ➜ 60 strs:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"432109865210212123765432101234321098543289654320132112121058\n",
"045678774324301012892343023445456787650198763013241001034569\n",
"187678789465692321001056014896234986456787012894653212123678\n",
"296589921056789433217837895687145675323891233765784589238987\n",
"345437835434576544786921278761010014210710321212098676521067\n",
"032126546323465435695430789760121223121653450303145125430678\n",
"123010567810156543212345699859834321056544067654236012321589\n",
"543213498987657665401030787348765430187432198765987622345432\n",
"...\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Parsed representation ➜ 60 tuples:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"(4, 3, 2, 1, 0, 9, 8, 6, 5, 2, 1, 0, 2, 1, 2, 1, 2, 3, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, ...\n",
"(0, 4, 5, 6, 7, 8, 7, 7, 4, 3, 2, 4, 3, 0, 1, 0, 1, 2, 8, 9, 2, 3, 4, 3, 0, 2, 3, 4, 4, 5, 4, 5, ...\n",
"(1, 8, 7, 6, 7, 8, 7, 8, 9, 4, 6, 5, 6, 9, 2, 3, 2, 1, 0, 0, 1, 0, 5, 6, 0, 1, 4, 8, 9, 6, 2, 3, ...\n",
"(2, 9, 6, 5, 8, 9, 9, 2, 1, 0, 5, 6, 7, 8, 9, 4, 3, 3, 2, 1, 7, 8, 3, 7, 8, 9, 5, 6, 8, 7, 1, 4, ...\n",
"(3, 4, 5, 4, 3, 7, 8, 3, 5, 4, 3, 4, 5, 7, 6, 5, 4, 4, 7, 8, 6, 9, 2, 1, 2, 7, 8, 7, 6, 1, 0, 1, ...\n",
"(0, 3, 2, 1, 2, 6, 5, 4, 6, 3, 2, 3, 4, 6, 5, 4, 3, 5, 6, 9, 5, 4, 3, 0, 7, 8, 9, 7, 6, 0, 1, 2, ...\n",
"(1, 2, 3, 0, 1, 0, 5, 6, 7, 8, 1, 0, 1, 5, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 9, 9, 8, 5, 9, 8, 3, ...\n",
"(5, 4, 3, 2, 1, 3, 4, 9, 8, 9, 8, 7, 6, 5, 7, 6, 6, 5, 4, 0, 1, 0, 3, 0, 7, 8, 7, 3, 4, 8, 7, 6, ...\n",
"...\n"
]
}
],
"source": [
"topo = Grid(parse(10, digits))"
]
},
{
"cell_type": "markdown",
"id": "d951807a-3611-445f-84ee-352221a25968",
"metadata": {},
"source": [
"### Part 1: What is the sum of the scores of all trailheads on your topographic map?\n",
"\n",
"A **trailhead** is any position with elevation 0, and a **peak** is any position with elevation 9. The **score** of a trailhead is the number of peaks that can be reached by following a path where each step increases the elevation by exactly 1. All steps are in one of the four cardinal directions (north/south/east/west).\n",
"\n",
"I'll keep a set of points on the frontier of possible paths, updating this set on each iteratation from 1 to 9, by looking at each point on the frontier and seeing which of the neighboring points `p` have the right elevation:"
]
},
{
"cell_type": "code",
"execution_count": 102,
"id": "76b5379e-ee19-4607-91b8-88ec7b38023f",
"metadata": {},
"outputs": [],
"source": [
"def score(topo: Grid, trailhead: Point) -> int:\n",
" \"\"\"How many peaks can be reached from this trailhead?\"\"\"\n",
" frontier = {trailhead}\n",
" for elevation in range(1, 10):\n",
" frontier = {p for p in union(map(topo.neighbors, frontier))\n",
" if topo[p] == elevation}\n",
" return len(frontier)"
]
},
{
"cell_type": "code",
"execution_count": 103,
"id": "97cf05f7-fa56-4a90-b2d8-2cd4d9b81f95",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 10.1: .005 seconds, answer 744 ok"
]
},
"execution_count": 103,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(10.1, 744, lambda:\n",
" sum(score(topo, trailhead) for trailhead in topo.findall([0])))"
]
},
{
"cell_type": "markdown",
"id": "4656eb08-b12a-4a02-92b8-ac23f2361387",
"metadata": {},
"source": [
"### Part 2: What is the sum of the ratings of all trailheads?\n",
"\n",
"The **rating** of a trailhead is the number of distinct paths from the trailhead to a peak.\n",
"\n",
"As in Part 1, I'll keep a frontier and update it on each iteration from 1 to 9, but this time the frontier will be a counter of `{position: count}` where the count indicates the number of paths to that position. On each iteration I'll look at each point `f` on the frontier and see which of the neighboring points `p` have the right elevation, and increment the counts for those points by the count for `f`. This approach is linear in the number of positions, whereas if I followed all possible paths depth-first there could be an exponential number of paths."
]
},
{
"cell_type": "code",
"execution_count": 105,
"id": "b763450f-a565-4936-bee4-e531c2eeebdb",
"metadata": {},
"outputs": [],
"source": [
"def rating(topo: Grid, trailhead: Point) -> int:\n",
" \"\"\"How many distinct paths are there from this trailhead to any peak?\"\"\"\n",
" frontier = Counter({trailhead: 1})\n",
" for elevation in range(1, 10):\n",
" frontier = accumulate((p, frontier[f]) \n",
" for f in frontier\n",
" for p in topo.neighbors(f) \n",
" if topo[p] == elevation)\n",
" return sum(frontier.values())"
]
},
{
"cell_type": "markdown",
"id": "bfb4ae54-db59-44df-a76d-12e155fd1e5e",
"metadata": {},
"source": [
"(Note my [utility function](AdventUtils.ipynb) `accumulate` takes as input an iterable of (key, count) pairs, and returns a Counter of the total count for each key.)\n"
]
},
{
"cell_type": "code",
"execution_count": 107,
"id": "f8a87032-6556-4fc9-9bb8-573611aee8dc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 10.2: .006 seconds, answer 1651 ok"
]
},
"execution_count": 107,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(10.2, 1651, lambda:\n",
" sum(rating(topo, trailhead) for trailhead in topo.findall([0])))"
]
},
{
"cell_type": "markdown",
"id": "af410d30-7096-4be6-bb20-904b3c8e2f59",
"metadata": {},
"source": [
"### Part 3: Visualization\n",
"\n",
"Here's a visualization of the map:"
]
},
{
"cell_type": "code",
"execution_count": 109,
"id": "eea7e277-4687-48a9-85b5-a031a9d4b6e1",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAGTCAYAAAD5iWGAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD4dUlEQVR4nOy9eXheV3nufe95v7NeWZNly3JsZ44DhBBKSEoShgIJpYQyFU5SKGUILQFOUobD1EMgBb6vQAuFJKcfhLmclkKhEKaQiQJJmAIEMjixJVu2JUt69Y573t8fQo7Xfp5ltG0rttx1X5evNput9a55rb33b92PlqZpCiUlJSUlJaWjKv1oZ0BJSUlJSUlJLchKSkpKSkrHhNSCrKSkpKSkdAxILchKSkpKSkrHgNSCrKSkpKSkdAxILchKSkpKSkrHgNSCrKSkpKSkdAxILchKSkpKSkrHgNSCrKSkpKSkdAxILchKSkpKSkrHgNSCrKSkpKT031KtVgtveMMbMD4+jkKhgHPPPRd33XXXUcuPWpCVlJSUlP5b6pWvfCW+853v4DOf+Qx++ctf4hnPeAae9rSnYdeuXUclP5oKLqGkpKSk9N9NvV4PlUoFX/3qV3HxxRfvv/7Yxz4Wl1xyCa655ppHPU/mo/6LSkpKSkpKB8jzPARBcNjppGkKTdOEa47jwHEccm8URYjjGK7rCtcLhQLuuOOOw87LoUg9ISspKSkpHTV5nofRQhnziA87rXK5jHa7LVx717vehXe/+93s/eeeey5s28bnP/95DA8P4wtf+AIuu+wynHjiibjvvvsOOz95pRZkJSUlJaWjpmaziVqthhvdTSgeBtbURYLLvYcwOTmJarW6/7rsCRkAtm3bhle84hW47bbbYBgGzjrrLJx00kn46U9/invvvfeQ83KoUq+slZSUlJSOuorQUdSMQ0/gd4+W1WpVWJAPps2bN+PWW29Fp9NBs9nE2rVr8aIXvQgnnHDCoefjMKQWZCUlJSWloy7N1KBnvv/m+vv00P+2VCqhVCphfn4e3/rWt/CBD3zgkNM6HKkFWUlJSUnpqEuzdGjaob+y1g7h6+u3vvUtpGmKk08+GQ8++CCuvvpqnHzyyXj5y19+yPk4HKlzyEpKSkpK/y21sLCA173udTjllFNw2WWX4bzzzsO3v/1tWJZ1VPKjoC4lJSUlpaOmJajr3wdOQUk/9G/InSTG8/b9FgsLC8v+hnysSb2yVlJSUlI66tIsDZp+GN+Qk0P/22NF6pW1kpKSkpLSMSD1hKykpKSkdNSlmxr0w3hC1o+DJ2S1ICspKSkpHXWpV9ZqQVZSUlJSOgakGxp04zCekOPVvyCrb8hKSkpKSkrHgFb8CXlyqotuVzQNLxYN9NULiJJMZnTAMhIkiXgSqxtoMAx9WffquoaZfT77m5Zjw/Mfud91NAzq80DgiRmxXcRegMTrimm7RYTtEFGr80g+KiUY42NsPsJYZ8vYmO+R/HUDoN4nRh1xHQ2WbSAIM9mzANsEm3bR2yeWJ0dZlsozVxoS8sfV3VL+Qj9Ydl3nLQtArydxjIItXtN1DWYaIk3EfGi6AT3ygTjzo4aFqNkW6uRg9WGVLbb+9qZ1Uk8AllUfwGKdDLkdkr+k3YRmZM5B2i4022bLkpgOKTu8DhkzMCzsWrBy5S/bZrYFhEG8rHuX7q/rTTHfhoU0CHKNu1Z5lKQdJSnKBfGp6GDzAgD2erbvHKzf9KbmD3vMlIoG29+DCKSMC60IbqYruI6GkTXH38tNzdCgHcYTsobV/4S8oq06OdXFS159F7neV3dx+RVPINctPcaGvqZwLYh1TC7UsN+o9CD3AsD0jI9r/u4Bct20LWw4TfQnHdTn8K7aDeTeyAuw75cPketBK8SOb+0Urhkb1mPom1+i9+7Pt6j5uR4+/fG7JXkTo5RYtoGNW/pJGpYJbB6jLzeKvRmc/7NrD7ksADBXHMJ1fyjGAeXqDgBCP8Dkb7aT69z9ecvCSdbmZhpgbTRBrmuhj/Je2hfCZgu7v3yTcE1WH1bZxMZnjpHre5M63tp9zbLyLau/IbeDa86+VbiW+j7CB++nidg27BNPJpcT00Zn5CTh2lK5s7FzdjYs/Plnx5edP67NAj/Cjm3zy7oXAPr0Jv6y79+Fa7IyyvpqqzSKbzz1evH39veb5c0LMnF9R9Zvurvm8MNX/x9yPc+YKRUNXHThALkehCke2imWRVbXAPCBNwwed4vyYb+yPg4W5BV9ZZ3diS/JcvjD35pGPUpSiT8pdy8A+H7CXtezTwsAHI2Pv5nGfBpJdlsLQCsV+TQk+Q59Widc3gBIiUNd0mpG7NN85CgLAASmS67J8pdI0ubuz1sWTrI218DnQ0v562kYkWuy+tBNPoNearPX2TQk9ecaNB9pIimLpKJSxmpQVu5eIOlnOfpf9gnzYPcCgK2F5JqsjLK+GpoF5vfYW6V9RCau78jqL+rx80WeMWOafD1xVSKrawDkyVvp+NDxtcVSUlJSUlqV0vTDpKwPI7jEsSK1ICspKSkpHXVphg5N8mZhWX+P1f/WQFHWSkpKSkpKx4BW9Al5iTrNivuOCvDfXWXfhGTfaB1n+d87fcl3QNkujfuemHa6zJ3yfHPfz2XfYmXfkCSf4BAbDs1HjrIAgB155Fqeb8Wy+/OWhZOszVPJvpL7vgoAmkW7vaw+ZN+WXQl/wKYhqT8vpvmQfiuWfVtmvnfKyl2wJf0sR/+TfSuWtW+Q0qg5sjLK+qoV9ZjfY2+V9hGZuL4jqz8zi/f/TnnGTBTJvsFz1+RlcZ3V/3o2KwV1rfCCbDk2xk7dSDqn7VrYNpmQTlgyApxT2iEMEi0KsKE7DT0WAZh9zRTv+PgIWYCjRGd/M45jTNz7sLCITBk6/vakvyRwV0nr4bVbP0sgE811MHrpMwW4Q6+UEYQ7yMBuByZumayQMprT+/Dq294ugCDOYAUnPvfP0FcSB2tiufhp/dlk8onjlK2/MhxctOUkYfI2bAfV8y9B6ovA10zHwie6XTKZxIUyqT/btTC+uU4m3fh3ixXXvtn7bVvDpvUaKYsMzgnCFJN7UuF/Nw0NQJVsdty4jS2d++lE6nsItt1HFoDUMLD20mcKcFfqFlC7Yj3irlgfphajeN8dtC+gD2MtsZ5KJQt/8Ad1uuHUdeyZN0n9uXM9/NerbhAmerNgYPTcYSSeuAgFzQBTH7yNLAppXz/qN35cgJNCTcd85WTEmcVpwdAxdmpnWe0F8G3Waia4/WsPk81YuWzhogvWkPYtGC7a5ROFjUOo2ZhZ/zTosTjugr1zmPnga8nmqFUMsH18Tlig6nYPL6z8CkVDTMMwgLC0gYxHPzVxT/dk0nf8ELhldwWW8Uj+3KCB509/nfQbredj/I/Wk01aX2EQYyeKfYGbbwCgr2Zg7E8ssnGIEg1AWai/ZjPB3d+fgt/LHIuLE4R+DcfbF0dNU05dK9qinp/Ccuiu0nFNMKArKoUYFsTOpyc9lMK95N6ZroOZffQpxS44WD9Mf9Pveogyh/zsgoOZhB7VWG/sgenSNDTXhbVOvD+2XKSgJGkc6WwZ9cYC+rvTwrXK4DAeM7xA7m3oFmyLdjLPB0Jmp10zfGhlR9gnxpYLo38Nube7K8F8qUKu2wUH1UybOa4J26FdxeuF0vbN3u/YYMsiU5KA1p8NhAl9w1CII+gR7QuJ3wOCgHxZ0lwXVlUse2y5cIdHSBpacw7mDlrGIKrBCsTrpYqJej8lgj0/xVyXtlchbKM3JR5rcfpsBHP0TUfQ8sm9AGCeWkOkifnwYWBOp+HnGnEIy6F9Vda+XJs1o4iMIwAwaibbviU9Rmo5QhvEcBBatE+Gu5oI23TQtJ0iwkDc5NhGF6PabmQh6dhw0WXGo58YbN/xwxQLgUhJD4ZzbL9Juh7sCn3in3fqZBxw8w0A2P0ubIN5eo4Mtq5bc216L+QnWJRWt46vLZaSkpKS0qqUZuCwXlnnPPF2TEotyEpKSkpKR12H7dSljj0pKSkpKSkdvjRdlwJ/y/371a4VLYGMBJQRmWG8fOIxLzHKEcGye2X0NUe6ylx9LO47EYDELZFrMgcgk/kWBhwEhOKIVkn+CvQz5WL+chDSeYjbPDT1Ytpcuvy9EWi5gXzEsqyekPWU/p04l7c8BC3A94W8jmEc5S8j/OUuUcsn4GUue7KTE3FK75c6q0lc76yAlpEj1AF5Oxoanz+ubUKNHxwyCtxJKGUtO4EgcxLk2kxW14D8BIvS6taKPiH3B3txxY63wddFaEJrtTBz3QyZkBzdx8LT6tCcRwaEbpmwTloHPWNEX5vt4NW33UBs69K+OnY859MsMXrhBQPixCGhX227jtvXvZVYUbYCAz++uydYHrZ7KXbtmCELXJDEKG2YI4tW2fPw7AypadgmWnf+HO4asT40p4KxcxcIkdnqJLj5wYik/aDn446HNwiblULJwWv/agOZBKNBE5e9trwsItid243Trn4paa+W5uL2M19PJp+BaooXXzwlbLA0Q8dCYR0pixdo+PEDJTIx+l6E7Q81hTJGQYi7b55GHIngT18xwTkvP5FMxnGzidY93yQTKUcs630VnPzP70RWqe3AypDrAFBGBeMNkUwuuSnGarS9LAQ4pzRFNpz2Zg/9171S3JCFIaJd2+FUxX49HZTwie6rCRXvrqnhBQ2RPLea0zjpO9ci7YpBECwtxPnr15ENZ9po4L6rf0ra1+qvYOTGfxDKc0I1wBOvstHLuLRajoGQKXuUaPhxe6uwIMapgUizKPFcOg3bP/AN6J6Y73ZkYOLnIrHsO13sKe/BGqsllsUwUALdyLcWdNz47z5Z5JJEx8DG9UI/a5k+rFNpm0czLWy/6VayOerVYoxfRPvC5c+1yAJcsmOMMKcy9MjDltZkZnMZ4Ow/nAC6YhkLRoTRwmkA+A3MatVhO3Udxt8eK1rRBTnxuuhnCGmv46O1d4pcd/psJPPiINWKDrRmiRCPYaNNaGUA6NZLUmK03i9ORDL61bGBbmGQXG8shJj25oRrftfD7lmahl3QsT6gu/K61ySkpll04JQMpF7mCJLdxxKZC1FCqNPFvITYtSCWcb3tEgoXAAIYyyaCC2Eb7l4avKFZ3cCSpG5dQ1/mOFoABz2mLF7A0+ien5Iy+l0fe3ZSGr0yqhGSFwDicB6xT/PHEcvFU6gfMQDoaQzNccgJRz+qkn5WKsRse1lpiD6H+ozrQQ/FDLWf9HqIkga5t5eUMV8aJtcHB0qEHjY6XRR23EPuNYsOBgw6ibf9BbZ9zeJJpDxWGmJkgD79BTCxV0IP91I3GwOC/jcWiWd/hAa/6My1EQX7hGuu0UJ/PIM0Mww012WJ+07bQWOePsnaBQe1LMFd8tg2j4IFlgL3anTOKRViDA3SJ20r9WBFtE/qiYdSIgbFSIIeisZOgB6GoJGyjgMd9jnk4+Ab8up/6a6kpKSkpHQcSEFdSkpKSkpHXeqV9QovyLrLf+PIY1MoC8lmMK+lAZDvT/vTZpKRwjYSvoeDYvKGJsx+TwfkZcw6GS3JkhhscHnJA5EAEpiKgY8A3jIQAPm+CMhBHklXYIExWV1zvwdAYBGEdJgfzTp0LUkGFXJhBSU8Vi5rTxmIVmBCNQI8TBVb9FMEkH8sccCYrCxSUCvH4VBpWFGTAkw9CdQlsxjNA4HKgDGZdSY356xkXwAA2PwnltUsTTtMyloyVleTVnRBNqtlYlEIHMSm0NZR83cJ93vTC/j5P96EJDMf6SZYG7uofwAeY9FoGwkBbji7OkBuTVkyQrzl4in44SNpGJaBqfhEsvAlMPHTiT4CjPWlwEBtkzg5WiYwsg5mUZxIDdthAZD6/F48+7r3I7TFDU/BDDD8xDVCrN5ilGDD909EYoiTSWwXgCdctiwLP6dSYOt6U9HG2Wd9m0yOBVdDac9mYZLxds9h+p1XE5LWtlNc9j/+gJCtutfG9I7twgYm7ER48OcLsLrid+SeWcIVeBMD1vVheMO1hIJNnBKGnloSJlK76mLIrJCFRTdiYJjSuzFcbKqI/cxpzaL4kbcidcR2jOZa+MXtkzCK4iSqI8TYk9YI3trdwiDuetzr4cUiZ9AJTYydGi/LhtaeBZyfJzD37Rbv7a9g9NJnkUWrMNLD+B89RNrXKpoY/P7HhL6j6ymK4+vJApLqBjBIFxwOVkoMExNrn7xsWNGd203sZs2Cgd+4AxjMQF1auYrKeZeQ9qq6TVxb/ASJY613u5i5blYYS6WBItoX/xVJIxw+FYPfeDrZqERuCV5J7Au6bmKiQW1ezYVpFL/8EbJZDOY6uOeWiWXZqKZxAtcLoDjr408r+8o6DolFISC3KdSDHqxpEWzw5n20JprkXqfPhl1hLCEH+lkLP9tIKXDD2NUBcmvKSiHGYEXcGQTQEVn0SWyhq8PeS6u3EvrEllNzXVhrqIVnbLnEShQAwoUGKvO7yHWnz8ZwZhdh2g7szhy516uOLNvCr7DQZi0DzaKDgSJ9OuDAmrjRRDyxk+Z5tIp6vI9cD30PUQYI9Fo+/D0UBtxT3SAF6+wR2s8c10RtpC5cswoxIo3aFFrwWGAsiItsPelzFGIM5334E/S602cjaol9p1Vbg0n9BEJ3eFEIy2mwZclCcfrsPOIHdyD77GyvMVlYCRJLSLNI+85i2w6Re2V9lYOVemYtF6xYbM4TgNPRbdRDIMtHGVVTCvgN69R61It8ePNinyrWx/k04MAcHyNpJJEBu0nnEc6q0+h2kczT8RjOU9BQZqMKLAKzx5vUK2v1DVlJSUlJ6RjQYVPWx0FwidX/0l1JSUlJSek4kHpCVlJSUlI66lKvrFd6QZbYDsrs7TjSUEY2yiwGjZAGMwf4wOV5SGOAt/bMSw9ztnx5gs8DIHDQkvJQ6jKCm6uTvNQuVx5ZO8Y+Tw9zNoUyOl9Ge8tId84qMi8Vy1kxyuopz6kCK+L7by6bUgkVL7NoPRAqO1Bc++btq9yY1rOE5u8kOz2QhRcB+fjPxv3en78jQNwfCZI8Tx+RlRGQn2BZzVJe1ivt1GU6aA9TS8NQszFtUjtHI2jCfkAMDK75ITZfehKCBRG4sYo2BrZuooHjXQdrW/9G/I25wOUz8xFuvD5elp0eANTNDkp99wuTTBdFTJS3soHPOQV+jJl7tgkLTtiJsO+GOxFnjyhpMUYvHCeTiZ7GOPvqPySLmVarQrvwj4RJSdc1WO0pMpHKCO4YOlATNzDzsY23dF4NN+PfHAVFjC1sIr7OJa2Hv8ZXxHaUBHe3a2XWmtKwHVTPv0QoSyu08fCT6vD0snCvrzsYm3XJAiwLEr/03we2r2Nr2Ly+Rtqx0fDxns/5hOAuFBO8/FUitW9VHVSveD1ZFHRdw+ilD5AF0TAAbW6X0Ie1pIK5e+9D2xXBqcDzMXHvxLLKUilWcc6/fwmFSATuzKKF9lCPjMdm3cV/XvQ8shnoJjb2TveE9jUac7jwg/+LbrAO0lftLSNiXzAMbAaQ6Bl3qwVg4t5Rvoyv+izxtC4ZPUSVmnCtXEhx1Z776UbA92BL5ovRS58ptE1S6cNuZn4KYhOTDDltaPQEh8wSthw6OH+Z+ZDZqGqGDoOJ177a9Wg/IUdRhHe/+9343Oc+hz179mDt2rX48z//c7z97W+HfpQW9xVdkNOEBicHFmlFzs5Rj+ZJYPCk40HXQ7h1caCbRYfQysDviOUM1Qnwgcu9boLGPH1q4Oz0gEVLPUIP69S6EFi0AeT8AZ2wTewc/YaPxr276b19NktkakUHhQ0nkOtJpY6wXyTP9aAHLZwlZK2Mig3gEAI29ENMp/2kOLbhwE0oHb7e2EPbUULyWv0llvyNLRdGpixRt4D5TaeRNLxeCKvdINelQeILDqF5Xdtk27Hd5q1R16/TWVvJbJ6B31lkhrSekl4PUXdGuBZE/Zht9QOeuNnyu+Gyy1ItaqietJ7ca6Ue0mgn6ZW9qIB2eR253+uFmMnYeNY7TUIDAwfvqwj6hd/UXBd2ROn8oOVIy9jup5aaNBfAhuIC9Og35Hri9+TzRca+tGfXpHazXB+xjYj0BZklbDXsLjsfMhvVxcwcf9aZj7be//734xOf+ARuvPFGnH766bj77rvx8pe/HLVaDVdeeeVRyZP6hqykpKSkdNT1aD8h//CHP8Rzn/tcXHzxxQCAjRs34gtf+ALuvvvuQ87D4Wr1v3RXUlJSUlr1WlqQD+cfADSbTeGfL+EKzjvvPHzve9/D/fffDwD4xS9+gTvuuAPPfvazH7UyZ6WekJWUlJSUjhuNjYnmLe9617vw7ne/m9z35je/GQsLCzjllFNgGAbiOMZ73/tevOQlL3mUckq1oguypvPmbjJaMWvvCMiDguchfAGeAs2COvvzIUmb87g1me+wwEFIbZNSlnkoXEBedsQ0LzIvZhkVy7WN40jyJ/PrTnO0I/ehTZI/i3MWg5xAzuMzHjHObIA8SDznEZ7HpxjgqdAsILekPGUJQ74ssvzlqVeOeAby9dUj4Tctk8yHWkbgcnmRUeAympo7wZHnlIUsH//tvKx17TAp68V2mJycRLVa3X/dkRD2//Iv/4LPfvaz+PznP4/TTz8dP//5z/GGN7wBo6OjuPzyyw85H4ejFV2QI83KRSv6YQW3DL4ZVvrIKwZ7325s/tFfI2yLrx1kvrypvXyyOxo0cdlry9SgX9exZ95kfaiDB+4TOo3R83HKg98kxxlaaQk3D11FJrXAM3B7hliur7Hw55+rILHF4ypxYwHb33gVWbBlZW+igi/99nRhgu30Uux5aBRuJjhBu5di144ZsilJTeCxTy0LE4q+t0m8hAEg7atjx3M+Teqp5pYQbLlE3CCkKdaeeD9dgNOE1CkABE4Fu9c/TWivUNNx6liAXixmOo5NAHWSj4MFiR81RU9yP7Vwy2Q/2Uj5noGxUzeSRWFNJSGUuh55KO17gPV55vok4ghFiJNxXS/h2YaGlilae6Yp8NDmfsSR2Ff7ihGed+oOoSxeauM3u7egXBTz4YfALbsrZAHu9FJsf3CO6auU7B4q+njSda9cFjEOAE1rDW4c/CthTHdCE7vv9tg+CdAY51EQSmn5bLs0yhZuvuBSulGuGli7fpYc99MMDUP6rNA2s10bn/pKQI5hpdAxtJ563HeaPm687X5h4xolOmpj46ROH/Ri3H7f00mwkHLFwt+eVxbyoUUBCqCLtabr0Ozjk7I+HKcuLV7822q1KizIMl199dV4y1veghe/+MUAgK1bt2LHjh249tprj88FOUnSXLSiH6ZomIPCtYLfxPDOFrlX5ssbW+6yye4ABur99InV81PMdRkv69AHFig97DSov/KCM46wj5LafpcSy0nBhfHYLdQs/t772IDosrL7URULPXHR9Hohpj16LtXv8vRwpW6g64s5Kcy1iJcwAHTrNDA7AFQKIdKS6GGuBz3W1zzp9RDtDWh72X2kvXwYSE0XbuYnPR9sPg4WJH4wEut1pks9oRfTTmE5tA/XqgGh1PWEUviAvE/qQY+0Y6jXYVSG0Mfko1SlY6a/0CX+6q3Yws6ujexBAT9MsRDQJyuvFyIMqDcyR3a7ZQ/FDA0M8MQ4AMRmHxnTXhRi2mswvycnhzn6mpNRM9ExauS6bUQIy/T+RfK8LbRNp22h0QKyxwocV0Od6SPdboSZfWK72wUHxWF+/E/1aEY2VTXSR3SA9x4H2LdhSvnU7XbJ8SbDMJDIwv09ClLfkJWUlJSUjroebcr6Oc95Dt773vdiw4YNOP300/Gzn/0Mf//3f49XvOIVh5yHw5VakJWUlJSUjroebaeuf/zHf8Q73vEOXHHFFZiensbo6Che/epX453vfOch5+FwpRZkJSUlJaX/dqpUKvjwhz+MD3/4w0c7K/u1ogvy3n0ST9gcHtK5fXlz0MO5vawZQlJGDzsJX3aOluWIXQDQSjzRKiu7rTHxaHMSyFloCJC3ge5RtyWA9/zOQxoDvNd23vbK40+dl+A+EKLan25Oop31bs9L7TN1zflsHyyNPH2kF+RrxwNhrkP5vbwigObvxJHQAN8XHIvvZ5xvOAAYJv22LyPDZWXsMUdlZf0JAOI4Oe5MJFRwiRVekAMvxXuuvZ8cm0k0E2s2jME0xQqMohRBJA7YNX4bA887C4XmHuFeu+KydC4sCyXQzpwYFjAgDsAIJvFtBgBjZhKnfO9D5IhSMruAu27/NYwDAKLYjxD7ASGh52oGQN3+UKwUcN4lZwkLn2UBv9xhoK8vYw/afwoGv/EvSDsicGMVDbSHfDLRB2kJmyoaDmQSHFPHBWdY5CiMF9n40eazyAIcxZS47e8tsD7UwdB6eOvF31v8TZvQ9cH2HVi44gbigaybKdae3Uc2Nnp/CyPniRSzFnnY0N0HPRbJGm/HFNx3/zvZOGgjazHx9/9AFvJS3MCWjuh3XOh1cdn018mmS+s2MbNjAr4uwlBO4mFhRyh4N+t6CvuEoVx9MktfNzwHM7uaaEMEf3q9CBMPN8liNuI0ib+6azo4pw7EacajXTOwobaWbFSSVMfE2Bpy9CtOgO0ZsnugHKA97NC+p7nYt/5pZCPloYBNnthHdN3CpmX+HrDYJ/fsbLJe5YYhltEtWNg2SUlo09AA0JMdpp4AZXHDPuXzVPfQoIULnmux9bdp7GxhM5BqOvY26EkN19Vw4QUDZONQKqTYbXaFfJhGAAzTDV2q6ahJNsmrWWpBfhReWWfpQ2CRQHQH+J1sVonXRd2YB4iXtU38kgFAA1jSFQDr3Zz1oAUAPfVR7FBy2mv5mJ+lNCon35E8BegaSlVxoXdsoFjRCRULRDDHx7IXpZ7EcezCzhzVsA2gXtWADKu50NVJPoBF4nZ2Rny6T32f9aFO+ork95Z+M0tIRyGkHsixTycXo5qwFHMp3EvubfrzcPdO0Pw5GjyG5i/EtI8koY96vI/cG4YeYuY3ASDJFGfRt7kvV5/MkrVBVMBsQCncIEiJZzUApEbIpl3U6SNXAAcli/Z3P9JQLtGpgCO7q4UuS4wncBBa1Mc7iAzYMdNHmAhTMpLc64WwnOV5N9suT8vDBnuyA4hIX/XilKe6Yw0ll6+/7GkNz08x32O87G2g3k+pfduIEGk041xdH69S0Z6UdaaSkpKSktIxIQV1KSkpKSkddalX1iu8IBeLvO1gHiu87Le7JR0J60yZhWfq5As0zykbu3VJbEB5GXyUA0QBeJhHloasKBxwI2sDI+yx17nflAFqeQLNyyAXEpt3SV0eOsvGygbkr7tk0B6nI9En88JlnFVkHrARyAfLcRDZoaS93N9bvL78iVYGXuUZYzKrWCl8yZRRVpY8+ZCNc0BuS7yapV5Zr/CC3Fcv4LLXnr1sa0q/G+Du7/9agCk6fRZ2v+L/Qc0SvyEFZhG/DdfAiMWJ20ttTM7ZhDhODQvry66waGkaMFSj398M18EAF0Tc0DF45ibE/iPfelKkmL9vkiwsc0ZNave3WAWPDEDT0gHUyCAutKdxyp1vIxuEaK6FX9w+CaMoLpRW2cGF//syYcExDCAsbSCD29dNbFp/KpkgWs0Et39NzLdvtdn6SKIYuPGVxDbU0kIMn7Ze8CZPu20UGTDMKtp8XbsO3Eyg+TQI4O+chJ6JBav1fBY661XX4PsM4NNpWrjxexsE7+QgdbB2w1OIl7TRmMP5N72ebMaWfuvA6zJLU0TRYduDcu0CLLZNUBPTjvwQ7W/diiQUx10w18H0HbNkc9RICvjMWf+T+HYniY6BjeuFvlo3OwQiA4C9Czre8x8+WcyqhRT/6xWuAJilmoYZcx1ZhFqdBDc/GC3LwnPQ6eJNp/8CZV3sC2bQQft7UwTIdPQQI2dsQGyI9WroCYqbxpHoj0yFm3QNH7tqlJDPBQcYzNilAkA7MHHLZEXoZ74XYftDFMJbtIbsI32yZAQ4p7SDQKec9XAKHRXNUq83j0OtrJd1glzWlEHPJzCF1a+hMr6R7L/jyEC3Sf1KPT9Fg9klOwbQS3XBDc82IgDMghx5bBBxAOR62PFY4CmMq4h6ywsoD/AgSrHbgj5HgaJw3oc/Qa9XNg+jnDSFa7HhosvAbH5isEBWM4qoXaLRYesj7HhwGpPkull0YHeK5F6unsyiIw3YTsArr4ek2aBAUZdPu1vrZ+u1242wa0H8TbvgwEyoJWS902TtSznJLE2TXo8FEPPYg3LtAiy2TTbtpOMhnNxJ7g3nfcQTFFZsVzegMU+hKbvgoJbpq3aJtwfttB0W4Nw0qqGYXWDhsDDlQpSw4Bpr4Wm0cKq9g9wb+h40Bsg0iw5KHn1Lo7kurGhAuBZbLkaHZU9btA3iSCf9zPN5CM+RQGeVQsxCp5z1MCB/E7CqpWmL/w7n71e51CZLSUlJSemoS9MO8xvycbAgr/6X7kpKSkpKSseB1BOykpKSktJRl4K6VnhBlpO8/HXOgi4P2XiwtDm6UUYgHwgj/T7JKFxXEmieI8xl34OyYMqSZLQ3Z6kpI25l9opZsAcAerKg75Kyc7RxnnuBfAHbZWlbEU+B57E6DG2eDucktXM9AvagXLsAfNvI6kPWb+yIN93g6oSjugEIgJyQP8YSUkZkZ+MPL4m18DwCfRKQ9DPJmJGJI+NlZLh0rDP0uqyeDpb+apY69rTCC7JlJBirNcnCZyHAOaUp0gltv4XLZ74tDLbYj9D9UAtrCuLkVU4jjJ+4kVCTjcDFzY0XsaTmHV/bJUxsfcUE732VSahJ3fBgbTmJDNao28PMt28TBr1uGCwlPOA6+NSGHcT7d8HT8fabxElmqBziT05voOqItIdV6MCV0c2gR4asok1o3sR2gZGTkJWlxxirLZC2OaEa4IlX2cJEWjTKsDpMfcy0sP2mW6ltqFnHv3bFIOzVYor3XbodaZZoSRNgL4VwolYb+/7tm9AOcHSaS6v4lP9sNLuZttVdDG0YIv7hvu6inbEBBRb7QlampWF8c51MmPbJdfQu+CY5QmWWCxittgVbU7NooT3UIxN63Gyidc83yWIRNO/D9AduFajnYM0Ipt7wUfiRuACXEeJTL6P9yYUHZMIQd4tDuP0pf4leKm7ouomN7eOz5EheDxawhwJFBVfDhReIFpdp2o8bGs8jpxg6gYaxU3tkER8o+CjtuUugsr3dc5h+59WE9vYKfRh/7Q2kDWpuiLdcPCX0SS0qY3b+NAyXxHkhT58EAKtUwqWPe7zoIa4bGDEDsiCakYfxPf9FCPOi7xHb1bmejr+590lkMzFotXFZ9UfEotUyE5T6RoW0ObtfYHGhNtMSQCOoK61yreiCnCQpS1NaaYg+h06KWtSEXRQnvlD3MPvwdqAh3rtITVKLwYVoWEpqZknSyqgGCzRghJ54fGDwrofYFyeig1HC6/voJPfAtMMGfT+xNE3uTcIeIgndLCOWs8RtavFP2SkMaduMDGQ2KEEKLaL1EQULLIHcqjokCPuWggerWiH3Jr0eOIY5jRJErbZwbS528LNendxrFxxY9giTCsD4kcLv0naxbAu2Q4eDYwPpuo3kumZEMGstMQ2ZpWk4T/oNAAQtSj174waaXTrR1gyf7U9Jz0OUWZA9vYSp2lZyr9cL0WZOPfhdD9hDrUfdokUsNT0/xd555nRDGMJyaF3XSz6hsuNGE/EEpcCD8VPZNqgUQowyfbJkGAAyRwJz9EkAGCyX0DFqwrVFG8sWuddIeMI88XvEdrXp1aRUPGfRqpku9AztDfB2vwCQJsuzHl5NUq+s1TdkJSUlJaVjQJp+eK+dDxIca9VILchKSkpKSkdd6huyOvakpKSkpKR0TGhFn5BlJKDUo9VgPIZzUpNZ68P9eeFITYYABQ4SaJ4JGZfXv5ijUfMGfc9VJzH/DUrq4820TV4PaY7aPRJlzEOuH0xcX8jG4N2f9hHwHj4wZrKQD4Z61j3efztI6dgA+PqzUr5jy8YjVx8AqOUt8vtNc1S2rN/Iys4RyEeiTwJ8GaWnL3QJ2c1UShYeW5KMDs9Lex+PXtbQdXkHW+7fr3Kt6IIc75jE9LP+gtCUTtnClvc8jwyqVDfgnXeJsIj4u2ex+4Y7EbbFSUa3F/82O3GbxgTeeeL18FNxYDprUuDx64WFwS0YADaRfO9pWXjPZzaQxdNamMcLbp4UJ9LBIXRffwU5wqIZGob0WTKoqm4T1xY/Ae+A/OkwMXnPeoyUxDKmhsHS3obtoHr+JSQAQ+yUsKO0UciLr7mYao+SY04mIpxeepgsIjF04p8baCb2lreKJCqA3mYL933gUjKR+rqDsVlXWCjXVBI2sH2o2ZhhAtsHe+cw88HXCnWdDCV45dvH0HEz8EsOb3RgcQEaO3WjkL9SycKm9RpZgIvBHM796XWE5ke3jfaD2wWfcZnHuI4Qa8+gi3KztAafOP/VwmJhWCaG774XXv9a4d4FN0D75BOXRXCHlTZOO20eXVu0ArUNAxecYSEMxXoqmEBf1yYbVMsxEGZI/CjRAJRJPcnSLoYpgntE8l/mPR71D8Bj2sA2HNInDSMChumitdfejE+cP04W4LhQJm0OALZrYVvG77yMDi5sfYcswLrXRbCNepJHPR9zv9wmtIHWDPDq225DYIp9oWiHmClWGOI+wNQHbxM2FPrIENZ87P2IMmkcr17WmqYdltvW8eDUtbJe1q0OS1MWNg+ztGJsuUhLIokb7mqivZMSj4uB7enTn1l0MGTMk+ua7cLKUKqx5YKLydTugXgdA8DwQkAITnNtEWGZBmZfJG7bLHE7rIv5Mx0HA0YFaWYTr7kuS3vHlgujn/4mFyTejwz0mi6yGSnrHZbgDOAQ/9wABjoGQ9ZGKfwRSk57vRBWuyFcq1UDNth6LAlsH+6iHtLJUAmlEzailP29HN7owO+obEcsY6list7epbCHkkep2LDjoZvxGZd5jDt9NnDGOnK9kxYwXxomeXOLg4CXPQIX8fXHENy9koOksgbZGF22kaJe1YBMj7LSBCNF+nQRwMTeLIkf8R7osrSdBZ96bcu8xwf6pWlTT2ePrY9mmJA6BRbrterQMc15S9cMH05En9YTv4eI8SRPmNMXQctHf5eenFict2j0tKDlozeVmRfsGopWH7kXOE69rJWOu02WkpKSktIqlDr2pBZkJSUlJaVjQIqyXmHK2qxkXy4uSmoxyEAM2e9xS5IGtj8CFnkFnsEh34MACE5NwvUcgM+RCGwP8KCWzIrxwPi0h5pGHsDHD/nBIg1sX2IsK7s89JPHihXgIbAD3agOFPl2vJQ/BoSSWVPK+ioHqckANWn9Mf3JCHnLUBmsJO2rOfpCHhtaGZSYJ9+yPMvGrqxeuVe/eQA64Mj0Be5+2dwCHJ/WmUorbZ1Ztlh4g7N4BBYhphJEgtKOuzjhhacjms18X1lTR/U1ryRgk65rsNpTZDFLbQftYRGKCTUb00wA8GZZw9ipIQOAbMavn/MNAWLSSyV4jSqZqAwtASp0UgtDC/tuEsEws7i4cGQHdhon0O55iNDdM0ERHwzHyeQTJDGGTgwET+AUOobWJ2TRShIbD+mnEx9eN2jgOfMfEyZSXU+xZWwLIogTlWEAjZM3EgpWM3RMnTEiAj66jR+3txK4LE4NRJpF6s/UBkjfSWtVtNu/hT46KtwrC2yfJCkL8sRxjIl7HxZgr4FqinMumSIbFdPusWCdGUUYgLiZklmaRv0j+M3/+ABZcDzNxXlTdUJ4p6kGp5j5xu2m2G1ay+pPC24PX+t+F60M1CWziuVAPgAId+3F9F++UNgcOWULF/7tS9i+EJY2LMuGVmZvicEQY6+ndq6tToJPfUXs11EQwduToJdxXQsSUwpvcdaoNTfE807+ldCH7dQDKIYijbdrujaxz5X1hVZhEB/b8FZi85o4JQw9tSTMLaYBeL9pQcv09zTVcGKsE0Zg1Us7TMr6OHAGWVnrTK+7bItHgA9KH7cWYCZdmHVx9TGGaizYpAc9aOEsC0JlIZCYAZgAoBMksBw6+BzXhD8iWjQ6NhAmtCMs2u8xtpdNj7H24wE1AABzfSF2sLtHd/Z2QYfdAg4kuBxXQ50/gYEFZkgPhnOwO3PCNc11YSVNcm9suABjgRrAQc8SAR8/MrCTgcsgZne/jC7tO/HaARQ2DAMQFzBZYHsABN4CFq0iiX1pXUORmQz0uMeCdUmvRyxTZZam3YF+BHUKdXl+ilJ7eXBOqRAvuz81qjYemnMAiG8UZFaxHMi3lHYWyixsHkZZ0he6DCTI2dDK7C3NtUXWznUhStDI9Gu/G2HXg/QNg13QsX6Eh7dktpxZG189kDypx3K7yuX2hXmnjnnG5tVxTdRGRFtYxwbCYT3b3QEAkgft1a3DfGWN4+CtwerfUigpKSkpKR0HUlCXkpKSktJRl6bp0A7jtfPh/O2xIrUgKykpKSkdfena4b12Pg5eWa+sdabLB3fPRUIzdpUACMy1/7rM9pIhk/MGSueIzDzWigBPD8vIS5nyWEjmNRDIxmkFVpb2lilmwkZqPv9tT9ZeMh0RG1Xme3NeejgPvyLrIlx/ktlEysqYh3TPc0IC4OtPZm8po4q59pXZfeahqYF8tpx5zrnK+kIW5lpSnrkFACQQ96qWOoe8wguywdCHAKC5DkuuciR0EM9iz0+bCOZEty7d3o0N+Ag59qGnMewtI6Rx9nQcvO3XIplsucBzXsoT0pc/t01tALUuTpz7snAsopfY+MrkH5HJ1fdi3LwrIJNJGA4jetVnhSDxpqVj05iJtE+EOrTGPE78wCsJjarbu3HteaL9JgC00wI+cu9lwmTlFCxs3CLStgAQBBGmJpqETJ7z5jAzmbEBLFdROe8S1vaSo9QbbQ3/9z+XS3v/rkyZ64a+FrjsBmExczQfp+77ObSaCPPpXoSJewMySTsFC2dfePqyAt4XjQClPfeTydjbPYf/etvnyCJiVlw87h1/IvRhmaVp0SlhrMbTw1k6PApCzE5NI/RF6KlYNLF5/emkr/ql07D9AyL5HwYxTt4VoF0ZEu4dKPgo7bmLLji+B3vi6+SIUtpto5gh3fOckFhKO2s3KbPOjP0Qe5/1QrIRMBDgiseOwNcfgRANywSeMI5iKoJrZrmMmaecRMYudB2zwfJsOcO9e9F41Q1046DFWPfEfrLY6oaB/lM2iPmolLD20mcizdiAaT0XE994mLVzXczmI33BtHQANXbMBKcfh17WSiv8yjrwCH0IHNwSMktC+90IrYdmSRpOn41kfo5c14oOEPQTcLfVdbB7Vrw6OGIgTGjHto0I9Rq1AXT9CPUFcWOwN+on1nvAIkGbJUP3q3+9WBbXxNzGOrmt0LiXpVGdPpvYbwLAjniY0MOOyzdxEqcsmVz3moT4Nqqm1PZSRqk3WhGWS3tzcmwQMtnQO3BKXQDigud1E9Yi82BkLRfwXp9m7FwbTWJpCACVzcOkDx/M0lRGD2fbwO/6mNuzQO51nRLbV/0whT8yLlzzeiHCqEF46nrJZy1rE79HyHqAJ4XznJBYSnu51pnevM9a7Rp9NvpPF8eiaTgYKDNpVAuIGAtPPzLQai7PljNsemybL9peUqtYs0jfKmmGAavK2MpOO1I7Vzoeqa3nkpgkVr0ebWOQjRs3YseOHeT6FVdcgY997GOHnI/DkfqGrKSkpKR09KVph3eWOGdwibvuugvxAUfZfvWrX+HpT386XvCCFxx6Hg5TakFWUlJSUvpvp8HBQeG//+7v/g6bN2/GU57ylKOUI7UgKykpKSkdAzpSr6ybTdG4xnEcOJKY5EsKggCf/exn8aY3vemohnFcWSzN5s3d8lC7R8rLmgsYzgUnB/IFKLc1/mNOHq9ZGQGauLwXeB5v5Kwt45Jk+TsQnFmSjGjPQ6nnpb25LiLz35b5F8vKfiQC3nO0cR7qHMhHD8v6KgeWytrWi/n9dx6P5ty+6zlo9Dz+z7J8ZONq7//NHB7crI+6JB+yvMjqIxtjfX/aOU9I2Lzd9uqWrh/+PwBjY2Oo1Wr7/1177bW/96e/8pWvoNFo4M///M9XuJAH14o+IcdegJl7ti0rGDcAzKZlfP5JbxEmWMMaxOgbPol2IxPzFRb27d1LFiGvY8P8kU0W4EB3icctF5wcyBeg3O35ePZvbkJoisd0FgILty+8kEywS79/4PVK1cYTz+lDwRUXHHtsAwa/8S/kOIiFAAP3folMBLVyHW8/50T4/iPXddNEU6N0aauZ4PavUdpzoT2N7T8UvZExGGLoSkpTB7GJScbHu9HwMXHv/ULa5bKFiy5YQ/LR82L8+M4GWUR0QwPQJ7RNRQ/xxNoUipko1ut3z+HVt32JBP8wB/phvvbzywt4HzRhP/B1soDIiGC7VgZRKptA+eulko4LL1gjBLZoLfiYenAn4gzN4wUJ21cNHdi0XmzfMDIBUN9m267j5vKlMLMWl1UDa9fPksVMMzT0n79D2JDl8YoHAMQRihAXKM4HHJD7P1tF5rSGZQIj62AWxXFn2A5Gwh3EU3tmPsKN18ewHHGMJYmO8ZPXZk4EjGIkQ64Di771vRNt1pN8d8OClT5ST53QxO67PbiZeSjSbZx3ySDZLDqugc0bHaEv9HoxfvHLOdajPQz6oV5w8pqcnES1+kj89t/3dAwA//zP/4xnPetZGM34hj/aWnEva86jmQvGDQBzVUpC2wUd8cnjQMb+1e96mN4T8nMdc+zTLjhYn/E15oKTA/kClCddD5XOFLm3xRDPMuk1E/Ua8/RtpDCHxsh1Z2E3zIfok1tcqWFoUOx8fmTAY+jSZhSx+TPbDUJ2m2uLLE0dgKfU223qFW3UTDb4vOfxtDcfON5DJaQ0cNxossHgk5EyvGUGvNejeZYelhHBVj99e5Hq/BN8Csn1VEe5JLZ70PXJYgwAlm2xfdWxwdYrR5c7NtAxavReI0LI7C+s1IPhtIVrebzi99+fodE5H3BA7v9sFh1yv+a6sNbQ43yx5cJiPLW9boLGPOd97ZDTEI6rob5pnNy7SP7Tp3jPT9HIeJJ7UYhpr0HTcE1sqNIz9o4NlEs0bZlHu+fne+O0GqRp2mG9Ll7622q1KizIv087duzAd7/7XXz5y18+5N8+UlJbLCUlJSWlo6+jFO3pk5/8JIaGhnDxxRcf+m8fIa1+axMlJSUlJaVDUJIk+OQnP4nLL78cpnn0n0+PinWmDN7gLP9kVngy+EWmPNBEngDlMkBFZm/JKTdcxgR9B3igRQazZL+lLSn7HRaQWxrmSVtWRtNcvk2prF1k4BW69LMDwNerrE5l7Zt1YALyQ11c/cnaRQaoceyQ7CEjr81r9jsskM+aVnZ/HogMyAdNyfIhA//yzAuy+ssD1uVJWzY2AMBlwsOudj3axiAA8N3vfhcTExN4xStecci/eyR11KwzRy99JiFV9UoZZ47bgqVhK7Dxre1FErA9/h34wQWf37NtF8lLygA3rhXjgtNbxCfY0SK00+UBKrJg63NmFzib/CQMy8TolvVCvk1Lx69+00WpKi6GJSPAOSUKqHBB3wEeaJHBLK5r4rLXnk0WyqILDL71JGERNosWC8q0AxO3TFYY21CDAHRxHOPGf7qL5CP0Y7Q7MdlgVdrTePZ1/yiQ5nafi32veAxqEJ2s5FaMHna+5JlAMfO9t9vBtB4LNK2BAMWzbGqL6BZYC0SkCbGQjHo+FrZ9k9i5BnMdTN8xS+hdr9CHbVd9Uqi/KDBx0uM2o9MRv4Pqho7tD1LAJ/B83PG1XUK9Djo9vOmMe2AGGRjQTFDq24QI4sbGMICwtIH2s8hDad8DwqKa6gYLb8lsVDuxibsaZwinETq+hl0LM3Aym1ajMYfzb3o9YxW7+N8Hto1eraHy+AsBV/weK8uHPeDhUy/7AXqBmLYLD9qe78A/wIbWDDpof2+KgJpGqYj4jLeRDYyFAOeUpgR6f74Z4X99zSP9WgY32kZC7FXn4gCNXVNot8W+kMQJQr+G4+6Lo6YfpjFI/r99xjOewa4NR0tHzTrTWscDGVlLw5muhVqLAjReL5QGn+dkmPTJw3U0lFy6NbXSEGm0PEBFFmy9VeW35IZpkHw7rgnTdeFnHnArhZgFVLig7wAPtMhglsGREur9FC6xjQhmTQTJrNSDFVFLwzjSpbah2TL6XQ+Neb5tOJntBty9E8K1UlhF1RtZNnjlzfvQd1JrPIDGfDf6bMT+OnKf5RZYC8Sk10O0lwJ+nJ1rOO8jnqDgXzB+Kqk/r5cgSg04ReYtAwP4+N2Q1Gu13MBo9wFyr2a6sJImuR4bLrqSfpa1w5TBWzIb1V6io5GI9eeFIWYSxra105RaxVI7VwNJlZlDJPkwEg/r+2gZk56HaEYETEPfg8aAmnFxI3qMBaqVhuhzxKOBzXnezlUGN9pGSuxVIz/A3Eyb3AsA3S7/xmRVS0V7Ut+QlZSUlJSUjgUdZ+88lJSUlJRWozRNh3YYr6wP52+PFakFWUlJSUnp6Eu9sj72rTMt5psNIKcY8wQuJzFTl/InqZY8wdZlQeLzUJ2cxaMsHwBffzK6NA/ZLauPPG2Tl4rnaO/Y52PR5bVi5CS1RZTEvzsSlpBZJyggn+UqwNdrT2KRmZdMZgnpnCQ5V3RZGUN7+ZaVee1cOdtbIF87aj7jOAR+fByJcec48v5bZBgDpdWvY8o6M+3rR/3Gj4vBwjUdp44F6MViD7cNAxecYZFF1e40YO34BLxUTLvoJBiubhFoysQtYVvjtTToewjcsrtCFhw37eIlRRGWKQyWcfbVf0gWC6NcwJNO20GpzoKBcL0DPzwgKD1M7DVMlIqZmK86iMUjAOhGDAwzk2McobTnfmEirfdsjJ16DtkIyGxDDV0DINphunEbWzr3kwla3z2H0958NfHc7jll7Lj0g2LCknVmyOngvY/9AVlE7KgHFEVy2rBNeHNduP3ixJ3UB9F5/evIhBmYRfQud8nxp9AuYnKPuCAezBbxPxtl4lnOkcIdX8Nk52Fy5K3a7+B/fVVDnAEOTVvHueaXheNcaRBgrr6XOMU5dgpr4wnUj3rfLO687nPCBsYsGPiNO4BBS4zdnWfcAUCgmdhb3ipabeoGRsyA3CvdtFkpsfaU2bY6BQu/XqZlpanFWNeOgD4R7DIjD5snqe2tpmtSOnxm/dOEI4PB3jnMfPC1ZCOVRJNIbnohoeWdsoUt73neYY077kSFbRs47eyNWGhmx7/OAq2rXZquS4/ELffvV7uOKetM89QaISR9GEhNF24mp7aRos4EItf9Doo6k7btYMAQrzedddKg7wsBfUIbMugOOY1jFAYoBa65LmoM1RlbLrqVjM82dBhWCs4HNAIdeBY8qU1hlorteTY7eGW2oY4NUieFOGKDz8eNJiGhAcAbPpFckz2BVqwQ64r0STHseJjNkNNm0SGLMQAkVgHpGkpfx5GB1KQWepGfws/cnccWEeBJYT/wMJ32k2bcVNDgjtNHJj3ooTS9TSxL2EM/HiIjU7NdWAV6Hry5Z5bYhjq6jXoIRJnul2fcAYvWqB1DrD/biBBpLXKvTGmqE6pYZtvquCb8keVZVtpGhLBG82EkHmt7G1suQgkdHlprhGvhLp72BgC06WmDwubhwx533ImK0LPgRTYc5sXB8WiduRgP+TBeOx/FKE1HSqt/S6GkpKSkpHQcSEFdSkpKSkpHX7p2eF7WxwHUpRZkJSUlJaWjL/XKemVfWef1suY8k/MEFgeA1KHuUwDvh2vEPKkp26RxXsoykCAP0SojQ2XKQ4Fn47EuKY+nbtZqcUkywtwKaDvKKGsZEcyRrkcqKD3XZHl8ihevL58k7/HdLJfPs6w/cW0g+16fZ9wBfP3Jxp1MK+XXLfV5l9HUOejwLLT1+5S1AAbyjzvuRIVjyb8TH49e1kor/ITcKo/iPy+6DlYkwlDdxMb28VkycVu1Ms7LBLyPohRT0yH8SBzEvhfj5l2BEFgcAKx9AS66aZJMPnZ/BaOXPkuY2LyOzforJ4mOgY3ryaQ7Pbcb//WvN4iToBZj3RP7yQLSdgZx6+DzWDp3592eMNgKro4nPMFBkAG4/BCY3JOSoyNFtPHSCqWe4XsIton+ykHHwcS942SxGLTauKz6I4SaCBvpXhudmycRW49sbCwtRHBiH1ksZB7SveowxjfXhcmn5oZ4y8VTZHEqGmVYHerLzQaxP4JB6bPtWy6kuOAMi0z0UaIBKJNFIY5NAGIZbVvDhRcMsP7gu80OmfzDvXvReJXYn8yCgdFzh5F44phpaP34/MKryETf7qXYdv64cMzOsExsqfUjqoixjxOnhKGnlliK2cuMO2Cx/z20SySCOQofAGwEeEzxftYPe0trUtjURXMzKNz2aXK0LSzWcNep/0TGnTu3G6f/zVWCJ7lZMGA+fRMsX7QCNdIIweZ+0lcDp4Ld659GSfLYxGSm7H7pNGxnaG83aeOCH76D9HeraBNf87zjbtFnfFQY0xuCAG8fvhlhV2xzRwswqF8BYBDHkxRlvcILchAC7TL1B/Z6IdqMj3KtahLC1wtSNLsM5eqnJLA4ANSneULSXmMS/+d2y2H9le2CgxrjG1xszhNKddFnl3oddy0HjYQSvl4YYl9bTLtWNdGO6a7cD1N0GZrSNXjqOfF7QCD6K7e6Dku0ukYH9XgfuR76HqKG6ONrFh0gKC7bQ7pb64ftiF2rUgiJTzkA6EEKLaK+3FwQ+yMZlD7bvtWiRryEAQCRwXoPez5IGR0bqPfTJ9ZFMpnmL2x6bH8K5iiR3XJsTHuU5ve7HuZLw+LvFRy4gwyt7JqojdTpdRsIE9o2fpgijCiNzp1MsHVf6rteyvhnNxemCRkOAHOFE1m/7mJznniSW3023O3U53mxr5YpTW33SUnybHn8MGVpb7fxINvfF3/z8MadZrrQowHhWuL1MBLs4mfpYPm+8KtGRyG4xLEm9Q1ZSUlJSenoSztMpy71DVlJSUlJSUnpSEg9ISspKSkpHXWp4BIr/IQcxjLKlX+1EEX0/jyUKyD3w+VIyIIt8b2V0Lxc2jKiNQuyLYnLN1fuxXvZyyztDfBQQ0FCex4Julnm+cuVPbcvN1OWvF7MMj/hPL7mR4LUlhHBHM0r609Own8z5MhuWf/NQ9YD+coYpzw5ncf/naPzgXzj7kiQ+LJxF5rLP8GRd9xxfftgkFK4sCD931atloJLHM6/Va4VfUKuFDXiYwsA8/tC3H4v9bIdGrQwVhNJVzP1cWZhFkYqdvDd+yK852seSaN/gVrbAUDqFoiXbWnYxdvfsgG+L2ZQMy3MhnWyUNasIs68+AOCJ3FSrGKhvoH4KEdGCZuw/LJPPbgTup65WTPQP7aOLOJzex/Cf331BjKx6WaKtWf3CQtlOu/h1bfdRojW+mgJ1sueQSYCf3IW22+6VaDUzYLxu+yIeW4U1+NWhqLXCgXS7o5ps77chhGyvtzRvn1o3/NN4TeDZojZG+5EnGkva+0Atnz0zcgqkrgfcp+akocexvSz3kEWyV7fWmz7638ik3SvF2Hi4abQNl7Hwx1fmyJUd3V2Ei/5xUdJ2pYREkrdcG2U14/AqYrtNVgs4D2bbyFe1kZrDrt33CJ4t/vNEDtvDFFKMn1yYC12vvnjpOztdoibv9+CaWYI8yhFEGFZZVxb6uGi52wnC3Da6yJ4+AFxcWn3WDp/jz6ACWZsyMZ00A5hl8XN6aw1gm8MvhlWKuL8mu1gmCHJTT3BWG1BmHPmF2JsfzAm487r6Li982riVZ7EZaxb2Cj4mjvTU3j1bW8n465cjDFTLJGx5M172JPxGbcqJtaeM0SI+zROsO55kt2m0qrWir+y5ghVQ09ZAhExJV2tNMJIgXrWNo2ETSPt8bts3baI/3MCB0ODtGP7kQG/SaumrAdwh0eEawEcpBb1UU4iA3Zz+WWfZQ6r2gUHlWGGOu1ROhdYIr5FEjfqBizRWhkcJtQ5AKS6yVDqNu9JbvEUvWMDQ5l2tw2wlCsA1pc70Qzym0HLR+Pe3eTvixYfVSzkj7WyTx5GHCKeoBN/OG6w3sNBkBIiOPAjltrXF1ps2kafDfsUsf7MooPy2j6aZ9fBMONlHfgtJBnvdg8+tN1T5N5u1hD+d0pToNOVVBb5Pb6MtUGPJ/9DH0mGQE59n6WVtbiAqLe8Ma2bOlmMASAxbDRMehzIsYB+hiQHIjLn6EhY2jvwI9ar3IYDOxHp/3rYxNnMuHN0G7FPx0HUDXjifsvxF0RCKkVZq2/ISkpKSkrHgJRTl6KslZSUlJSUjgWt6BOyLD68zDov+y0XkNtEyoAdLrA9ABKLFpBbVspAHg5cyZuGrOyc8sBlAA+6yOwSOcgNyGfFKAPX8lgdytpXc5hwhZKycG0L5IS6JHWadWvafz2HdaasT3L1KoOSpECbRYewrJ7ylEUmqT1oIGlH5vOADAbMfptdEld/R6JPAny/zLr/LUlW9jz9KY+tqexeQG5LvKql64cZXGL1P1+u6IJsGQnGak3S6UfbPPBQtEMUi+OCH7VRLMB62pNhJeI31i2+hxue+NCyAtsDAAYGCVTE2eYBvGUgAJQR4KI+0bLS2z2H6XdeTYAdr9CHbVd9kqThewbGTt0oDGLT0jEwWITtit/EHNfA5o0OgcsKVh2Df/IvxIPYQoCBe78kTOqa62D00meSBVivlPmA7cOnYvAbTxfSjtwSfpP2CwHiAaAV2dj+6zkyoQeejzu+tkvYfLiuiRf9j9NJXTcaPt7zOZ8snlbDw4u+LVqgWiP9OP3TbwMy34xNW0dpD7US3awb+NhV48SuM9RsfHuXaHtZXhuwoFHUPwCPARNtw8AFZ1gina3bmJg9m1hnlrx9GGf6pFW0MbB1k9BeYaGKicf+CbSK6PKmGRqG9FlKlFd7GNh6v5BG0+jDw096Dzy9LNzq6w62P8i318S9E2TBWeqjB14fqKb42FU2U6dl3DD3eGIV62o+Xrjl68KGoosK/nPwzWTxTN0CLhum1qNc/Rm2ycJvGvqkZcz2SQAI/RiWkcBxHiljlOgoDq9HVv39Ni5/y4nkwaFkxxg1p+CHj/zmQhv4f3/zHsHSFADiQhnjG04g1LxTcfGcKzVh3IWxht82NegZd7rYKmBt3ygTKX2VS31DXtkFOUlS1o4wbDdY0Mjps6HPiQPM6u+D61PEP/F7yw5sDwDxUD96GaiIs80DeMtAAKgZPgFX4kaTBXaC8VNZGMjzUxK43HFNDIzyloblEu1kthHBrI3R+xd2w3yIsZtcx9tNdiUB281xMe0kMhA0qQ1oeyFEGMyR6343JODP4EiJret228PuWVrXwwttApcZIw5KZ55C7tWDHvTpbeR6bLkYHab1N9O1YO/LWHv6Pd4GdKCfBRNtI0W9qgEHYHF+ZKCe0qMxhek9UsvFrD1oXO1HsP5kcq+VekijNmkvzevByqZhrsH84DkkDa8XIny4Qa773ZCHLBm5dQ2jA/TVw0zXQmMf7SNDxiyBB/2oKoUBR/qZo3tM/cngtyCqIWxRIIvrkzLZBQfFYXrddTQMDdJl0Eo9DGaQfr+XEEvTpbTn7RFyfbCiwRwXy5hEBnxm3AHAQR6elVaxFNSlpKSkpHT0dbhnidU5ZCUlJSUlpSMgTTvMV9ZqQVZSUlJSUjp8qWNPK3vsSUZvygKAs9Qp9yEWcls5GcGZddIC8tkiArxlpcwGMA/RmtfSUBqc3aB5yWs3yQZsl9RT1tlpSRyNmgV1liSjzjmyVkZTS+03JWW0OK5BYouYBdn2/ybTBlI631q+5aLM4lFGo8OgfTLrUrU/bcl4lNHDnBj/msXf5EJXgh8zWfBrSVJbTqb+ZDS6IyG185RRerpBYq/KtU0ewl+Wtqw/AfITLEqrWyt77CkN2cDx+pCHLde9kpC/hgFoc7tIUPqw3YZVFonRsNiHHRdcQSYw3e9iGJ8iA1ZzHRiT30GiP1Lk6QXgmi+PLSuAPQA003kEfWIgcq3ns3Ruq1DHN5ZJtBq/O7qSvVc3NAB9ZINQMgKcU2Lq1fBgbTlJXISjiARPB4Co52Nh2zfJ8aJgroPpO2aFTZOcGJfMoMy87wUJtk1Scp2jzgFgTWU9zrxKtCnVogD6z++Eu7Y/mwiCbbSM0qD0mkmsPYtBkRDPwGK/Wdv6N0QQFxbDAMLSBqENYuhAjS7WthWxaU8HJbzyRxcJvseVqo1LTo3gF0TIz9ASoEI3TGbJw8ZMm5f1Ek4rzKNrZ+jc2ARQJxtAXdcwvrkfcSRumpIEmJpcENpmoOCjtOcusgnq9Wxsf3CU9OEHPR93PLxB8I0PUgeFTXRsyPq7oa8FLrtB2BwV4jYGe9+DWRQX6/6ZFp79wZeSY0cFM8DwE9cIFqMA4FlVfH7dVUIZbdfC+GZaTzU3xEj4IB13kYfSvgeEOslD+AOAbWuYaBjCIhxFKaamQ/hRdn4CgtOXf3xy1Ugde1rZBTlNYmnQ8iJD/ia9HqLujHBNc12yGANAbNgIy2vIdWdhNyFX96cTiU+tQcthyUsugD0AWEaHBCJPuh5L0M47ddZ+jyNabYC913FNltSuFOT1miVak16P5Hkp38k8JaTDeR/xhGi7eDBinBP3psOyrWVT5wBQqwZwx0UaVQ96KE0HQCi2WeLzZTxYUPosOV0Ke/J+kzTJ9dhw0c20QQCHPVXgJB027V5SxlRP7NuD5RJa9iCQ6Q62EbFlMZg2D/U6ksoaZN8xeD5gO/yQ5657vZC0Tb1ETxoAQM+zpf1914KYhl1wsD5Hf3dsIKiLVLYd74PdpnNIFCygMr+LptFnY5iZsHdbLnvqgauPSiGUjjty+iIH4Q8sljHMWHt6QYpmlx9jy4TiV5fUK2vl1KWkpKSk9N9Tu3btwste9jKsWbMGxWIRj33sY/GTn/zkqOVHQV1KSkpKSkdfj7IxyPz8PJ785CfjwgsvxDe/+U0MDQ1h27Zt6OvrO/Q8HKbUgqykpKSkdPSlHeY35JwL8vvf/36MjY3hk5/85P5rGzduPPTfPwJa2VfWPh8K8UgEpdcTnr7mSGNZOgeCJkIaEhLST5lvjBJ6cyUDyocx/5tcveal0TlP3bweyFwZs8DQ70vjQBvCJeXpN0C+oPSxwWOxeSh1ma+5rE9yQexlNLqUrNfpntpkvnMC+ec6rm2y8ZiX5DJlAY5Mf+eaIAvZLUl26kHmC82N0yMy7nIQ/ou/Sa8drL2a7eWFy/zvqGazKfzzff5owH/8x3/g7LPPxgte8AIMDQ3hcY97HG644YZHObeitDRN5Wz9YSpp7oN31zfZoOVJNmg5gJYziJ9tehmM+JEKtIwI60otJAURftG1GFWtTYjHZGY3gk/9E1lwdNtE/+mbxd+0LOytnkiM8SO3ip/3P5N4SNe1Bi72/k2YpH2nhu19Z5FjVb5Rwr3BZpJGnADbJwJhgfL9CDN7O7BsxpbPNphA6R68qYfJ0YpIszE6NiBMjl5sIg18chyk1U2x67c7aLB1p4z+wSFYwSObqU5iYKJnwTBFsjOOYgR+TCZd0zKxZt2gMPFGQYjW7Pyy0xgatPC2148Ki1z00A50/va9SBpifGzdTLH27D62zcuPfQxZEEO3isnHv0RY5Gx4GG//Cogzi5lhAbZNJlgtCuA29wp9O+114e3cTX4vabXQ+cU9JH/Txlp8pO+tQj1ZjoHNJ/ajlPFoNg1g02hKNhMFzcNZ5s+F/IWwMWWOwzfE2NhuuICRXT8mR5E8o4y7SxeRRcExY6xxmsKRnKIZ4DRrG1sfrV2zZMGOdu7BT9/5JeEYW320hMe/50Xk3sAq4576M0g+5vd18e2v3iuchlg/qOHNLwhRgLigalEA/PIX1LtdT6HPTxHSXS8W0Nx8jpAXWT4cM8YpA7Nk42W1ZjH6o88Kc4tfXIOpJ72M3OtHFu6bW0PSDqMU03PiIhz4EfbsasMPxDZPkhTv+Is6No7ym5LVpmaziVqthr3/9o+olvgjgstKp9PD8PP/mlx/17vehXe/+93kuusu9sk3velNeMELXoA777wTb3jDG3DdddfhsssuO+R8HI5W/JX1coOWA0BiJOgWxODithGhW2shKyv1YEXz5HoUeej59AnBBAiJqwFY30fvbegJHizRqqnGGrRUJFphF5CuGaFliQyUmwy56qcoVcVFyeuFaMzzTzWyQOmc/7NdAMzBErkO0Gt+7GE6bfHB1vtFY32/66E7PcHmTyaOnO62luclDACINUIVhz6w8JMHya1On43Yp2U0AdgdSpIDIDS0lcZISxVpdrK1rYP27ST02d8LOx5ipk/6Du9rbrou/OywscF6gdu6hjTjSR7DASwXTgbVduIIdYOOpYauSfy6Qfy6rRRII+qBrgMYLtA3Yk2zSXzrK4PD7L0N3WLzYegpOQ1R0TU4toME4gSuAyjJTnD09pHrmuuQvMjyYRtgSXc91enpCztm7w01Svjv/98ym3fPS9FsHo84tURH6Bvy5OQkqtVHPMAdJnIcACRJgrPPPhvve9/7AACPe9zj8Otf/xof//jHj9qCrChrJSUlJaXjRtVqVfgnW5DXrl2L0047Tbh26qmnYmIi38PHkZSCupSUlJSUjr4e5XPIT37yk3HfffcJ1+6//36Mj48feh4OUyu7IDO2foAcwjnw2/GSjkRge4C32pMBOzIohgNJZHBZHlvOPAHigXyB0o9EGnlsB49UGtmYs0A+y1VAbq/IwV5Sa0qJjgRAlwcoktpKpvQ1thQuYwAwQN7fubEnqycZcMdBVtnvu78vH5y9qszCMy/4x80BeeoD4KG9PEAhkH9ecJ3Vb4JB9Cg7db3xjW/Eueeei/e973144QtfiDvvvBPXX389rr/++kPPw2FqZeMhmw7awycSACRuNtG655tkooorCxi7cEHo+GGiYaJRJR1ZZiUYhhb23TRJaeHBIXRfL1ptyoK+t0IX23ZQm8cyNCBjGmalAWsP2g5M3DJZYawiI2x/qCkMtigIMTOxG35PnAi4APEAUGlP49U/+CDxey7aIU4ojcPXH7leMCP0n7yBEOLJYAk/vOAvKNWr69gzbwoLgzu3G8++7u3s763/w7XEjlDvdjFz3axgXxi4FXz30r8ji7XtWli3oUYobMc1MNFwhXZv6ZvxnT/+O7RnxO+gfeUEH9x6J2t7SaxEARi2Q9rMT038uLMVhibmQ9OA0Wqb9DPdiIHhDE0bRyiCTvLRTAvbb7qV9End3o0rnvoWob0My0SpfDIqhrjiRHYRvxx7LbJaCBx84benC/RuGESYne6gHYobyLKl46/Po+Mx0myMOQtkwbEQYCTcKdQTZxMJQGpfylnLWkWbtXPVnArGzqX5qBkJsVetlIBfNXUM9GfAMM3E3vJWuqhWDaxdP0sWSm4OkNVHMjWF6Zf8NdkYGghQPMsW5rOgeR+mP3AruVduQ5tvXgj9Go63F5yppiE9jCfkvH/7hCc8Af/+7/+Ot771rfjf//t/44QTTsCHP/xhvPSlLz3kPByuVtw6MwucAEAczrOQS1xjrAcjg4dZJFaCYdMjge0BwFxbJFabsqDvvajAWvjVDOYJXjdYO7040qVWkVlQy+/6aM216c0Sme0GAWWARbipP8zSuQ4GDAorNZ11qPdTotHzU8xl7PoKYVv6e8M6DQLhRT68edF+c274RBb0clwTpSrNB2cluND0sC3oB2oitFMuN6S2l1lbSWDR1jDbZn5ioJe6FHIzIkRMwAILHunbetBjfy8KFtg+udhee4VrpuFgILWAzO1NR7SOXFKSAAuB2AZeL8TkXh/Zwtj1hB+PEstPKw1hRWI9cTaRgNy+lLOWNYuO1OqUy8dClJC+U6trqK2hIy+AgY5RRVa2ESGkDrzsHCCrj7DdQDyxk1w3+mzEvtg+QYta0AIHt6HNMy90u+rY05HQJZdcgksuueRoZ2O/jq8tlpKSkpLS6pSKh6wWZCUlJSWlY0CPsnXmsajVXwIlJSUlJaXjQCv6hKzpfMxOGQmddbsC5FSijHiUkbhphxoRyIjRPMHW81rkceRkXgI5C1ctiaONZaQxR7QDPKiYuJzZiJxu5uw3D3T+EtLIQRVztC0A9CR2jnlsL7Mw1/40clD+eUhjYOXaK48dKSCnsvOUMQ9hnod+BwCLMdI40D1M+L2c8wVXRll95KH8uTEA5LOhPdi8UCwef/GQH22o61jUii7IkWZht7lh2SS0OdjDSVeI9GsrtPDjvUUSpNv3Yty8KyCDtdA18OIM1QkAUf8QobX9ELhld4Usnp1eiu0P0gDqXLD1qhPj7/70fjJRFX0Pl01/HaEmbj7mejr+5t4nCYPNsExCkQJyAjnwQnwC74EdicdmagMFvO+KEtIDvFt1XYPVniKLU9EuYaxGSVK7N4/zpj8n5FsP2+gydRr7MbYz7ajbOiFrW4UBcOq2e7j9az8hlpq1io4L/uoEIX9VI8VJj9uMTicTT9q1cOPgWbBScdFKTQfjZZcSt7qBETMQ+mXHN7FtkpL1hq4BoJR/o+HjPZ/zBfvSIDGxfuNTiK9zpNvo/8ClZDL2dQf/OdcVjj+ZloHNJRthoU/Mh2NhK9NeUaIBKAsbmGYzwd3fnyJ0rm+1YdVuIccR9W4Xxfv3IHVEuC4tlLD7squEespLMQd75zDzwdcKfcTur2D00mcti34HgJJhYnzzFmHzZhrAb3ZrKBfFe20EOKd0DzkOZkY91CYfIke/dK+LdMf9Qp3I6iOaoy5nAKCZJga2bhI2GprrYPTSZ1ILz0oZZ578K+KL7cUm/h2bhDKG4eK4z84LuqGzgOSql3plvcLHnpI0FwltjDiEfk1CHc0u3Q16fopFS2Nxohzx2oTqBIDuQD+htf0wJYQqsEiphswTHRdsfcugnDqtx9Sqr+nVEGWii9vgrSZlBHJzro350jC5XhrUYPSLGwA96EELZwn5m9gVliR1kg7Jd+h7iJg69eZ9KT2cbYN5p07uAxafLjhLzVrRJflLowRRasDJPB04romGSdN3bKDDPGUsktPi5NpLeCrekVhWttsesS+1Czpsj75NcFwTpTGaP68XYr7dIPcWqvTeqhPDNhjiNqJWjM0oYulc1+hA79LrcceDPreXXl+7kYzfvBRzuKtJ+oi9xlw2/Q4snliwHXGqcmzAdnRknWVt3UdRp28T9LgHJ6JPp4nfQ5SpE1l9hPP8WwqraBPKX3NdWIyFZ2y5SB2azky3QMoI8PMCsDj/KR1/UlCXkpKSktLR16Ps1HUsSi3ISkpKSkpHX4+yU9exqNVfAiUlJSUlpeNAK/qELKM9ZbRi3KXfEvPQygAEG8IDZYSU4JZtqGRpc9RjNpbykmTUKReUPm/A9iwAtT8vzCcuGRUr8+DmfHllXswykpSjTjnfZkBOknJe1hxtC+T3f+aIW0lRpGlwxHfeduT6mexeCdDOUsV5aXRZ+67UqQeZl3WeEwt5vL2BfHR43v4e+3Qs5SH8Ab6M/928rBVlvcILchjrrA91A5vxr+dTSrheN3DuHpFY7vkuFqYGseBl4BLPx8S9E2RC96opqle8XiCNAaDoUKo4mZqCe/WV5FiPo/u4+A+GyOJeLOiov+xJwiLswkPwwP1kYEc9H3O/3EYGt1uu4mNX2cLiGcHEFFJUs+CUrmM20Mjk0+t3sIOhsmtVHbtNW6Bi9zUjfOIzvkCGA0C5aOBtr6VEq254xP/ZjCIMgB5XkZGkhgFoc7uE+y1rDcZH6mTBiX+30mTLEscx3nPt/XAcMX9BrKOxIJI8S30gO4GVCykuOMNalkfzvKdh+4NrSRqB5+OOr+0ii1yS6ISMt10L45tpGW1bw6b1tB1bzQS3f+1hoQ9Xe7N4yhe/gIIvgkaO7qP49CFC/rqFEsZe9vZl0egDBR/Wlh3L9tqeM7v4Qldsgz7bxzXP2UsCrRgGEJY20P5Ub2H86j8UFi2jLAlCn/KLfaW3B8/+3j8gNB/5u6gTYc9vPDi9ppgPeFh4Sp0crdTTGPaWETJOU8Mg/T0wq/jN495KNvGe5uKhp4aElm9HBq770XZhs22VSrj0cY9fFuEPLNLr2T7S7enYNaEjCpcfNGZVS1HWK3zsKZETqhwlXFnjQY9Er9he18Z0Q0fW3NfvhoRWBgC3rsHoX0OuJ4w/bdhuwN1LY18uegwzTx6lPqzty1DgPQ/RDO/hy/l1G1UTowOZRQYWihY9m+1HBlpNuuvzPBrYHgAqVQ2RJk6UzV6PkOEAsGlUY4lWPfEIAZv0elKvaI4kTXo9RN0Z4Vps9rEUqdcL2bL4XQ979vFPUlnZBYf4AANAtagt26M59C02Db8bojFPn+7tgoPaqJhvxzXZMjo22KD0zSgifdhYmMWa+++iafTZ0Odon4zXblw2jV4v+bm8tltVBzOZNnAHPZSTJrk3Nlx0mf6khW3YA+KGV3P5t1ipxLcg7fVQ6Yi+0N68j4VfUK9oq89GMk/rSSs6QNBPxinndx7pVQQV6h3u+Sn8EZp2Z66NqZ54MmGwXELHqJF7OcIfWKTXs33E81LpYnw8UtappkvfZCz371e7Vn8JlJSUlJSUjgMpylpJSUlJ6ehLHXta2QVZBspIoRMGkMq6Hi1JBgPJApdzdni5A94zzhF5g9Jnv23L8gbIARrT5DseZyeY/Qa7pDwB3vMEd5fdn3XRWlIegE4mGUwls1fk7BIdSwJeSfLB/WZeuIwbB3lsUQEevJLBb54E6pJZe2YZD+AgEKMEVsq6ggH5gSfOajcPUAjI7Tq5vJDvvku/KemSHGRJ4owv/Z4MfmPGumycA8cp1IXDfGV9HLzwXdEFOYjA2hH6nsFaRQ6YLQQPfEeY0Kt+iL/edxu6vQxQ1Gphx22TZAIrDPVht/kPFJqITUxmADNTGyAWj8Ci807WCg8A0lIZ7WExwHvcbKJ1zzfJAhw0A0x8l9pK2v1NjD5fBNcSwwIGaIfSIw9bWpMEoOnGNh7afBELD000DKGM7agkteX8wm/7CN2Zajo2DmSsEXMEdweAULMxs/5pwv2+5mJTj4JNcWwCoCCUrmsY39wv2IaaBrCmGqNQEOuj6AIbBgOyABfMiLVi1CMPpX0PCG0w7nt4Z/Xr8FNxcdKHC9jx3BcS6ls3TewL+xFFj/xmmgJ750FkaDHGai0yGZ9QDfDEDOCnRcOoPPe1GDBFcIgD5YDFPhlkyqj7Cdp7YgK/edUU7YtPpO01fCoGv/F04vdupwWM/bBf6DvcGAUW4agS6IYuarUwc48INwbNAFMfvI1sBNK+ftRv/DgZu43iGP51w7XEYnT0SRE8XbQHK1VMnPmY7WTjK7OQTW2HjOlW6GLbDm7eirD9oSbZRCZJygJ+3NznmAk29IERXZCTKEJj1xTa7Qy3EicI/RrUC87jTyu7IIeQBuPmQJ6a0SCBy5OOh1pjO7J4hNfx0epOkzTMdS5r1xnAIICZ0e2yNptm0WEhpqRSQZgJ8B6H8yy8FbR4W0l7jclabcoAqxID0PhxvxQeChNxBuh6PDTluCZrG7poNym+OcgT3B1YDPAeWiJY50cG7IgB1HywZQHodccGxtfxVpj1aghkcCUrTQi8BSzWa7YNEr+HIYOupp47gt4gD9x5TTF/np8CDFBkm5DCZSMZwE8PUpSMCoCKmD8GlAMW+2Sa6TteJ8H0HtrH3LqGNNN/gcX2MsfHyP3xbALLEfswN0aBRTiK69dxp03GR9Dy0ZuidW2eWmPHbidIMG+PCNcc10RhE7UYLRW6MPopNCWzkI0tl9RJLypI5y0O/AOoxaXjmrwVqyQmRJrSfu11I8zNMHapALpdPh+rWuqVtdpiKSkpKSkdA9K0wzz2tPoX5NX/0l1JSUlJSek4kHpCVlJSUlI66lJOXSu8INv08yyAg9hepodv25gFU/anw1CMscU7BsmITMSM8QFDgB4sf5xtoIwulRGHtsZToBy8KiM18xDBeYK7AxKiXUKM5/GDz2OFCcjzl4ckz4Js++9nyiMri8z2kstfHotHAGyfLPBdMtcJBICntbkxChyEnLboFJN37HL5kPXfbJzh/WnL6pUZe3ntejmtpAUqABSL8v9t1Uo5da3wgmyCtQy0DQMXnGExVGw/gvQSYZLxd89i9w13ImyLs8mcWcdnGPvNuFDGhq8EZBC7dornXCRO3lG5it9cdgOxyHOMCKPxLWSSCe0SdpsbxIDtazZiJ5OG3mtiHG9mCe7ggfvECdayWEIVvodg231kMi4lCS6L70eoZewBvTY6N08KG41kvoXCt3YitEVQK6n2YeIdn0JWnW6Em7/fFBbyXjfA7PYJcoTK9xOYaUgWAKuxCy+4+2rhWJleq2Ls+o+yNpbnlKbIRNryNFx/yzCZBHdNaEBmspPlr1pI8d5XMiDZdBP3vOoGkfLVYqx7Yj/ZAGrlWYycR0ntGDpQE/tTq5Pg5gcjlsLd8WBM+mQKAxs3nC4sAJVoHs9p3Aw9EPs1Z/EILC7UdsZutu67OPPxj8VsK0P4H4SsH13rkEXBD4HxzYmwuJS9ADN3UktYrVxF5bxL6AJX7WFg6/3CJrdprcGvn/oKYkGpl0rwOKvdho+Je+8XjqBVqjaeeE4fCq64MNmGQ8YosGhNube8dVlWlg1Pw/YH51gbVc6ud9Bq472P/YGwWXHsFKXaFgSp+FRimoAWjpP+1A5M3DJZETZ1UWCyFqi6oUvjJK9mpdCQEuwu39+vdq24dSZnGWgbKepVDRwVm0YiXRruaqK9k1KTrarD2m/aBQeNFpA9RjDYz9goRgaCOrXIs+N90NrUYjCxK2zA9qA+SNIoTD8oJbizlKoGsIRq4vdYohUA6thHroW+h6hBLQYr89RisOueyqQKJHGKTobg9LsBsVA8mIYX2ognRAtU89STpKRxHxOw3fckVpZMjApZ/jaNagDo42LU7BDK1+mzEfsVcq9RNVkCPmCsWBeiRErhNgIg2ycdVyOkuxbOQWs2lmXxuP9/y/SdXtdGOy7CyRyzPxhZn6XzAcAPU9iZTU7F70ktYTmCW/N6sDInFmKzD/7g+LLz0W57xGJUr5mo1+j0ZRup9JRFx6gy91Mry06QIAwoIi216zU6hNDXbBeWQeet2OItRuNIJ1S21+MtUIHj0zpTSX1DVlJSUlI6BqS8rNWCrKSkpKR0LEh9Q1bHnpSUlJSUlI4FHRUv6zxUrFHkvX05n10gn6+xjPzNWlUuSU8YL2tJGnkI7jye0AcTR6TLiNYsULP/OkOS5vGVBng/ZhlBKyOhZd7SnPL6mnN9SuqBzHiPAzyZLPOQlokjcbOg3v58yBBzRjL/97xe21z3OzAm8YGS1RPnZS3zNc/j+X0kvKJl98vaUdrPGI/wvH7dHNl9MKr7uPSyVseejo6XdckIcE5peR7DdtzFCS88HdGsCE1sKto4+6xvk8EQ2hV8fe1Zy/J5NrQEY7UFhvwN0S5Rz1/EETZPfgeJ/shvtiMHtzSexfjeDuLmjP8uAHQiAzM/mhGCmVd7s3jxDZ9GnPFLlpG/ulvA8B/9IRn0hu2gev4lwuQYOyV0rxwiC2LkluCVKAFfDFq4fOZ6gRg1nQ6mi9vgZY68eFYVn193FdkE9cUljBdFj3CraGLw+x9DYmS8ovUUxfH15PuPu6Bj4l5fmATdoo0zzz0ZRtYf3NZw4QUDZJIuusBus0MXzzVF4mEe+zG237Q873EAgO/Bnvi6UB6nbWDi3ieTiXupfrLXy2ULF12wRmgDswls/2EbZV+0yZT5PxuOjq1/ec6y/N9Dp4ofbrkWWXFkPbBIr0/ct1MInlBq7sXpt9J6wmCIoSsp3bwvjvDxHz1d6O+B7qJ4CqWYdUMD0MfMF8DHiOe3h9Kur2KgKqax4Bn42C1nM0S7jqH1dC4ydA2ASHZzdDkA9KUNvLNK5xw76i3br1vvq+Dkf34nsvI7Pdz+tZ8IdW1aJgbH10pjIh9vWq3fkO+//37ccsstmJ6eRpKZUN/5TtrWB9NR8bKuFGKpd3OWNo5bCzCTLsy6+ORgFh0MFOlT3rRZXrbPs21EUvKXI0b1oAcnEn+zGfVLfW+z/rsA4Hc9TPXEI1LDCwto3Lub5llC/lpugSVuY8uF0S96SCdwYFrUpziJDNhNuqMshdTTOfQ9aDr1Ht5tubwnuRcSwtwsOrA7c+TeRQ/kIXK903YI0eq4JkoV+gTp2EC9n+ZjkaBl+lnPRzGTP28+n/d44vdIefxWjaVwZTJqJjmFUEhbcOd3IpsTmf9zabS6bP/3OXczmw+OrAcW6fVuS9xQFhdm2Xoy1xZZurnZ62GqJxqh2wUH6xkaXeb/XCnEGOU8v6fnkN1rLQRV9pSF42qoc97SNojHPUeXA0Al9LGOmXPCjofZZfp1F0/h3/i1eyB1bRcc1CWLsaKsjw3dcMMNeO1rX4uBgQGMjIxAO+ApXdO0Y2tBVlJSUlJSWpZWYXCJa665Bu9973vx5je/+Yikp6AuJSUlJaWjr9+9sj7Uf3kp63e/+93QNE34NzJC32oeTPPz83jBC16Q628OphVdkGXWmXns7TjrPUBub5kHGDkSlosyG0sZkMGBIXmD0qfcez3wwIjMFlEKoxn0lbDMvjT7fXxJvs5AXTkCxANAwabXD4yNfKByW2o6FEzKY3UK8MBdQQJTycSBSTIYUJa/2GdAQ0l7WVGPvX4k+qoM2su6pwFy8DKPHabse+GRANpkLKUMuMsDU8ZdfsxwdqeyegKOT6jraOj000/H7t279//75S9/mevvX/CCF+Db3/72EcvPir6yDoNYakF3+9d80gkrWgfXnkGtIgfOOhmpJy60muuwVoIDtoMXj/yKDGI79dC3sEMgqI2gA+1n2wholHbbWPjtQ8SnesZz8aHWpcJiYRYKuPDFeexBgb7u4QWlT6IYU//2TbJZ0R0bgxdnJisGPgIWNzprz3oa4lT8fmbaPVKv0UwL22+6lUwyvVqM8YvqDPwCDNQ2CfmeDkp45Y8uIouW1W7gzz74cQK/mBUXn7rqZegFj/xmYppoD1moV8Vya4aOhcI6sgBHiYYJxorRCSOcs1XMn+Y6GL30mWQBDps9/FfWZhNggbuCYeCGJ1LqVmu28Kv/cxdZzApDfRirXS/k26i4sF5zFdxQdHmSwXlm0ULQt7Asu9loIMGmy2lfdVpzuPjmt5KNlNZqYcdtk0K+e2YJn2Asa901NbyAs73s0u/KURBi4t6HlwW5AbwdphkswJqkFqNBx8HEveMk7YFqihdfTC1aub6TTE3BvfpKJG5JuFf3Orgr2gcjw6joJjByjshuuP0FnH31H5INU9K3hrX2jAZNXPbasrBJC6MUO/cCTjELQmqw7OPPy/poWGeappn7qfhAbdmyBe94xzvwox/9CFu3boVliU+hr3/96/Pl55BzsgzJAnr73RC7Z+mOdXM5YK0iTUMDSpnJQmIlGFsua8WoBz2UkqZwLQl7iBjQKOx4SObp9VY8jF09cXAMjhRz24OOFA8vKH3Y8RC1aOByq7+PAEgcfAQASaWOos7UU9wj9RoFCyzI49VKLEBXCX2YGbvEXlImcA+wCLRx8Etl8zDW94lvH2JLQ3c4BDJAYAAHPS4gQGQQYAcAnIDmT3NdWOv6yb3NB/ew+eOAO7PosNBPu7mAqe40uW6ucwlUaKUBygNMX5DAeVbqIc28SZHZzSZDJbavFhba6A/3kutex0crk+891Q2sZe3gQImt63abfyLk4DcOcgN4O0w9mmctRltdCgMCgFvX0Mc8rXN9J2w34O6dYPPNlcbpo5sO3TJQGCiR6151QGrtWe8X3454fopWxD/Z52AHV42OFGXdbIrzvOM4cCRBgB544AGMjo7CcRw88YlPxPve9z5s2rRp2b95/fXXo1wu49Zbb8Wtt94q/G+aph1bC7KSkpKSktKypOEwoa7F/zM2Jm5c3/Wud+Hd7343uf2JT3wiPv3pT+Okk07C3r17cc011+Dcc8/Fr3/9a6xZs4bcz+nhhx8+9PwyUguykpKSktJxo8nJSVSrjwQSkT0dP+tZz9r//2/duhVPetKTsHnzZtx4441405velPt303TxbYZ2GJsKRVkrKSkpKR11pdAP+x8AVKtV4Z9sQc6qVCph69ateOCBB3Ll+9Of/jS2bt2KQqGAQqGAM888E5/5zGdylx9Y4SdkGQmYx4JOprzWdHmC0ssoVVejxG1eC78jEZRelj+Ovs4T2F6WFwI0/U4y+02ORpURyDJql6ObZW17JEhyWX+SlZ0j4GUkeRYC2n8/QybLCH9ZGfPYzaLLt1cesltmWSsbB5ztpUx5xlIWUlySrJ/JbFS5ej0wjvdylKcv6LGE2mf66sGcc2UnWFazjrZ1pu/7+M1vfoPzzz9/2X/z93//93jHO96Bv/qrv8KTn/xkpGmKH/zgB3jNa16Dffv24Y1vfGOuPKwsZe0HLE1ZaU/j1T/4IJmMi3aImWJFWHDmkio+FT8HrVCcRK1SCZc+7vHLCji+eDkGhjOTehyhCDoZy6jiVjHA2Is2CscRbNdi7UE5Sz4AcOM2tnREK8bEsNAepladcbOJ1j3fJAtw0Aww8V1qX2iVHQycKVLqUc/H3C9pQHndLWDoRGoJmeoGyUs4fCoGv/H0ZdtvxvEgbsSbhSNondDE2Knxsmw2AcAq2ggeyBD3loUS6KZhtmfjU79eS+wSu50Ak/ffTxaFJNFx8/q/hHPABqtY0PGa4QXSBs366fj1By4lmw9fd/Cfc13h6BdniwoAxaSN1/3RQ0wZGTtRy4I1Pg4rEVeQLoqYKG8l/ckPgVt2VwQvZNM4FWu/8BV4HTEfZrnAWsXaVoSBDHUOLNL8i//3ket9hUGMnbiRtKNsHPiegbFTxfuX5oNsGrWqzuYvmZrC9Ev+WlgozaIJ9w/6YLREYLGn9ZPfA4CBgo/SnruWZYGadtso/hHtk0vjjeur2fqTnQIxbAcjIbUNjqEDNXHzESYagDIZX7oO2Opj42HrqquuwnOe8xxs2LAB09PTuOaaa9BsNnH55ZcvO41//Md/xMc//nFcdtll+68997nPxemnn453v/vdx9aC3O3GLPFothvoZ6jTRXJVXKTnYx0/7zFUZ7mEjpE1B+QDjgOABY/YYeoBJYoBOVXcdorEKlJm98dZ8gFAIY5YK0bOqjMO59lg8EGLt3k0iy61Uex6bBqWW2DzEVsuyUsMB+b48u03PR9omIPitSiE5TTIvZzN5mJZHFIWDWDz3PNs1i7R78ZozNMnOrvgYCZZK1xbZwVILY+0QS8qwB8ZJ2l4vRDzbbE8nC0qAGzQPWkZswS85rqw/D5yb6zzFLMfplgIxDHj2EDf+pPJvZoRwTbo2HCSDqHOgUWaP5vveafO2qXKxoHnp+z9nCpVjbWyDdsNxBM7hWtGn430hHXEYrTl2Ozv1Uv+si1QuXIfTGbRYal92SkQzjY4gEPLHhksdQ4AEouCVa1H28t6586deMlLXoJ9+/ZhcHAQf/AHf4Af/ehHGB+n412m3bt349xzzyXXzz33XOzeTe2Qf5/UPktJSUlJ6ajr0T6H/MUvfvGQf2tJW7ZswZe+9CW87W1vE67/y7/8C0488cTc6akFWUlJSUlJ6RD0t3/7t3jRi16E2267DU9+8pOhaRruuOMOfO9738OXvvSl3OmpBVlJSUlJ6ahrNYZffP7zn48f//jH+NCHPoSvfOUrSNMUp512Gu6880487nGPy53eii7IxSJPWObxbubIZmBl6WYZWWsFlIrNG/T9QOvOJUnpYQmufyR8jVfSD5ujQ2V+yZzvNcBTqjISWuZfLKP5OY9gP+TzxwWOB/jyyH4vG0d6SXnKSODF/fmg1/J6e8uIZa7vyPzLZeNA1u6csjaz+/PBUM8yn3dZ/jzJCQ7uFIJszMiUpx3znBSQjS8AkEwBq1pHm7I+VD3+8Y/HZz/72SOS1oouyJZjs8RjqbQZvdd+kxzDaNpF/LptCib4YRjj9Id6aBiic0peutnQEqAidnwjaMJ+4OtkUGo9nwSwB4A5o0ao8aX/n/PrvuNruwjhW9daOC9DQoeFGvaNnIsos1FpFMfwrxuuJZNMJzIw0d1OjqDU6wbO3bKwLB9qjsgGgMCpYPf6pwn1FMQmJhmfYkNLeGq3N4/zpj8nHH/SvTamd2xn/ZK330yJcd1e/O8DJ8ewE2HfDXci9sV2mU3LmDiD+hfrhs72v1pVx4suFn3GLctiPYYDzcSm9ZQkL6UeXtl3izDRJ5aL2y+4iG4WdR3/OX0WCe7QTWzsne4JtHe9EOEV1X2AKx5FijQbYw6t61Ynwc0PRkL/i4IQd988jTgSNyp9xQTvfZVJNqe64UmJ4Or5lyD1HyG+i04JlxeoRzt0HbPB8jzdm60Q/3TddtJeU4aOT2GM0PKFroEXZ8ZjtzCI75z5RqR9deHebmIDe0AU6jZ7koE7aSEbM7qtY/0fijAgAPRmu7jrA7cKx9t0E1j/1IeI37xf6MeDL3g+DE3sI16o46G9prDQunaMx5xA21zTUlhGFcDx52e9GtRsNvcbj2RtOrM60KBkOVpxL2uOeCxVTKRjo+R65KdoT4kD3euF6FUayD4r5qWbF+lr6ofLeWcnXZ6yDOMqop74pGIXHKlfN0f4VstN8puR3Yee1Ufu7QQJ5m1qfO53PcyXKM1bWeNBc7xl+VBzRDYAxHYfqacAvCe0bUQsFeskHdTjfcK10PcQSfySJ5n8LRL3Yl37DR+Neym5OFfl/YvtgsP2v0pVY33GI/AewxzpWo4DDBfENyYN3UK9Qs/0en6K7d119HovxEzSEK6lVoCkykS64ihcAAtRQvqf3/WxZ+cCubcyqsEiIwnQE09KBBv94kY4gYO6RevOjwy0GOKe83T3e4m0vThafsRrk/HYrQ1ibuMTSBpeLwTQINeLTsqeZOBOWsjGDOdZDQBJmMCb7ZJ7Ob95b3ANeqmbLSK8KEXXp0/EXJsD8jcSq1lHI7jEoaher2P37t0YGhpCX18f68yVpik0TUMc829yZVLfkJWUlJSUjrpWyzfkm2++Gf39i4Fovv/97x/RtNWCrKSkpKR01LVanpCf8pSn7P//TzjhBIyNjZGn5DRNMTk5mTvt4xANUFJSUlJSWnmdcMIJmJmhIXLn5uZwwgkn5E5vRRdkY4G6cQFAJInxmYfOzUs35/HDzeNlzRG7QD6/bpm/bRZu+b1pB8v3oeaIbFleZLRnHmpXVqcyYpyjaGX3yvyVZW0jo3k5ycrO0fJ5SOjF67T+ZLS3jHTn+oi0f0j8nKVe6keAuOf6iMPEJQbk7cWR+FlAbklSml9Sr3m822VkN9cvZfcaoSzf9NrB3Lj27uP7/GpWCn3/a+tD+ncUni+XvhVn1W634boST/mDaEVfWQ+6XVyx4xo6oOabaF4/CxTFAN6ltYO44O/fL3TEIDIwNtJPwmT2ejF+8cs5MgC9joc7vjZF6OZK1cGlLzpFmDg8v4JbBkXPZQBo+wYmN+wjdHMr0IGHxGuOa2J8c51sEIq7H8Kzb3s7OeJVLsaYKZaEBcqrh5g+NYJfEIlRzwfGNyck7WoxxeXPteBnaOOyHaJddoSJtNvmjfLjIMTMPYzHdX8LI+eJXrvznoVtkxUyadRsD+eUqC+voXcJtWuEAQZAj4gsgVvZCcyuuBjYeoJwf/S7FSV77+aKi7Mf822y2enaa/CttWeR+nNdDRMNQ+gL6UMPwn3bX5MjNsU1RVz4tj8lC7BuatTzW3NZEjqMdQAlslmc3xfi9gy1r9UD9LbvxZqCuDFKDAsYoMf3Ko6NCy/YImxygyDFQ2M10l6lvQ/jF398JQk+YRgx1p9TJ0SwbuqonXofYDxS9rTQB5zDWAtK9jhtT8f3f1UW6OFu12Xp92rNwrlPXkM27HHSj//ceZ2wCPt+hLl770PbHRLu9ToeJu+bJJuSdr+DH7e3ErrZ0XycmfG4j/Qae8qC65MAoBcLGL30mUJAFK1aQbxxi0CoA0DBqbAnE+YXYmx/MBbms8DzcffN00ijDNzoJ/i7/3UGjjetllfWAPaHZ9Q0De94xztQLD4yb8RxjB//+Md47GMfmzvdFf+G3M+Rtb6P9s4pct0wTkLJFTu7H2mo9/G+shzdHPgRSzcDlL4O4pR4LgOLvsvzjHu7n3gAJoRruqHDZqL5OHrM+3XrNmI/QzGXgJY9CGSKE8QpbOZpwnVjDA1SWtZKNaRRxoc6lTyZGhrrcW1UE+K1qyc6S7QnRsr68uppQMjVBGD9kgFIfJ5t9n7ZvQNFGslo2izzbWMDYZI56ubFxC8ZANLNwygn9GhDnLroWiOib7iEhAbAktqGnhLaWCt7GDKb4B62ubr2UwPlklhGz0/RN0DLXWga8CfoeFwkgnmvbb2bIYWZSF6AfDJMU6Dri+PO8xKWfncLJikLsFiembJIqXu9ELOzDcATO2bgRyzBncYmSzdDpz7yiWbk6pOa68Ba1y9ciy0X3X4a5F7WR3RwtHyIXTuo97jS0dfPfvYzAItPyL/85S9h24/0C9u28ZjHPAZXXXVV7nQV1KWkpKSkdNS1aAxyOJT1o/eEvERXv/zlL8dHPvKR3OeNZVILspKSkpLSUddqemW9pE9+8pNHNL0VXZB1l/9+KYNzuIDtMljENPMBT5zVZh7YRpZ2HPEHvxO3xF9nSI08oAcghz3yBKuXQSfZb16A3D5y8dsokwazy+UsCoGDWHsygE+eewEQNmBJLPhX5NvrwO+CQl6OAPCU5RwAHsyT/R4A8k0UkPebPH0S4OtVBiAeCRvVIwF75hn/ABCntA1klrWyfsbZZOaxyATywXmA3JZY6dHXXXfdhf/7f/8vJiYmEATi+Pjyl7+cK60VXZANlwbuBha/uWQhCADQK2UEmeDdrdDCj/cW4UdiBzR0HRdeQAEQ09QQXjDA2hdmrTYdM8YFp3fJApdAw8QYTbtgpRjIwFQlO8Z48VdkcTKG5xAyYAgXzLxp9GHPfbvRK4txn30vwvaHmmTycWwNm9fXlhWsvtM7BQ+96rPEh7viBjh77b+TtpkOSrjigz4KB8xJQRKjtIECdIHn4/avifcCgOU6eP4LLxWp46qBtetnyYSuGRr6z99BNgK6rsFqTwmTnRnwYJgsGPyA7eDFI7RtNEPHQmGdANbo6yOUJO0VPEAtRqOej4Vt3xQm72Cug+k7ZgkYZiDAKU9eh9gSXbwsLcT5TxwkMNrkPcBISayP1DBQAt3sWLqDseFxoSzNToof7ozhB2L/CDwHt5//HkKl1wYKeN8VpWW1QTTTwvSzXkjKqNeqGLv+owRWihINQFnYBHF2msDiolQqUeCJS6PZTHD396fgZ5zzZHapMqtdxzSw4RTRMjVYsxE7L7uBbJQ9zcXuhkU2eqnpYLzsiv1dNzBiBmQB1tMYIyEFIddaHt7z+IcFK9Y538U/4ExSFt3Qlx1jejVpNXpZf/GLX8Rll12GZzzjGfjOd76DZzzjGXjggQewZ88ePO95z8ud3sq+sg48CQThEggCWAQh0gy4koQ6ml26G3RssAAIAEAChsxlbDkdAwQiAxZtALm0bSPCUE1cfazUQ19En8SihXm0JEHps3USm2vQsIeBzMOH56csuOba5rKD1Xu9EO3+9eTekrGHbZteUsbuWbGe7IKO9RJ70Oy9ADA4YqBj1MQ0jAhhmdwKK/VgONRiUA960MLZZYFhBwsG3+fQtgngoJd56tf9pgTkcaT2qsl8JrD9vI94goEV+2w4DTpZmEUHA+P8W6Q0wyVqrgs9ok+ngU0hoTRK0GxSCs/vhpgvDZPrpUENRj9jqcm0QRQssPCbeepJPNAWUetRzk7zES0vjWYUoTVH+43MLlVqtWuAtYoN6gzs6adotGl/d2ygk3maXbTqpUCWBY8HIRMP9QJ9QyhbeD3GZnO1K0016VHK5f79o633ve99+NCHPoTXve51qFQq+MhHPoITTjgBr371q7F2LfU9/31SxiBKSkpKSkqHoG3btuHiiy8GADiOg06nA03T8MY3vhHXX3997vTUgqykpKSkdAxo0dzjUP8djeWsv78frdbim5B169bhV7/6FQCg0Wig26VvPH6fFGWtpKSkpHTUtRop6/PPPx/f+c53sHXrVrzwhS/ElVdeiZtvvhnf+c538NSnPjV3eiu7INuS4PM5gnfLCF+ZRaZMeazp8tgAyuza8pCaMhp4JWlUP+W/TRUM+qEtrz0oR7TKvu/I6i8PqX0kgsGnDg2bCMjJWo74zmMDerC02XslZdQT2l65LVdzWGrKbCW5ExIAP5byfuvj0uAIdUDeV2VWu1zT5CHGF9Om145Ef3eZsbj/f3Me/cVnpbUaF+SPfvSj8LxF4OOtb30rLMvCHXfcgUsvvRTveMc7cqe3oguyZtss/ZraDhssvBm6+NpvTxcW4TCIsDC1FwteBrzwfNzxtV3UIrOo44rXnLCsQO6LaUwSb13NtPCYp5xJrQeNgFhF6pGH0r4HyIDyds9h+02TZJI2B/tRu+ISIH4E7ChHAf5i9osILfFYylwLeOO9w2QiXfrv7NGvKEoRRCBlnLh3gqQRFH1Yl9K22ajr+NSJO4TjN9r8HH51zdsR2iKAFLgVfPfSv1sW0crVHQDMdzRc+/21cCxxEjT27cVFn7tBWADMgoHRc4eReCL96pcG8fDjLqVe0hLSdd9chH+4/n6h3WtaG9dKTgRwfXi2Y+MtP3q64G9eMnq48o8+Qxbg2I/ZvmD3VzB66bNEirnTwdytP0aSiaMaNANMffA2siDqfRVs+ueTxD7pJ2jvidFYENMoly1c9tqzyYap6AK7zQ4lgo0YyNhKxu4gaytpFU0Mfv9jxMdc11NsGdsiWI8aBhCWNpC+sPT72esxdKAmLnIbzQWc/Yd3AV0RnCq4GoonnyzQygCQWC5+Wn82WTx13cREoyoswoaWsPaW3BwCAO7cbpz+N1cJR+fcsoHN7/tTJHomH80FzH/re2TDHsx1cM8tE0L7+v0j2Pqap6MRifOCrmuwbHXs6VjQUhhGANB1HX/zN3+Dv/mbvznk9Fb2CTkOpfQrFyy8FxVYSni64QMQd4t+N2QtMp11bo5A7iFm9lFytVI3WCKzUogZW0mPpV/jRpMNcm6MOEhLFeGaFvTQ390HQHxUaYaONJB7p7u8wNd+N2TTcMt8UHoAWO+I9zebLVTmd5H75oZPXDbRytUdAIS+hX1tSjfXZ3roTc2L6fbZCObomwe/5BCqG5CTrs1ej7S7U27DPHH5BHe75WA67ResGDfoe1hS25v32b5grzFp2l0PQYs+bQYtn9QHABRPcUm9ep0E03tonzRqJur99E3AYj3RtrHgkXEah/NSGt3uzJHrmuvCyliPxoaLriQQB6eAsZt00hbGjJ2AOJQWf4+hlRu6xdqXAtRS1zaiZc8hAFBszkPfuUPM3+ZhOBG1cw0684TOBxYJ/Wz7dqN+eFYfXMY5mBnSq16r8Qn5wgsvxMte9jL86Z/+KWo1OgfllYK6lJSUlJSOupYW5MP592hr69atePvb346RkRE8//nPx1e+8hViDpJHakFWUlJSUlI6BP3DP/wDdu3aha9+9auoVCq4/PLLMTIygle96lW49dZbc6enFmQlJSUlpaOuJWOQw/l3NKTrOp7xjGfgU5/6FPbu3YvrrrsOd955Jy666KLcaa3sN2SDD5soo185ojqvZ202RvD+tHN4xcr8qTnvZll0EhmNGnfpd29ZGgVbQozmoHOlZK3EM5mTrCxZO84lcUSrzPc6C3Ptv9+mDlZ5g77LBmgW4gNA7Cv3pyGhm7m28STkuoy+5nyyszGJf18aXH/KWpkuSebnnIcIXkmfZ5k4Kj4Ljx3s9wBQ4O8gktWHjF7n+qrUAz1H++oe/Qa9JJufWle1VuM35AO1Z88efPGLX8RnP/tZ3HPPPXjCE56QO40VXZDnkyo+33ge7Aww0vE17LzbY8nax336WYIJvlk08JQnbYLli2BIsaCj/rInkYXFLRgohQ6ZTHQvwsS9gbBAyXxvdUPH9geX591c0Tq49gzqdaz1fJZGxcAgdpuid64ZLMCavBl6IE6ua3o+ri1+k0z0ereLmetmyUTQ0Qv44hPeuKwy2q6FGxqPJ23jRi08b+56oTyyskT9w+gxfuJpCuzN8EczbRPXfp3S1J1OhIl7HyYbhyROMJnxXTYsE1tq/YgqIjyROCUMMD7Fhq4BqJJjLO2oROqkVtWx44ITWa/tIX2WLCJJ2cbYqeuENOJ4Hd7y0KsF8hoAIqeIgVeNkA1Muc/CmcORkHY0ZCK44lxEmQ1MYBbRu9wFuplJ2k1Q2nOPsKmr+y7OfPxjMdvKUN0SP2dZPRlaAlTEBbFT24gfXnQdrEjcBKVuAZs2ujBiEUzULBPrBkLheJampRjALIjCAKXZ7XSD6nuwJ74uLMJxEGLvxAKMlghIaeUqKuddQtor0myMOZScTqamMPeXbxAI6aRaw8RHbiD10Wj4mLj3ftJX68k8GR8yD/TZsIKPbbgWTiKOdTdu44X4OyGNsOsBVz+LBAXRvQ7cs28AKhuhdHTVbDbxb//2b/j85z+PW265BZs2bcKf/dmf4Ytf/CK2bNmSO70VXZCDEGgkNE6kF4bY16a79fpMD+7eCeGa02djQ5PuFK1SH9b20V1vbPEEp9dNCG0s870FwNKUnHfz5nIg9TrmaNR4qB+9jHeuHs1DazbYNIZ1StZ6kQ9vnnomB9UNyy6j45ps2wxGPVIeWVm6A/3SgPKYF0uTxClLU/tMuywp67tsFxy4g+NsWWqcT7FNCVoA6HohqZNKVUNYpmbbVuohjdqkbTpti6Thdz3syZDXAGAbDlzGT7xYD5Bae4TbIzgIhsfIvXFkIDVpe1nxPujtu4Vrva6NdlyEk3lwk/o5S+ppkb4Wy9hLdLTLa9g0ugX6lGcbEQJLJN2t1MsemgCwGHiBO7GQ+D1CcIcdD+ne3SQZo2qyJzhihtQGgLDdIIQ0TjoNHlMf7bbH9lVHpz7oMg/0TlTDvD1C0hjxtrNjLDsfLilqyZ+eV6tW4xPy8PAw6vU6XvjCF+J973vfIT0VHyjl1KWkpKSkdNS1Ghfkr371q3ja054GXeYak1MK6lJSUlJSUjoEPeMZz0CSJPjud7+L6667br+v9dTUFNptGo3s92lFF2QZeCADtfKAPCn37g1yYIQDXfLAUQAPSMlgIM5aEQA0nwJIMkBFloYM8MnGuQXyWwmGGq0oWT5kMNWRCCjPKW9ZZPaqWYczACQ275JkVoccjCYriyzffkjzIQtgL7NzPNABa0kyy8W89cTBTZKulyuNPPaRAG+ZKuuT2ZjO+++X1WuJCX+Z/U7/O8nsOjmYTwa5ORoPe/k6tRmWjXMAMCsl6f+2WpXiMCnrw3xCvvbaa6FpGt7whjcs+2927NiBrVu34rnPfS5e97rXYWZmBgDwgQ98AFdddVXuPKzoK2vbBDat18hgbTUT3P41CvIMFX086bpXioRiGCLatR1OVeywmqEvO3A8AFQtA5962R8KEJhbMBCud8jEaFgGZsx1dJLWbUzMitaDYZzib3+5kQy0jq9hsvMwAXxss4I/yVj1RVEZP1p3NWJf/D6l7ZvFCTddRgambussZLWpaOPss74tbBLyWgmW0gKsmmgVadgOqudfQia7olNiLQaTqSm4V18pwCiO7uPiPxgiE0/BjFB54gjZ2BRcDdbGTUJ7JaaJ+T4LtbI4MS60Y7zvMw/DMDMTpqZhxyljdAHWNYxvrgsLlG1rmGgYywKbAKBTNDG+uUbSuPCCAUoz6zr2zJtkQdR1DV/4bb9wusA0gPUjOgKIk3y7m+CO/9pHylJN5nFeSRwHVT/EX++7Dd1exga0VMXkBX9H2tw2eKtICwFGwp3CAjrvadj+4FoWeOSsbAuNaVz20/9XWPicsoUt73keC28F2/gxPffLbcIiHHYi7PnxPoRtsU/2ajEefurp5MRGqukYXeuQ9jW1AQbI0tD30/chNsQ5pBG4+P6pf0w2WGsq61F96uuF8aHrGqz2FKG+jY6NiR/Ruc+32hjIWrdaJoaecT45rWIWbBRG6zjelEBDchiL6uH87V133YXrr78eZ555Zq6/u/LKK3H22WfjF7/4BdaseYSteN7znodXvvKVufOxogtylIC1q2tGkdTOsbiuX7iW9HqIkgb/A8sMHA8Aen8f1mcgsNhy0a3Qp4kAOiKLBlD3IwP1VLQebCyEmEnEPAOAH3jEWhEABt0SAWi8IMWeZBjZh52Cz9tvOn221L5woCju7vNaCZbjgNg5xpYLo5+CPMlBQBkOzutnnkJNw8FAsUKua64Li7SXhu5wgmwQe7+XoNuiTx4yi1HHNWE7YtdfBJt4KCkLNgGLcBOXRr2f3uv5Kea6/NPpQkDT6GOOiHW9kC1LxegAVgbC63ioNbYja+TXrW5m29w2UrYdrTSEFYltEPqWFHjkrGyHF/YhntgpXCtsHpbCW7Ixnd2s+g0f7Z3UFtWrlYj9LiBvX6PbZYGskreP3LsQDbOAZK0akPGhBz1o4SxrucrOfUYHpiumrbkurM0U8AMgeOEfLzpa35Db7TZe+tKX4oYbbsA111yT62/vuOMO/OAHP4Bti203Pj6OXbuo3fDvk/qGrKSkpKR03KjZbAr/fMlnjCW97nWvw8UXX4ynPe1puX8rSRLEMd2g7ty5E5UKfdD4fVILspKSkpLSUdeRcuoaGxtDrVbb/+/aa6+V/uYXv/hF/PSnPz3oPQfT05/+dHz4wx/e/9+apqHdbuNd73oXnv3sZ+dOTx17UlJSUlI66kpxeEeXlj51TE5Oolp95My+I3GXm5ycxJVXXolvf/vbcF36mWM5+tCHPoQLL7wQp512GjzPw5/92Z/hgQcewMDAAL7whS/kTm9FF2QZJCijFTk7R1lQepmk9CVDZecJYA/wpCtH7AJy4pazL5QGPnd5kjJPwPu8VoIctZu7nhhyNU+egXyWizKryDxUdh5KGOD7tiyNPF04DxkOAD5D+Oal4vNYZ8qsTmX9PTDpRCe1lZRUFFceGYEss5uU1Wts0XCUuQlphpbPa4fLndaQjV0AUltiJaBarQoLskw/+clPMD09jcc//vH7r8VxjNtuuw0f/ehH4fs+DOPgcadHR0fx85//HF/4whfw05/+FEmS4C/+4i/w0pe+FIUC7Vu/T1qapvwIOwLyghg/39Zk6U1rZht6mVf7RSPASdGDJJ3U90nnTG0HvYETCNzg723g1y+/hgxYq+zgcf/zImHQp4YBc8spZPB0UcQPypeQBThNNQJkBWGK324LySRv2xrW9sdkAS55+/D4264RJoKmuQZfWvt6+IGYRuD5mPvBf5HjTH3lBB88704ycWiug8LJJwt1ldoOeqMnk8Us1Gxsd05l22Zj8Fvx/jhCYWE3S8X2JnaxQel1mMLEq1fKiE44kZDaSa8H79++QCbdoBlg6s55wUdbHxnCmo+9H1Fmkg9iEz/ZXl423WzbGraMW8IkbezdhcqbXylYKAKACQ8nXDCE1BEHl5FGcDZuFI+JFVzsO+9lpE7n5318+GPbWQp8dMsYDXjvakAmz71ugAfv2cHaNn6g/E8MgbyXIZBH8Otrv0k2CL4XYWbXPPFqrupdXH3GD4R2j1ot/ObffsjT8hspLW9HPeBnPyG2kusueoyEpn6Q7QsT350QxrRZNDCwdQ3Z6LUKg/j/zvooqVPd0HDC5j7GNhTY4u4WNiuOEeG8+BZ2ztnRfxZZgF34GA8eFOop1Q14faNk3M12bbzrq+vIZjGOY+hT96FwwJG1gT7gbZfZgCv2vVTT0XfqOTCdQ3uqO9bUbDZRq9Xw/bu3o1z+/QupTO12ExeevRELCwvLWpBbrRZ27BBd2l7+8pfjlFNOwZvf/GacccYZh5yXQ9WKPiEniZzeHBlgdr1BCkzTdLgA8bHlIi3Rj+bhLp5MNosuITg112Vpz1inJLRMSQJC2wJy4rYwvQdOQ7S9XHAiNEv0idXvhsQ+EgDK5QYhMoHF8nCEdB4rQSsNyf160Fu2peFSPqzNJ4q/Z7noMqR2tHuKELQAELRowHbTrqFo9dF7YaDeT3ejMrrZsSn9r/UWqIUiAKvPhj7HvBkpOqjHotWmp42gyVHnfohuixLIdsHhiWV6K/xuILVtzEMgc8f3PT9FowVkjwQUSgFp97jTRn+4l6Qho+XDjofZZdpKcjQ1sNgX6JjmTxrMO3W2Tg9mGxrU14kpx/ugtfk5Z5A5laEHPvTpgNzLjTvOchVYtF3d1RP7U1rVkFQlwTwSPlDIatajTVlXKhWy6JZKJaxZs+agi/F//Md/LPs3/viP/zhXntQ3ZCUlJSUlpWXqT/7kT5Z1n6ZpLIF9MKkFWUlJSUnpqOtwYxofiXjIt9xyy++9JznYt/3DlDr2pKSkpKR01JVi0fLnUP+tGAzF6NnPfjYWFhb2//d73/teNBqN/f89OzuL0047LXe6K7ogy/yL83rZcpIRt0aRBx1in377ORLBzKWEdA6qMxsbdX/aEnJV5p+dh0yWEdJc2+TxGM6dD8mRBI6iTTvUcQyQ+zznapvi4RPt2VjKS3KcfB7XnGR9gfNRzksgy8Zp1m4VWIxvzElGJnOEdJ57Ab48snaRjaU8Pt7cSQNA3oe58SG7Nw+lnoVehfT15TEuSiujm266STAcef/734+5uUd4miiKcN999+VOd2WPPaUhRsIdZJLXIw+lfQ8sz8vWsmBt2EjSjlIDu80NZGEJXX4wRT0fM/eIfri6YaAfdGHxUMO2QRrI3TFjPPGkrvBqJEo0AOVl+wMn7Ra23zSZIUb34IqnvIWQq27ZgXvVSxgavQyrcxJZ+GbDEj5y9/lCcIF2L8WuHTPkaFCQxBg6MSBkbQoDGzeIXsCdXoo9D42SoAW2N4+Xbv8mT0h/8DaBkE77+lG/8eOkvYI1G7HzshvIkRxPc/HQU0NhEQmDGAs3TiAcWJvJs46h9bS9fC/C9oeaZMFJkhQ7HhSPEvW6Dvae/x5CtNcGCnjfFSVCh3NexYbtsP19SJvFtcX/QxZPvdvFzHWzQlCVYM0IHnjdR2BkFqH4dwtQdhHXjY34mCYGvDctA6NPiuDpIiSkl0q5vOV9q42gJo5Hb7ZD+i8A2P0VjF76LNIno5kWtt90q3D/nFnHv3afLhDFABDoLoY2DJFF1am4eM6VGtmQNaMuzIE+4Vq7Y2Di/6NlKZctXHTBmmWNUwsh2qUTyaK6twG864M+GUuW6+D5L7xU3MjrBkbMYFke6ADvg27qMX7VbGKgX5ymU+ioaNZx973xWHhlfei/fWSez1e0TdMkhsU8beqJt2wvW1kVx4bNegyHTX6HbNgGIThltKdnruGJTAOUTI6MXP7AYbvBEqMcuWrU16IqodG1iFKg3biMaU980vO7HnbP0s5iF3TYDFnruBrxAvZ6IUkXAEa8+eUT0qfW2PYKYCCoD5Lrnp/CHxHz5vVCTD3cAOZonusSepgjbgEgzHQ/vxuwRHtpUIPRT5/iOa/i2HLZ/h51mxjW58l1L/LhzYvEfdc1UarQ3/N6IUvnAsA8xID3jmuisIkGH+DocuAg3vJGh4yPsNFmTzHYa0z2NEQULJD7W1UHUxmiGFikzi17hFwfrGgwx/mNdnaEdXb2EAXbyH1GzVz2OOVOGgBAM0ywe5bOW4MjBjqG6By+6IFOSXfOAx3gT2XYRoRaLWHf18me+FezVmM85COt422TpaSkpKS0CrWanpA1TYOmaeTa4UotyEpKSkpKSjmUpin+/M//fL8tp+d5eM1rXoNSafFN4u8LaCHTii7IMvAgDyQkA6/0hA/CzgYcBw+ByOASK+Urk+NIZECRbLeWy1ZS0qiy+uMC08tgoDy2kjLohwuqDqwckCXLh+z1nex+9l4ZQCcZV3lAnjzgWl7wilMegAk4iJUtA3UZzOtWQG6HeSBHsKTsd/r9+ZP0SRKX/CCSAXScZS3Aj1MZdCqzaOXSzmO5CvBtc7Anvjz9YbVoNb2yvvzyy4X/ftnLXkbuueyyy3Knu+LWmfc/PE3ABqPbxPoffHJZ1nlzSRU3Gn+KViJO/mahgEsufxKZ0NvdBD/40i9hBeIC0IOFfXv3wj3Aj9ZLbZiuzcIlxVMeRzp9XzqPNw9+UbCKTLttTP9mitDTZsFG/2X/gwXanJ/cLk5gYYho13Y4VbGMmuvAPets1trzLucCQoP3Igt3P1wQJmSZhWfRBTYMBnSy03XMBn3CBNFq+vjSp35OFi3d0HH6BotAOKWKiVecPYW4+8j1pFhGY8sfIKuFdoovfSshXs29boCJ+3aydpN+Tyy3bugYP20jaa/A87Hj3gmSb6dg4ewLTxfqqeaG+KN1v2btXLdggrQBa414EItR/2c/IRvAqFzHjjNeJGxWwljDRLwO8bDoHhXHKbZNRGSx9bsB7v7+r4UyDtQ0/M/Liqi44r2aoWOhsI5M9FGi4TcTJmvzev63rhTG40xYwTU7/5iF3z7wzmHWonVipiiUMXJL+HWyJZfV6WNOMshYN7QEcZoB0ULgp7/0EUdi2kkCdNsB9QTXNWw8oSIslFHyu1jQmW/LnV6Kn/ysQTYOtmvh9MeOCJtIx4xx/qltZBXEGrbtq5EFOI5T7JkVN6JREGNh3wKizIY9DFO87S8GMbLm+HjBuWSd+Y0fTaF0GNaZnXYTz/6D0WVbZx6LWnHrTA7k0aP5ZVvnzcc6ftbrI2kMjhRZe8uuF6Ldv55c97sepveE9LAa47dvFxysZ2Agy+gQq8iw4xErTAAwRtZKgbbiun7hWtLrIUoa5N6DWXtmIRIA8KIUtpMBniQWnrYRoV4NkcXm/MhAqylek0E/dsHBPAPhrCsHcMczNDX4xwvfT9HpcgHvA9ZukpPUgrIb8naTrknAmkohxKgEoMvaIgK8NeLBLEY5q9O4UoM5LgagTyIDVrNKDt54Pm/RGvR8Uka3rmFTP7kVARz0GNDw/2/vzaM0Ocoz3yf3/PZau6uru7okdWtDAg9Ilq44EkhgwGK5vsh3wD4ehBcGGzDCw8BY2FzAaDzCMPjYcyxkofFgXa6Nl2swFhc0yAgtDCMjMWCBtS/dVd3V1dVdVd+ee+b9o1StjnzfaH2pqlJVNfGc08dWkpVfRGREvJGZv3hexLz1aGlhnozHdjIkhd9kFq1cHYfbxaxOo3SwLZFBlKFSZ67tRTi2QAe745roB9wbAnpMBtZxtpySlw7IMp2Fy/wAiOI8xJjiyAL/ZO8Hpx/UpaS+ISspKSkpbQFtp1fWGyUVkJWUlJSUNl3bibLeKCnrTCUlJSUlpS2gDX1CllKxBm9wwFnnuZKk4DJqUpbIXUbRcpLRnkWSwRchpItYUAJya0/uMjKyVkqBM9SzjMKVthOTsF1m1Zl3ClvVetwv2TXywA8AREkxO1eOqC5qMcpZbRa1ASXQG+RkuOweyH6Ts3mVjcciv7kuVqcSya5RlNBf6zUkGyfWZVcBALjO9n8azCvLVv6t5e+3uzY0IEeJjplmnXTCIKrh7vHfJtuLtOOLOPOOa4XtIL16hAveUkHTEHPp2q6Fp2apXWKa6pjeNzyQNV3ZBXbVuwgCcfRU7AST5hybiNxaFi0rOWtAAPAaCZ557QUsqZm3oYyjCL0Dk2j3xd+r1iz83uVVMvnHmo0ph9pycjaeTucozrvto2RyTZc7WPjuYbINS2/UMfX5PxGu3TBSTJ1/Bgl8Y2YH/67+ebJQcewMlfkpIUD1UcZM9aVMXwCm96UD3a9S2sE5S/eg4YrlcOFDm7+TlMN0elgoP0UtK8tDmN9zsdBOtuGwVqxG2Ib9xNdIUJ3vOfidf5kWtsKEqYk9Z7yabD+rmCF+6xy6wOKsNrU4xN7+AvREvEbLN3DXk5ey5P+tl35T3KJkWeg8vg87G+LvZboBjNNtPd3QxN2zNTKWzIUUpZxNZqccYurttC/YroUvPTpE+num6Zjc5Qj33dB4W9lOL8VdT8YsLf+d2w8LC0PDNLH33D1kl4BlabjoouGB7UHH6hl+4U1zwoIs0Uw85J3LkNAmADq3BP0Q993+fWFxNFJN8YvnmqStE+hAgy6IubHbbqd48NtzZFdBmqSIggZOty+OKTSka/gOvJa/3Sra0Dsap2BJ6CDK0DSpXWIpaBObvbZTglfbTRhdWcJxgKdRZdZ0Oxr0adPKfIzHfCJyrS/aA3LWgMBKMvi8BSXA21AGfR+HF6jV4Vl1ObnK2XJyNp6lVpelwP3lAMkMPW6efw65ditOWbq0YTSxw6CWkJpN6fBEr0j7gs3sHeXuVyPxcXGVkrKp5yM+RssRBT40xrKyX65iKddOtlFsR0Cn7xBLUrukw2YsRvdWWqytJGe1qaceKoyNaiussyS5ZfSwuy7uXdZcF1a5j/yLFJm1ZxLr7FjSm7Rvd52ylDTm+jtHSNtGzPbfVpxKafnmskjc2yUH5UVal0adt8iU2oMOaxjK9b9OUoYd8yS0jHTP7wgYL2mwmJ0FYYGx245jdJbo1ikA6DM7E5S2v06vJZaSkpKS0raUgrpUQFZSUlJS2gJS35BVQFZSUlJS2gJS+5A3eNuTzLdVSlO69Ptb3gLzxLkF048V8YqVedlyFC3n1QsU8yQu6qNchJblSFlAnsSe85yWkdAcdQ7wdHgRMhwomDhechEZAZ/PvQzI+4JsR0DebhWQ094+4wkNFCO1OZ9ygL8HMjpf5rWdB7FWtR7jsci4K0Lcy9o6jvlySP26mTFmaPz32RebdJeVGQDKZfn/prR9taFPyM1lD7d97kekY6WpjrEz9pDg1HBd/OJXPy14IMcwMWIfRzqes2jUdSyGNNm65yf4p+81ybV1QwMwJAwqQ9cAUArc0FKgRgePbiTATnFii3aej/Gvv44EstitwK/Q8nGkZhStTAD5SWYoWUTrpj8kyQnCpR4WvrM4ECFtWzHGXnoW8VHWXAeT1/wsSQqg16oIc+TvLnTwsfpdlGIOezj20FMk8IXtEHOfuVdcrGgJzrvyG2SB0MkquGvHh8j9qpYyXHmhJdTFyGIcL1+AEkSAJmm30XnoG2w5Zv5xli4+xiNMXSdSvuncHBZ+8f2kTQ2EKL/CpsG9Mo5r33OxuP1O4sXsLnn47rtvpYs3LcHkVdPC/dUtE9Y5u6GHYh3DnoOZh6dJcOqlyzhWFe9B1Itx/NbvIcntHsiGRjB8282kXzd9DQeeXGLoZgf3XXGD4FttNBo4l9nF0HAjvPXcH5PtY3bmY6h1UFhMGWEP2g+eIoudoayC6X3/llxb1zVM7xsRtquZBjAxrqNcFcdGycpYgvvMeohLP2SzXuWV+ceFhVA58HH5M19DYojXPt7Vcdv3L2f91fO7EMZKASrzD7C+5vbM10jddT3D/qn9QjstpS7uf/mF6PWod7ssN/Z2Vpqt/FvL3293bWhA7vcTQkcCK4RkgyNGSzHcaTHwhnAwZk2ScznPZQDwfT4pPes3a/MU+EpycdrhLfiEeua8eoEVv16bK5+E1GQpZj9CenSJHI8KENJO2mN9lDXXhZXz1Aae9WjOPc1qUZelqaPAx2JAn3zDTgBvTjzfGbJZ2rvlTCMaoverXtaYxPEhHGhIIQb1JFomnsur5eAIeHNXmVw76jaRzBwi5xpDNpJgNzkeVBzi/yzzYi5FXdIewEqbpMvi/dXKDrR2haW6WV9uvU3qHjQDNB8+Qs41z2+w/boXpohC2k5BPyK+1bXhCtt/a6UIQw59LNRDD5W0LRxLIw9xj/brtrkbdpWfkvK/6djA5G76yCojuK0swsSAXuVp4KHiHyfnLnQbrL+6XXLI+B2uBFJf87wfPvDseMy1UyuoI84MOMzT8GnpZb1GqAunAdSlnLqUlJSUlJS2gBTUpaSkpKS06VKUtQrISkpKSkpbQMqpa4NfWfclpOF6eCDLPGFlXtYcBVrU55mjr4uWr4hnbaBT5yOgGCEto4QLkbiGhG6WUMxc+VKJua+T8jmP85aIgJx+z0NvpyoHwLdTHuZalazcHKldZPeA7Np5+G5VHNUNgNiCAsXqDRSjmzkfcKCYF7iMis9b6Z5K6zF2gWLlk90Dbj6TkvUFfOtlZD0AaFoBg2+lbaMNfUIeHnZZD+RJaxHvYzyQXVdDZX63MEiO9Cv46oFxdCMxKGi6gbFJ6mXdXvYx8zD1rB1pHcJLbrlFmBxdO8IZr95JyF/bSLDjvEkSzAwDKO0Vy5caFjBGB7wR9bG/c5hs1dFNDa1zp4UJLIKN2bPHYeo5T23fwdj/pIT0KsSTn9CtXeNo5AjptH2EJaH9ZR/zeRIaQOyFSE0bRvm5xYBhJNj9r8rkGvrIGOrvvY4k0oidGsY/MCYEAKtsoF5aJOc2ly3M/BW9X3Cb2Nv4nnAPNMeGNbUXVipeIzUsgClH2moB+OJg7WQdQfkNe8i5UT/GgTsoqa1Nm4TUtuHjkso8CU768Dxi5trhjjPwyC9+Ugjulp7AKy9Dq9XFaxjATVd06HaaQwkO/HuxfFbNwjTze5jcDW6Kr5QNXHVlnWwZSlLgQI5ujpOMJbKHahmOXEi9wC1vEfYTjwmBKOp6WH74aaY/dfALV1BSe7Gj48//xw7hN0M/wIN3HUeSs7it1R1c8/bzyIK4kjSxv/c4CcC9A0fx3d/7G2Ec6GaGXRcPkfIljT2UrMdKUD/aFOn6sTREmKv3KetumxiBGLArlTG8600h+pm4WLQsDePDp9+2J/XK+kV4Zc3RwyXD4D2QTRd6LHpcJ4GNZ46aQI47dVygwcwuQZCyNGrm9eEenRGvMWTDadIVv1l2YPfo06nm0vIBYP2B9SwkdCkAJJkLLUejhkiRNID8CwunlbKENADYNfrUagyVSFni2IfHEMhxP2TJX07OkI3kfEoaG/UUxsgoOZ7CgWmJ5LmV+eAW/GmaIg6ZrEdGQGhUzXVhBQ22jMYYLUeMYu3EnQtAQmpzFHjCksZxq4cOc+10qIxwWGzXxIgRNjrkXCvzMenQve29doJFpnxcXZKhMhuQM2ioVuhU4AcZKnVx4ve9CIvH6FuNtKzxXuCZTrzAsyBgqXijnrLtF/gW2TkR9CPMH2oxteF3TpQSsNQzPI/dEZAE9K1GXAEh64GVdlr2xPmpFGVAm3qgy+puAqSdUjtGdaSKKi31aSllnakoayUlJSUlpS0hBXUpKSkpKW26lDHIBgdkWRLtIpaLMrBBZtXH2dgBQGjSV9AyYEcG1nDlk9kRFklsLwPDZECWDKbKf0MFigNPbDlk7cT8HsDXRwbVlPjiifl9V69R0BJSVvf1aCcOkCoKnRWx8JRd++Rv/auS3S8toL8HrA+AyEF4AN+Hi/RfAHAsem2Z3Wz+++6qZLarnPVtEZAP4Nsp0vh7Lq07M+foCfOK/cRvbv/Xs3mpb8gbHJDH9WV8jIG3ZJaLWrWO2uVvFiZYr5kinH0cC32xg3OJxYEVq753DR2EF4rHXfio/2+vQhI8F+Cb5ghuwr8hpG/qVDA9Pk6oz8x0MF11BV9mrb2EM2/6JJl09SyBvX+CQB0tNPDl5lsF/2DTAPZM6AiRg9wSDfv3n8Mmtq9f8WYygem6RmwAEfiwC1hnIomw8M37hEnJKttS+003/3sAMt0AxsUgkkDHEZNCP/G4iWvfUyUTacU/jmP//U/XZglZnsL/u/dGcn97sYGFz/jCYqCmabiBqWP6LNBEwLCyifFv3yQEHF3PUJ7eQ9qjjzIeufZWMqH7mounZkUwsZY0cVHvr+Ak4vdi2bXtqEMALsM2Ud0zAacuBuusQm1RAUCPfezvzJKgFWoOsOf1AtHcaae473YK4TWrFmaaLyPBPYhquHv8t4WxpB1fxJl3XMtamu74AO0j+lCC6980J+zC0OIIwQVHUdbF/hsZJXxz9iISJKtRhPA4haw0LyDtF49M4JF3fJrcL91xWFtOCyEuqYhzkdFZwrFv8bayvJ3rDvSve68QhKNEx8J8jKAk5krPMg1nJzr4PRjbVy92combb74ZN998Mw4cOAAAuOCCC/Cxj30MV1999Qsuw1q1sa+sQ7+Q5aJRN4k1ZTNKcWgxBCAGHy6xOPCsVd8QvXbq+YjHRFBjOR7DcmeCnOu4JprmMD1uA73cACtFTWJ/CKxYICIcIVCHb46SRO6ODQwx20ZKSSxNbM/BVHroQV9YFI6lgVfIOjNcXCZAkFl2pNfgQJnEcgk0FcJhoZ8QBgvKlBbm18USctmm9zfo+ziyKAJ++6ohW8eox8NeK+Afhc70eAc5N9ErBN4CVmCgqCv2kHrUQ2P5KXKu9Nq9Lnu/qruGyLlprUZsUQFAT30WQGzqo7BzW6LaccxCk0bDZGGqIMrQNEUQshS0pZamMsvaiZp4vh56qIQUfjsaVxDRqqAe9Qk0BQBpn97f/tgIe79WbDk54I7ahsatZXQK2rlGVXFMr9gD1wHmoV/yEK9UQHv27MGnPvUp7N+/HwBw22234ed+7ufwgx/8ABdccMGmlEl9Q1ZSUlJS2nSlWOM35ILnv+UtbxH++/d///dx88034/7771cBWUlJSUnpJ1fr9Q253RZfkTiOA0fCcawqSRL87d/+LXq9Hi677LIXXog1Sm17UlJSUlI6bTQ1NYVGo3Hi34033ig990c/+hGq1Socx8Fv/MZv4Ctf+Qpe8pKXvIilFbWxT8g2jx0UoSylFK7EZU9KNzMopKPxFGORZOt5l68T5ZCQ2pw9oMwGUEaGFiG7i1j1AYBmMXRzAepcVr6iFqNcu26kJSRHdQPFqFhZe5jMd1ugGJ27HvcLCV8O2Zjhyp3Pbb4qGd3M1VFmJSq7jxxhLiuzrfF1LEI9y2jqQpa662HnKhkbAFBgk8S20Xo9Ic/OzqJef87p7lRPx+eeey5++MMfotls4u/+7u/wzne+E/fcc8+mBeUNDciJH0oT2HOkoddI8MxrLyAE8rvfG6Pji0Utu8ARs0cm+ujoUTQlyeB3XzoilGUxOo6ZHiVGq1ULr7lylARK20gJZZl2O6y1om6v/He+7k2thQPTovVgrQxcerYN1xZ7o4UI3crZJMAdbQIf/0xAFiuW6+Dn33aNMJG2DB33t46SxUcv0DB//zGUbPHaZqmEt1z788KkpDsO+uMB2YahGRp26Is0ACcxob37KGOm+lKGwgWePkwtUAN/HHflCOk4irHkPYpOJFbcHW3gXzfr7LWn96VkgTWUNfGx+jeFIGzHXqG+yt3fpjaCv2y9m2zV63oZnnzmARLM0lTH2Bl7hL6wHDVxYKGLanBM/D3DINaKAOAv9kj/c8brGH/9q2CWxUVNZFdY0t0I27Cf+Bq5tuEFOO/JbwiLo05WwdT57yN2uEmS4LbPDVZH3WgAn/46dD9Hklcq8Jn7aLYWUP7yHwtBTrdMWOfshh6KBH0Q1XCgTa09n/QT3PfY64gftdVt4m3fuUdoP6+R4KnX0D5ZMUJcUuEp9crxJwba3RBXh9H/wGdJAI7dCmZydY/jDHMLEYI436ZAeMHpZ52ZZhrSNbhtrf5tvV4XAvKpZNv2Cajr4osvxgMPPIA//uM/xi233PKCy7EWbWhATv1+ocTxfqPCEshnjuvIPy/ZRoyYWQ1HbV+aDD4JasKxdjIkJUbzdOnKb2ZsYnuuLiu/R6/dcWxiA1gva2iU6TWsLCLUOQC0oxRHFunT/fiEgZ4hWks2kwjHUlqOIPRxuEWtB8cnqJ2jbcSIqrydYxZ3Sfn00CP0daJXpBRuFNNlsR9khJAOUh+Hy/Tpb3xMfm2bIfFrUYDdZTEYRD2e/Jf1Ve7+dhwbCz59+gv6PprLC+S4XXLQyPWFYb8Jd/kQsbg0yw5LCUfNLimfPWrAHqUEfWrXeHvLeFlKIDvNOeFYy5mGNUSvsVJHaqnJ1dFxTQQT0+RcxwailHli7ffJTgat7EBrV0iZe3GDjK+V8kWY86gJ5c5Wi7Sf36ggYuwPaqWEt8lNfdLfZbsbkloD5vQUOZ7GBqJ2zqY0zNDu84+MzLSltA7KsgyBZD/8iyEFdSkpKSkpbbpebGOQ3/md38HVV1+NqakpdDod/NVf/RXuvvtu3HHHHS+8EGuUCshKSkpKSpuuFzsgHz16FO94xztw5MgRNBoNvOxlL8Mdd9yB173udS+8EGuUCshKSkpKSj9x+rM/+7PNLgLRhrJ6nsYTyDLSMA95AMUTkRdJNO9KKGsZMcr9ZtHE9nkbR0DuA1zU/5krt2kOThrLrrEeSd+LkMYrx+lvFvUvll2bI25lNLWsr3L3l7u3gLzcXGL7QOd3JsjIacOha2pih7pajlTiC1/AM3096lhkFwPAE/ey9pDtnJCVj/O45+YhAMSm90RZCuxukPlTc0S1rP8CQLvL9/ntrCx7LsHEC/mnvKyfT+O7WQ/ffubiwGsj0vE92CT5edFE5MfDM/H3V9wAOxYnjpHdDbz3uv2Cwb5tVHBtZy+bcDzvMQwADdsnlKUx3sf+W95FJkFdz6Avz5GJo+c3MPOwSHb3Rkt45Mi5qJZzBG0A3H20JlDnANDtpZg6v0UmO7dkkXKbho6rrhwlyec971mP5oGuoQGg9Kss6Xvm9RE+84QwKeldD+c98w0yuS5qw7hr7DoSgP2ej9nHZslEalgmkhxx0+snuOvbx8niYyxbwC87XyEB2LYBK+cRrjsl1h/c0DJMXvMUub/9yk788843CH37WDPDzFcptW9aJqbOP4O09Y74CH7p4PVCEA7bIf7l+yFqfZGyNksrwA+X2P7iD4se7Wm5jqVkGM6uHNjV62Bvzn8bANJOhyXM/WUfh759SFiULDUMgPJYKNdKuPzNr0ASi2PJ6wX48T89JbSJ+exWrfw9N00dQIOMO3u2h1KOJE+nz8JTb/1VpJUh4dx+YmP6yBAJ+uUjT+ON936UBOBkx278S4745uah1fJ9CReQ8ajPPI2zPyvu7NDNDLsuHqL3a6SDicspqR3DBBri4nepleLooRRBKNYlTTM4r6bWvttdKh/yi/DKmvOEDYIMwQRD1noRomea4rkFE5H7oYblyk5y3Gq4yEYnxATgsYFhZvXtBxmW52j5UiMjlKWehSgzntCp5yH2jpPjWeoSsjuNTdiOjTwcGiYZoc5XyhfBcuhTje2alA61wSafB1DoGkWSvqdRgJRJSp8ndoEVajeq09V+GPCeyZw0XUevT69RM0IMm/QeaKYLzRkRPMKzU/iDl2NK7af6KMKa2Lf7SRdxOM+WkWvrkq9hJDoqHPP7AcK5OVDOk6f2TQClnEd7WhtGNL2b7PzWfI/4bwMrhDl37bgfEgI5kGRw03UNlTr/Roy7jxwJDa7vAdA9Wo50hw5/54XkXD/IYDt07Dp6gpE+Jd37wxUczRHf3Dy0Wj5uPJZ6OtnZsULhU+LeqKcsqQ2A7OAwkKLd5t9qnI5S2Z6UU5eSkpKSktKWkIK6lJSUlJQ2Xavfgtfy99tdGxqQZfZuGwnyyKz9goBCIEUSswM81FHEqhMAcQoCikNJsuTkHCwjA2VksFeRa0itPZmCy6CpopAQJw4cAkDycK+Ks6EsYkcKFLOVlJaPAbiKQGSABG6SWGTCkNyvAkCbFfL2ljJQyzBpm8jaQwp7cVabfR68ko0ZmV0nB3AVGV+ya0vvl8R0grOWlVm/AoAr+XSwnaVeWW9wQA5jsHCUoQNn7dEYa0oDV15oCdRxlNp46pJ/BcvIdUCdB68C32ABmtFaiolccvZjyzFu+3wykN0fAAybPVSGRIgp0w10d1J7SyQxyqCTfzWqYKotlq/k6mg1fTSGxAna6wW47/YfkUktiROEQUKC1lg9wy+8SUyUrhk6WqXdBHjwXQ3T+4ZZW8m3LXxKAKF0v4veXbMEyEqXO/juvY8PZFMqs6BM41m80folRLZIq5fMEDsvHYV/UlANa+N45LUfQamUCyy6jvllk9Sl6oc49j3eDnPuM/cK5c6GRjB8281kYgw1E0erLyUB2Isp/Cbre7ZrsW0d9Mu4/pFfF2h/0zWx+1dK6GfiJJ9VqjjzgjFYsQhIZm4JZ53hwkiem+hNPcFk6CMpi/aBPdfEA+MXED/1XmRipnWMLI7cpIu34VNCcFkyKJQInMJudsrFlReeLSyIe70Yn//zwa9RmtqFl33100j6J9mowsTR7qPQJyeFcy2EuKQyRxbPxs4lRG/YQwJlpzSMrzMg6czDM6R841YX19bvJ5CgHnXRz13bKtsYY6wzNdeBO09ByKMtHTf8QwAn5ywXJjqaLXHBniYpoqAB9YLz9NPGBuQILKTh2JBaUw7XNeAk3CaIDfhGjZzrBxmWGPDKDzIWoGnUQwJT+P0UzWUKJXF2fwBgV6hFXmK5rL2lHnrQHAf5WvaTKilfrW6SYAwAgRej3+GfIDm5wxqG8gMaDjyDrr79UIfNbJmpRQGGExGEigIfMQNk+cvBwDalMgtKAKjhMHuNnbnVVr9SRf8sSpf6QYYlxmKwFnhS69Z8uc3zG6ytZAgDPYP64voxtfyU9T3HNdm2Dr0AC9kITu48tu4AOxlbSddEt0rr7thAvyS2k23E8CvU6tRLdTRNZizFEZZt+iQ74R+AXRMXP1FSR+wVs5vd0RAD2Owhr5BlbUVP4E6LNqohHJSsnQDEcWplEYYc+hQat5bRqdE3BMvOMAHMgn7Els81emRsAM+Oj9y1zbLDWmdqrsuCkL2ug2PH+S1RnPoMxLjdpZ6Q1RJLSUlJSWkLSH1DVpS1kpKSkpLSlpB6QlZSUlJS2nSpV9YbHJBtHuosZIdZlISWEZJBRI/LLChlFKjPJLEvSufmc+UCIC5aq5JRuzJ5DMDJ0ZuAnIDfKFtJ2bkycdeQJY6XUvHm4NatXIJ4oFj/K0rnrguBzJwucyyS73qQjBmGAl8Pu9k8uPR810gy2k6yfi2zc9UkSeo5yl9G+HvM+Af48SGz9uQIfwAkL/nzqVw+DfMhp/LYMOjfb3dtaECOwoS1oAv9AN+5/TAJOEPlFL//blMYVFocYm9/AXoiBjIj7KG/8AwJIKZroP+mV5MA7CJAZf5JIVDuD3zceunTZKCVXA3lc88lAdi2NUJUR5qNBSbpu24kwE4asA24uKomWlnGcYZHnwrhuOLvnYra3b23QWwKh20Plfl/pInSZ75G7BI1y8TES3+G0Kh25sNqiLaShu2wtpKp5wH4M4ZcHcdNez8iTHa92MBM/wCxNB0eNvDpn5sj1pSGAWhLh4WJLSrV0c+eRNrYIZwbpxqAKqVzjXHUz7uOlDtxKuh/YIcQhLkE8QDQbAb42y8+QPqq65p489teKvxmkpgAKE2dxCk7DnRDI3aTpf4CLvnn/4SaKbZHyYyxs34m29+1814jBK0YJpaSnbANsRyWlbG7GzrtFPfdTqnnwOoSUng4TnDjo38q0O8AUDFNnNOZIVvhDAOIKnuFMT02pOOj159NtiLqpgkOYWyFDr70qGhZGYUxFhd66Ebi79V1Dx++kFLMCHzYDPWchBVCjeuGzo67sVIAa/9BElTNOMYYxCCcxglrR8oR/gDQsoYxdfV/EX7TtHSMjZdhu7k2NQ2Ua/xiU2l7a0MDsh9k0mThXDLz2qQGC7ktBamHSs5eEADSyIPDEI+pNoxKjT6F6mEAfYEmEc8nqgdWSEirRJ+YEstFP0dUJ3BYOteCz9LXYVImVpZ+kOF4O0OQe/g4FbXL2RSOGgGbKJ2zS0xrwyyNytHhicRWMj4yRyhcYIVcXbZFKjbo+1iu0Cfc2qiP8m7aF1LPQ5zzc07qI7BGR5EnaxEbUjrXqNByp3BgWmKSeC5BPAB0uz7bV8cnKuQ3/QAsTe17ETsOuPs4rM/jnOQJUkXTcDCcUEI61YYR6eJ9DOGga9An6izT2XZqx7xNqWv0CCkc9Xzs1ClZb5WGUE3b5HhiuOjndjeEcLBjnD6xBrGBQ/QSSFMQy0rfizB7NAByI6xUCXk718BjqWcvrZK62yWHHXfDlYDdOZF69NoyO1KO8AeA5s46+U3HNTE2yXtWD+gqu62kXlmrb8hKSkpKSltAKiCrgKykpKSktAWUYo3bntatJJsnte1JSUlJSUlpC2hDn5BlfqtSipGhhIt6Rct8fIskEZeRkBxRXZT2NDT6LXE9PKsBIMzo99x1aScJSb4u5Go4+P0tktwd4OlcgL9nsmvISHeOCF6P+ygjw2XULncfZX2yaB05qlhG3GecJR+KjZn1INq5nRBAMW/5IrssZNcuujOB8wiXjXNAvoNlOyvLMmRreO+8lr/dKtrQgGzZBuvha9sarrpyjExqDbOPyvydQlBIDYv1ik7abXQe+gZNAO6WsONsnrIMn3pMGDyxF2DpR4OTkNASTF41LQSiwGlg5prPkMnEbC2g/OU/JkFLzxJcfs45SIznjnv2ELD/Vwn9KqN2bVtjaVmn42Pu774BzXrutmZRjCwMSB2T2gi8qwajw2UkeTh6Bg5deyvZjuRrLqYXxXIPmT3ccNFBEoBd+AifeJxMaplhwNqfo70NC7vaDyMtiXCThhS7KjoJwGbsocL4BnPkeTer4O6h9wzsjd6o65hqtIRtPTLaW0Yxc97IQdPDYw8kKLXEvMr2SA2T11xNF4txDNx3u5A4Qg8jVA53kPriCtctVTD1bz5KtiKdWQ9x6YdssiAuG1VYPfEexMc6OHDHPSSwWFUHYy97jNzH2AvQeuobwjjQswR7z99PyP/ELgE/fS0pH+dPfayZ4VPfjhHkbDz9eobumwb3lt9rO7jpCrHukWbjm4fpuKv6IRlfABA2fRz61kEYJwN9o2No3PRZaIE4NkKzDO+dLkmOkdllTAfib0YRv0slTTNE4QhOty+O6hvyi+BlzVGnjg0MjzB+04kPvUufgjhaOYmWWYrRcktSyhJhKFwn7RcjIZ0hG+mySCyH42VEKX3CMPp9ci4AaGUHFZ/S4Rz9KqN2ZV7gpVYXcadLjnNKGoPT4TKSPISBcHicKXcGuyvesbqRYE+DtnXq+YiPheT+aq7L0t4riyT6KsXinqIST9oX8uR529yNqEqvISPda3WNJJSX0d6nopjz3sjdVgv6wRlSQ3vUlBK+el+850nPh/bMAeR7ZbLrDFpmrPg/T4wxbyTCDFos/mYctlhPcrPskvEFrIyx/DjQyg5L/vv1CWn58jsC2sspOkv03rrDWiFv+cRyMZmr+7G+Bfs44/MeeOz4CpYD+IviE67ZmEA2OkHnrdhAZlJv9DjIYDPe/BydD6z0S6XTT6fXEktJSUlJaVsqW6MxiOTL2raSCshKSkpKSpsu9cp6gynrotaZXML7okCRFC5ZB/CiiJ1jPnfwifIxwMjJuWyFcsiSrcv4Hslvcsp/21oVB6OtB4TDAWdAMbBO1hdkKgIE5nMEr0oGD52cs/vEddcBmjKYTxQAiJPZid8s0K+L3HOAbz/CVTyrJJCMuwK2kjJojyufzPaWA0OBU/QFpk9ZzGtzYOtYsQJyYFZpe2tTrDOrpQxXXmgx8EaEbkUEMtJ2C93bbkUaid9SwqUeZu+gCe8xvgP9D/wM9FScIDQtw/jEOQKVuuS7uKk1RKhgmc1jUqpieu+ZwvlOzcWbcnAPAKTdDg4w5ePgnLJRwlnWQYQl0ZVHlmzdznwMtQ6SBUy8eAwP535zdRFB2ynCyAdA1E8d/FP3pQINrreOY/rvP4jMESekahZj+uwzBEANAAw9xWt2nykEYdNEITiPA+uCkQkc+vB/ga+VhXMzTcfeCZ0Q7OmRIyhd9x9YOG/3pSPCbwaVLs56xeC2kn49w0TkCMFCj33s78xS+8ishysufZgEYDv2iL1i1IthD7kIm2LfizOdbT8OVooXWjhy//cQdcXo5DUSPP7aKvG01jTgrIkGaT9NA/bsmRbGUqgdA/BfkVfsBVKryJl/FPukDFAzbAcT0UESgPXYR+X4E0JQPcuwcNOHpkgAthwLR8zdFEDUTBytvhRmzjUMuoEJMxTODzWThSbLYZlYiQKA5jqYvOZnhUWTXqsiZOqSQAca1OObAwLb7RQPfnuOgGtpkiIKGjjdXnCq9IubZJ1ZLzNADFbgjTyQEUfLiGYPkXOjZT7hvbmrjNCidI6V+cgqIp3biy1i8QjIbR7tkkPOH6/xdYm6TbZ8HJyT2g1otTqcAZOt66GHCmNT2G4tsL/JydxVZo9nmQ4vcwVHwpJ3BPoStS81yw4qPm1rzXVhGWPCsRXb0cmB4TwOrOvHIzjkj5FzHRvwMj3vogitGQASOC8JxL4QVJxiQNawBisfOFKfvS9p5MFhLFqjno/FXN2DZkCCMQBYjerAsFIctdA91CHX8BsV9AP6tL7SfhZpP9uIyViK+rQfAIBhG9L7mO+TMkAtsVxY+YCJlXbl4LzJnfSxMoSJoxIAsWdQmMo2YsRah5zLWrFGvP2m5rqwdo+QumRMXUI47HzBAYHtOEZniYc0+30e9trOUq+slTGIkpKSkpLSltDp9c5DSUlJSWlbKkszZGt477yWv90qUgFZSUlJSWnTpb4hb5J1JkeoAhLCV0JTy0hoGd3IXduxJMSjhFLlLPVkddEq/DdajpbNA2irKkK/AnIClr1GAQq0CDEOFCOki9xf3affYYFT7F0sV/jzC9DyUkJ6HWxeOQJZ1q+TPpcpuBgJXbT98uARIO/XXJsCfH2kxLikjxSycy24I4Cto8yK1ZDs7CjS3wuUT9b3AKBclv9v21XqG/JGU9ZBSJJ/AzyhCvA0ZRaGMH/6Qmg9EW6Iq8Pof+CzJLCYZWtgUnPnkSW88ZavILLFSaZkhth56ShJwh6Xh/DdfX8g2NvZtoaZpkEGlDF8HnZ8/a/Z8nV3eGTA7vKeQGqKOV+5MgNgbUABQPMCTL9hjzA52o0qdrzhVWQSDCsjeLBZJ+UOIuDpw6mwDcNcSFGSEe3XvZdsV9EMDTv0xTXZby73NfxN/wcC6W5YJnY++DD8kV3CubqhARgiW0ccezcuk9yDeukYsuC5qNrQNezq/B0lpF3g0g/tZGwlQ2LLmenGwCQ0wCe295whPPXW/4jIzMFU1RKOmBXSfk1fw1cfnISb82TW3n8J2jmuK7LLCJhdD6Ef4Du3HyYBYKic4vffbYok+Q4f+295F+lPhgFoS4fJIi2Nk2f/73PHkyDBd999K1k4ZEMjGL7tZlJHI2zDfuJrou1tEKH73+8huy+aaQ237f4IrBwglUHHjj0p6SOGrgEQxwE3BlbOHQVe/hGyTVGzTOwei4SFtZGEmJp/kIzdTDeAcbrY7oYm7p6tCb8ZhybOefk+9HoiHKYbOusep7T9taEBud9PBiZUAZ6mTH0PNmKgIgarpNaAOS0mmQdWaGorplQ2d+2k2UZt+TA51xmysZN5qllyq8TK0rGBKKXn2kYsLV8WHyK07MpVxYEuo0s5G1BgxabQrokBxRqpoJwjQAGgqY+ylp9BlCGKxSvrTYld4q4youooOb5Sx+6a7DfbR7pYruwUjtklB255HPDFsjiuCW77uWNAeg+M3BOdHnqoLDxFzk0Maq24cn4GfSHXnyy3kG0jl9jeq4wivOBS8nsaQwMDQC9MseAzbwIqDYB7QcDsegj6EZrL9Am8NqnBQs6LPfXZ/pR6HuL+MXI86tE+6S/z1rTm+Q22j+jxMrW97fns7ouuY6NZB/LIuONqGOb6iA0yDrgxsHpuv0T76gqNLt4bN2iyY1dGkiexTvqw76WIMwMO8zR8Olpnpml2yoQag/x9Ed1444348pe/jEcffRSlUgmvfOUr8Qd/8Ac499xzX3AZ1ipFWSspKSkpbbpWX1mv5V8R3XPPPXjf+96H+++/H3feeSfiOMbrX/969Hr8p50XQwrqUlJSUlL6idMdd9wh/PcXvvAF7NixA9///vfxqle9alPKpAKykpKSktKma72grnZbNOdxHAeOBB49Wa1WCwAwMkI/ybxY2tBX1jISsIjfrIxQLeJ7K7u2jEaVEaNWTEncIoTqqcrHnrsO1K7M25tYCD4r7tKpy9PKRYj2ovQrR5jKEsfLvh1JbiNbviJex7Lzi5wL8PdR5msu6095eOmFSLar4MUmyWX9KZ83WXZdAMQG98Q1JH2EG79FPeS5e5Pq/LOOrI9w/tk/aV7WaZat+R8ATE1NodFonPh34403Pu9vZ1mGD37wg7j88stx4YUXbnRVpdrQJ2TLsdnk7rZr4UuPDpFOqB2dxzn/SfQeNksGJl+5E6kvBsOg0sXMyykl3GwGuOEvAmI+X9N6uPFCkUzmqGQAsMo261lbKY8Sj9skyfDU7GD0JgAYWgrUxABlZDHGEzEhPQBkBANaLTh/3KxVsOuanxWCcOaWWPI31mxMOdSDu9NLcdeTsTAZhL6D+664gXh7u6MN/GsJqX33kZpwf3tehpnZ/sD0q7lwHL9+70cRnkSe6xM7UPn1z6Ceg4Sg61gMqfewrpuYGbB8btjEzy98jQSWzDBQAQ1Ei56NT/3w1QLd3PUyHD54jPS9aknDJ395MB/vfqmLYyPH0bXEVXrgJ7jrcEjar98LMfPwIRJUdUMn4043dEzup5Bbqeri8je/AkksAl+Oa+Cfuobgcd3pZ/geQ3V3vQxzj0yjlDse6i527N0hBMrUqWDHaytkG5ZeqcBn7pfZ8lBmPL/n/+k48eteMvuYeSXd2TGcLuONB/+WJohotXHs/qPCFrnErOLA//nZtdHoXgfhE3QnhKw/eZ6NA09OCr8ZhxGOzRz5ifGyXi/Nzs6iXn/OJnWQp+Pf/M3fxEMPPYTvfOc7G1m059WGe1lzeL7jmmiFLjleWvIJfekM2QiXaIMGFYelhLtdH0cW6Wp4XzWkpCZDJQMrHs2cZ61XGSJ+s34AKZHJlW/FOzd/bX5Vr2e8X22W8Mc1w4BVFz2aE8tFyJC/icRTtxWnxH886EeEeAaA8bGKlNTO31/fi9Ds9DEo/ao3WxjpLwjHzN0uxs9g+kJsoNOW7HkfsHzj0RJLrmuuy9Kynm8Tujno833vrEmw9DXn4921HCxmI0DuJ/0gQ7MD5NsvkOxk4GRLUiQZho5Kne415zzCW0HEUt1B38ecR33N7ZIDK+f/7rgmGhPD5FzZjgWj3yftFDQD1q+7U3fY9nD0Nmq9OXLcXw6gHxKPRzvPZj34i9DoWtQt3J/ouAt+srys07XlNF7923q9LgTk59P73/9+/MM//APuvfde7Nmz54UXYB2kllhKSkpKSpuuDBmyNXxEzsjy53nOzzK8//3vx1e+8hXcfffdOPPMM1/wb6+XVEBWUlJSUvqJ0/ve9z785V/+Jb761a+iVqthfn7ls2Gj0UCpNHhu+fXUplhnSgELBh6SAVaFrQ6ZZPAyMERmCckBN+sBgBS1yJQBNOth4cdBQjLoJwr412ZFkq0X6QtFk77LxJUv0ga3RQRAvqECxeAogLcN5cBBQN5+st/kVBSK46pumsXKwf1mkd8DeOtWGRiW5xxWlXfdO9V1rJDvZ4Xur0E/hQHr05+A09Q6Mz2FDe6Af19EN998MwDgyiuvFI5/4QtfwC//8i+/8IKsQRsLddkGpvcNkwHoLh3BSz78S2TSLddNXJa35YsixIcPwKmL3/za1igLUwW+IQXJbht/BazsudHj2MDVVzwsWCgCK5Of1Z0jg0dDjfxm4Mc48HR7YAAkTXVMn7tLCHwjto/3XTALKxXL4R9Zwnd/5y8oDa4l2H3pCJsMfu4z9wrn60M1nPtnH0NeVtTDvvk7CQ26z+9juv4MgpMmMGc0Ay7aAy8Uf88tGbArDpJMrGOrr+GuJ3fkwLAAMw/PkEmmWrXwmitHyUB0aiUC3On1GioHH4Q9KX7PPrYc47bPJ2xbT+7fQ4JIHGcIYzHILflLODb71EBtCgC98iimr3srsVG96soxslApu8ARs0cWQVFk4XjOkrRXj7C06zF03R1iOSTtpxs66e8lV8eFF1RRKlH4bX7ZJOOx4UZ467k/RpSI17YzH0Otg4KdqBH2cEX9SaF/AIDp9LBQfooEPr3fx7FbFgV72rQ+hJn/68+RV68f465vt2nQ10t4+jW3CIuVqhXiyl/6AWCJ84Jp67jMO0j7KnyMzlJQM6tU0XjvdYJXuGnruCy9G35uEe8kfXj1x8nivuRqqMzvExbQcaeDYw8N3p+gJXjvT9+BQH+uPoZlAj89jXImwm8lI8Zk6SUAeF/x7aosW+Mr64J/u5bf2ihtaEAOIxCrSQAoRV24R2fI8dq+ncSWL/U8xGmTnJuYQ6xd4qlAsqYpgiRjbh/GCLV+1EMPWrRIGOcgriP/YO4HWSEAxC45BM4pVQK4QYucmzTbrMWgM2QjCWrkeNihloTl8yg8B6wAY05MHWnSwMMOQ7yGZruwhhi7P8tFX6ePB63IYsEwDrYxGiabDL7U6hLgzpgYRnVyCHmLUb+forlMQRm75KA3IPwy7LcJOATwbQoA/ekR1kZ1eIT2vRWQj147avvEkrTtlLCIEWIPKms/u+SQ/l6rm5g+i0JTfpBhqU8noVopwpDDvP0JPVRScU9nGnlwDNoeUeBD0+lxPw7gL4vQVN89n5wHAGmSsffLcU10J3cLx4xSH5Wz6dsEPfQwxligpp6PmAE101oN7rQInclsVFPPQ1ymY4YDtZJet1B/coZsTERHhWOm4WCsyj9pI+TfBGxnqWxPyjpTSUlJSUlpS0hBXUpKSkpKm64szZCt4TF3LX+7VaQCspKSkpLSpkvlQ97gV9a25POHzIqRS1wuI4pPhrNOVhGaNw+xrEpGN9vMd8Ci9CtHnebhkVUVtfbkiNEiie0Bvr1lZKiM4HYs2tZFSW2OrM3Dd6uS+F1IqWJOJ8M0J0tG8+ZdpoDiNqpahUI5RQlfro4xY1QDyHcEFBkHRSwyAb79uLZbKd/GjV1ZuZHQMb0uuxssfkzL+hM3pmW7PQAANt9flba3NvQJeSg+jmsXbiFbSvSoiz5jWcklLm+5w/jmRb+Cdj9HMesuyufRZOuyLRUcURdkFo6YewdO+t71Mjz8xPdhmM/RvEmcIAwSlh6+9j0X04DDkK6mMYTbjZ9Do5SjunctYfoNd7DtdCBH5wKAbuuETO6UxnHj13aRINnrxTj6WICSLV67HHXw7w3RzlFGhsoSyh/PYsw8LNoXyoKj3V/E5f/rPyExxD5iJAGcvH2pZcJ88gcwayLQNuzZmDr/EvIbSZKQcpxclpOPN6sWHrn2VrKdTnccjH9gmWy5it0K/Ipo11nJOnhV506BSgZWyGTtB08RT+as30U5d7+W0hpa338AnapIWXM0NQCM1lL85s/OIYhOslyEiWXDRK0i1jtONQBVsnCwDYcdB7qRADtzC68kRhk0CJlxjDHQIKK5Diav+VlhsR1WRuDvoVannXaK+26n92v1v/O2kg/cBWixuEiT2ZRGmo1je36GeOCnho3MrAl1j44eRTM3D61Uht/doBsGRiAGbH+xN/AYBXi73gW/hN/+p4vR10UHNC8x8dlfqGCKcnvbWi92PuStqI19ZR36GE6Ok8NR4CNmLCu5xOULdQc/YHqeXXKwh6GbZTKYFbxtgk2ILkv6HvR99DsL5Dj7ew0TwyP0KY8jXR0bQHUEec66FDVZa09/OSB0LrBCaubPX3aGcbxLrxH0Uxxu0brv1ZtIyuJTg4wMlSWUb3vewHaONStCxad9BACQo2I114XlWkAkPvV7vs2S9UHfH7gcRsNEOLybHLeNGGaDWkKmsQE7Z9dZTUJUgzY9N/IQ95bI8ahHrVujZAiLXoNsbuVoagBo1EOM13L+0dBhWBmA3PiIDZZot42MvY8WfGL5qYceNMchOxBSz2PtZjXXhZXbOdHUR9lytONYSpJztpKHZ+jbH6lNKRxEFt1RwSlqUwtfQL67wSw7xCYzanYHHqOr18i3n5fW8aM+b+V4WlpnvsjbnraiFGWtpKSkpKS0BaSgLiUlJSWlTdd6JZfYzlIBWUlJSUlp03VyTuMX+vfbXRv7ylpCAhYhMmXetEUIWoD/4C9LYC9L+l7EN7iIz3MRD1+gGKkpS9guqwvn+Vs0obzjDN5OnMe4TEV8gIH1uV9SQprxz87DXCfOLUAmuxrdaQDI+/vJMNeJ60p8ymWe37I6ch7r60Egm+C/68t86Lm6F/YNl7QJey5DvwPy3Q0cDW0wDoVFr5HPLX2yTkcva6UNfkLWbBvW/nPIoDRsB/Ur3ky2sSROBf0P7BAmeruX4dx7THRrInVahKAFeM/kUyWwn96XkiDOeRXbS0fgfvBdCE1x8VHaMYSpxufJZMeRrqaeYsztwLXF39MzPtEAIWpWD5smITUtaxTTE9RP/FS+y72hc6AFz/12H2X8y2udgRPKB1oNl7+5JiS8T1NgbrZFJtehZFHq+Xv4vnlhYrMnRnDuH10FuOJCJY1cTDdpHYN+iNlHQGRYJib37xHKYrsW641eMUJcUjlIgpMe+9jfmRV9ng2gu5MSvkm7jc5D32DrOPOP1Mv6grdU0DREAKnaWcDrbvklwRMaAGpDFioXXyMEyr5ewdHKOQghLq4MLcVUo8X2SW4cNJsBbviLQNhWVg6b+A/WN8i2nrDp49C3DpJAZIwO4fz/9mahTWLNxpRDyzFR1QbemRBFK+dwnvVfenQIVi7Xd6bpmNzlkDquluHk4137PPyPd/8/ZAuaBwvHjx4li6a65eA/Xl4VtlAZWYbL9p9DtnIaBqAtHSYBOK4O4+Crf0WgwNvdDD/VyXA8FkEy3dBZwG+7S0FdG/3KOolYIjOxXNZDOoUD05oSz11MET0aI7/VtAhBC8g9k2UJ7G3mKY/zKtbaIUp9Sl6bu13YBrMaZkhX28jQKDPZXhhiFwDSSJKpqWwTUjMxh1g/8VP5LmeNCYEYDfo6gglKl8oSygdRRhLe+17EU8J+JPX89RfFCTGrDyOtj5BzvbjE1jGUPC4ZpkHK4rgm641eKyWwmCc6PfWJz3NiuOhbuyjhGy1L68h5WXu13aS/V9s+asuHafmqO6mPsl5BN6FPebYRS/skNw66XR9HFsXa7NU9xOUuOTdYpvcLAMr1YUI9J3Ck5Rh0ZwIAqWd9K6Rv5mR9lVPfj9AdoXRz0PexMB8hf4PPKmnIKrmtnaFHfPmBZ/2w+8fI8aTWQFQV58RWnKJjx+Birx9s/+CTl9r2pL4hKykpKSltASmnLrXtSUlJSUlJaUtIPSErKSkpKW26smyNySVOg0fkDQ3IiYQMlXkgcyTkehDPgJyiZa8tuTQL+ZZ5X24ZgcyRrlLK1SlGWScB/Qgq8/wu4rss+TnpNbj2k/kUF/GQlvly5wGeVZ1scXqyOGpX9v2pkM+zrF87vNk2V0eZl3Ue5loV5/8uo5iLEOMATz1zFD5wij7J3LOiFHiR/iS7j7K+ysk0i805HKpQlEbPW3oC8rkPAPzB8Zlto2yN255UQH4+uRWWOg01F8cY79wgtnAoR3uGYYbzzk/Q88XOKaMs6w0LP33xMAnAlVJGCNPkqaexfN31JKjWjRDnXbITkZmjeRdbWHxwQTjfNkLsZrxp7ZqNsW/fRPyLDQPYv2efQOempg2/vBeOJgZUXV+ifs4A9HKJ+AMDK8korLGKQLWPOiX8ws4f08BimGiXdpFJ+uhRDzfcfEDYupRqJmqTU2QS9Hs+vnP7HJm4a3UHb/g/XiJMgsvHI9zHUPFwm4QMB3ACgjq5XQ3XRvoPfwNnrC6cW7ZHcNZZLyWTrrPXwZUXno0gEP+HUmsO9a9cLywGynaKHfVp4rtu20BlaIJMsKlhkb4t7dcjZ+Iw45N9rJnhy/1/Frb2Wa6NoeY8+kMTwrluBawHsl1zET7xmDjRV8aw7xVHEBhiv44SnaWp/QB45gglzD3PIP7ZQ0vAgb+nHs1myZCWz7rvdsB4rr/bpo59e89GquemH8PAruEzkWRifwqfnoH74T8SktJYNQuvvuQMWDnw8VT3sTx0Btma1orL+Er3NULd01TH9D5K7bsuvzOhUspwxOwL990wIuoDjpU+cpzx1PZRwuyAc5+ua2jU1MvN01Ebflc5X9kUDuudG2mU9vTjDIlm5He6AOApS7fEe0ivEKYd8fcSH/qhg+RcY8hGrUefqP1OgOVDc+Rc+wLqgWyWbdiMf7HmurDydG7mwtIoda6lgcQf2CH+wML/ftL/n1kuhhy6hA/hwGeeLLUswbHj4mRhlxy4Y7Q9wiBGc5l/as2T5IaesVS8ZvB1BEA8f82yg5KTAB3RZzirlCUezcCOBn061XUd5eioeG3DwXBC33Zopgs95ts637dP1a/D4TFyvJ90sVyZF8tccmDngjEAmFks8UC2iY9yaseA48LJe1mD31UQJhkiJkNUGGZkjLltsB7NgMyj2YbeF6lszXVhxTTjU2K5KOu0r/biLtyjM8IxZ8jG3vM65NxT3UcrpfcxSDOWri+6MyHW6EVkcx/nqR3GBqL24HPf6SiVD1l9Q1ZSUlJS2gJSAVlR1kpKSkpKSltCG+vUpfNQTRGoQwZYyaAOWXJ2DmgpapHHgStFrPAASTJzmSu6wVsxyiwkORUB6ADe9lJm2yiDXDiATmaLKLPO5GwlZW1qJDy4VgSWK3K/AL5di8JKXJtILTIl8BtXbg4QOlU5iowxGVxWZBwUaVMAMMq07usx7gDA1gano4qAkJztKLA+cx8A2PzUsK2VZiv/1vL3210bGpCPd018+mu74FhiSyUwsfOMKqF3NQ3YtVM85vcD/PCex9Hvx+Tk8b2T5DebTQ+3fe4BMtkNlVP8/rtNYaDoO3zsv+VdA9vbpc9aQZ48GXRK47hp70eIZ3QvNnDs/mPEjzbUXexu7RP8l4fKMd45ugxYuQT2tsNaj2a2w8JykWbjuLUbevrctf3Mxlx3FIYmBkk/0vH0UZPcA88vEZDHdi0WcjmV/WYeoDuzHuLSD9mESC0bVVg9Wsf4WAcH7riHLIIO3zePNNcVdBM47/VPE+9vs2Rj5Np3kMkx7B7FE7nk8bq98v/nFwJBZRzPvPwaSi7rBibMUJhgw8QkYA6wYsX69GEKTQU+habiMGItYf16hvp7ryN2s7quwerOCe1nGBZ2tR9GWhLd1RLoQIMGEE3LsLdBvd1bzRD33S6WZUc5wGUFxozm0j58qv67wEBxvT1n4F8+/XXButU0AH+8D31U/C7sGDEmk7tJfzras3H9F/eiZOcgq8xB6awlYfGhGxr2TA8hLxnE2wt0fPvH4nzm+QkWDtK5r2wn+LWrqBVr1lpE5Yt/IfThqB/D+WGArNkUztX9HtyLbwVqZ/AF2qZSr6w3OCD7QYbjXbqUc1wTtYA+HbAWcf0YRw+3yHG7xG8lSeOUBY1qkxqsnCGhnvqF7O24hPLLzjCWbQrhBH0fcx71orZLDixfhE4SOwQsCrnoWSK1HpUlYQ+tqliO2ICXucTuz48z9Bn7Pd9LWVvJopBLHqCzsggTY3TJr4cZtJjWMQ5bLDwUNOnTnzNkw2nOkePGxC7W9jJqNcm1V5LP03ODioOe0SDHV0AesY4heAvKIOKhKT+g0BQAFn5zhzXWblYPPWjRotB+ieXCLNkAxOAdyiwrsQLA5dVeikhZ3GqxMaO5LunDp+q/HBTnpTqCiWnhmGMDwW4mGU1yHFqX9qdux8HhFtNXSw72hOKC0nH5adGQ5HNIU6Cfm898L2Xnvt3DIdsn436b9GF/OUDpn2m/BoC4Q+cLpe0vBXUpKSkpKW26VHIJFZCVlJSUlLaA0nRtCSKKmL9sVamArKSkpKS06VJPyBu87cl11m5vVyRpObCx9nYc+ZuHuZ6vHFy5uSTzpyxfAXJ6PcjaonaERahTWR1XvoEOJilxG0jSLxagdvPuWieuzVH769DWRfovUNDCU0L4ysQR915YbMwU2VUgKx/nyinre3knrlXlYa4T1ylgo7ouVrGSsc7Zq8rsSAHArPGWvUrbWxv6hBwFIUuMVqsWXnPlKOngSZKRJPFxaOKcl+9DryeCEDLyd8js4YaLDpKJwy0ZAM4SjoVWBU/u+RmBSgYAIwmxF3QyCc06Hnn5R4RJ2tdcTC8WI5D3joeIoufON+MI3oEZjJZEYCnTjUI0Kkf52ghxSeUhYkdoxh5e0ziAMBMnsGThOL53y5eE7S2VsTJe+t9+h9hvaoaOVmn3QAnvuWT3AFDTerjxwsfIhK55AbFijPox5v8nzT2tmSZrv6m5Dtz5x0nQ6gQ6/vSKGwTLyqRUxfTeM8kCK3UqGJvlCOkEdx0OBb/hDDp27KHnyibyctnEVVeOClv1PI+3hLVdC196dIj4dve8DPNPTwrU/rDj4T34Mal3phvAOF0cBZmJh/rnkgWF4VTw0etF69GKnaBbdUifPNoEPnH/NNlVYFUquOblFwmU+mIrxZc/8zjpC5YLvOWXKKXe7ac48KRIQtfKwKVn23Bt8VwLEboVOmbSqo2p83ez7ZqfRxpuhLeeS+1mT9XfgapwnzvtlBDqABCWA1QunqELqcCHnevDSUjtY4GVQG1VT799T4qy3uCA3O8nLDFqNEzW6tAPQGhU30sRZwacshhQZORv3Uiwp0F/M7Fc5G37MxiESgYAN2iydHOs1xHWRJtMP8hgd2lHOBWBPFyPcLLBpRtE2NFvIw9fFqVROcrX1gPWjlBPPFQMaj3Y7i+gtnxYOFYenpbab3oDJrznkt0DwL5qSKwfASDtU6JdJqtsSyxGXegxpbJ7XQfLFXHLnF1yWFrecU00GGtFP8jQ7AAn4+uOq2GYc5WUyDCAaoX2YY68dlwTrZA+2ftehAWfPi1x9U4slyV8g5Snw20jxuS4GDWtzEcW0z7ZjlLMeXRMj1crhFJfCrpsXxif4MvR9yNEORK6XtbQKHPJVCJ2zPS6lrRd8/NIrRQV7u/5+awdxzwtX/XZe5MGHtuHZWMg9fkkJNtZKiArpy4lJSUlJaUtIRWQlZSUlJQ2XSlW0i++4H/kvcjz695778Vb3vIWTE5OQtM0/P3f//36V6yAVEBWUlJSUtp0rb6yXsu/our1evipn/op/Mmf/MkG1Ki4NvQbcrnME9Kc1zGwPonI85DSqop4D5M8rc+KS/wuI2iLEMiy3ytKo3KUbx7mOlGOAnQzl2S+aDnWw8taRp0mAf/hVuZfzBG3Mmpf1s+K0OgyccUzzWL9nSuHL2tTmVe0xo/HIrS8xDivkK+5bF7g2uRkKHKQ8uUtLFfFtSvJHf6s1qW/F6DUuTGwKt3lPcWVgHZbTG/rOA4chmIHgKuvvhpXX331i1GsgbShAXlouIRr33PxQF7HAGAhxCWVOWFAxLAwc/YOmHpuMOg6FkONTGrlMEH4GKV2Yy9A66lvCNsLAqeBmWs+QwaUDQcTDN0cazamHLHcHGEJALaRSus4ER0SJg7N76F3aB52IEJWmWGgAho8ZbQs51WsaRmO6JTINsI27Ce+NhDdbDeqqDC0sn9kCQsf+zBJ0uGXhvDUh74gLFY432ZghXK9bfwVsDIRonGTHv533DQQdWqVJVukJPsSXZeWJUkSdkfA6n/nA1/oB5h5eEY4P01SzD5iwDBzk7GmYXL/FLlGtZThygst4X55roZ95w4jDHP+7zEljWXlCJw+5qvzGLXE/rQY1fBfHnw1CU69Xoynn6D+765r4u3vuEAYH0EE3H2kxtLeU+c32fub3zlxqr6QPxcAem26W6PtLeKZv/oLVGOxjgZClC8fJduISpaBG175WrJYcZI+tCOziLTnzrfMFJWhyYHHXTc0cfdsbaA6JkmCd36RLgrrToI/uFpcRJphiDHQhBmaocOQ5BDfzlqvfchTU1PC8Y9//OP4xCc+sZaivWja0IAcp8DwCM2sw3kdAyuEZJ5uDJEibgD5t+tBbKDTpivnSuRJqd10eUm89niZp0v1QEo3Ey9ghrAEANvIWN9gK4tgxeKTtha2YbWOkd+TUcIyWlbmVRyDDl49Xh6YbrZGKnw5mm0kM4doOabPJ0nfZb7NjmuiaQ6T4+M4NDB1apb51a8mMR/uxTYpS9D3WSrWLjmE8F05n/o8A7wPtewa9bJG7pcf6tANkySl9z1KGsvK4RodjCTHkOVO78UN1l856PP+7+MTFTI+giiT0t6y+1ukL+TPBYB+nxLLRmsR7o++j/zpxpCNdJnZ3z0yhJ0lSiannoc4OS4c00wXejxGzpWNuyTWB65j0PdZT+394z7Z2ZEC7BgAAIT8W6vtrCzN1uTUtfrKenZ2FvV6/cRx2dPxVpRy6lJSUlJSOm1Ur9eFgLydpAKykpKSktKmS+1D3uCALHN+kyaOZ4CMoknfE0P2+pJeW2aLKAOhilhTFqkjDB5EK5rIvYg1Ymrwr8K4dsq494iQ21uenLf2xLGCcN7J3/ROVTageFJ616D1KWJ1eqrzi1yDA5NkY0bWflw5ZKCco9HPDrJrADxkVcQGFODvb9G+QL7JAwhN+tocOIWNqqQPczBV0XGX/54OFLtfAA97yexIAQA2X//tLOVlvcEBOYzBQhrmwhzc//yrBAZyqhb23/BWAaZIDQsYo4GMS+gNAOlyBw/c+SMYOfedJIiRBKFA6nqNBE+9hrNF1HHXIZpcvNeLMfv044LHb72U4Xd/1WWtKRuzTxOCWvf7yA4+LgThJIyweHARWVekA8N2iLnP3EsCXzY0guHbbh7IOnN1YZBfOARRDXeP/zaBqXqRiZnWMcFCsmIG+HdPfH0gAAwA4pEx+HtE4K4cdvDOY59HkIl1McMeut+aQ2TmPpq22njg2z8W7qM9MYJ9n3wXUiPXproGqztHJtK472Hu774BzRLP1zTgY9OPC2XpVlz80fnXkODZqOt4+5ssEjxLJjDUtwWP6bIRonycsW2FD23+TlJ3q2yiGr1W6Nu+buGcqXMQ5kjfJDEBDGbRanUW8Mg/fgnjOagrbj+GN95zj2CLCgChW8M/XvOpgSArQwfO2kNhSl23cNaUaAMKALV4GZc9+SkCTeGivQSwsm0N8e79hHK2gw7eeeybwkIjCWL0Si/BSNIUCzI2jt77Pg4tEBfbhm2gW+6QoJq02+g89A1hsScbd73yKJ743S+SAJxpOmkTp7OEN931EQS6GDi1TgcH750lC4qyHWGuPCb0VcM2MXTWLiCi361PR2VpKl0MDfr3RdXtdvHkk0+e+O9nnnkGP/zhDzEyMoK9e/e+4LK8UG1sQI7AQhp6s8XCQKV9O1l4aNCE3sBKUm9/cTBbOb9RYcvnB5kUfjl2XCzfWZMaylySgMSDE9MnxTTwEPe7wrGk5yNaoMndw04Ab26ZHDfPbwxsnSlTEGVomuPkuB9HWM5lq99jzBeyt+yPjRDQrRJ52GHQukSBD63H38fF3H3M6sPQ9+wl7xj00IMWLRKrU/R9xJ1u/ijMskPKMhvvZCGcWl3DcF0Dcle3shQT5RyRHWaoxLSvpp6P+Bite+oMI8r17SA1oJsG3NzI9AOwVrGcRWvJmMdwdBz5ooSdALVl2tZLO88eGLJybLAQIwDYFi1frRtimIGmrBIPTfUZy0otbsMui2Mp0n0s1j0A4puUZMcI4tEJ0leNzEcW0z6cRMtIArGhZOOuPz3CAm2ODYzn2qTU6mIkOkrO9XsBOn3qx+4M2Yg74rWzsgNEtJ1WCnn6QV2boQcffBBXXXXVif/+4Ac/CAB45zvfiT//8z9/0cujviErKSkpKW260jVS1i/kb6+88sot9apbBWQlJSUlpU2X+oasrDOVlJSUlJS2hDb0CdmWZM9LXT65duzR78dSoliy2ftUSb3JuQwNDBQkWgskjgeKWeTJ6pL1+G/kMuKbvXYBWjYPI534PUm5OXq9CP0O8HWXWXhK25r5pgnwVLaMQC5i0VjkngMAEiY1qcTGsohFax50PHENSX+yQr4/ca8Ai3Iz3H0vSjFzuxBk/SYPc534TcmzBzePyNpJNl+sxz3g6HDZ7gEApydlrbY9bWxAjsKEtfur+j7eyNC5VtlG+ETO9tKyWPtILqE3AKTxswnemWuPnLdX8D3OkOGMb72bJXwPfOswoVGdsTrqN/1nIWF71fBRmf+frM1el7HfRBKjDHFSihdaOHL/9xB1xejuNSbwyKe/TiYCvVKB36SJ3IMIePpw3qYwxtxMm/gBe/0QM48dIltKkjhBGCTC4mPO0PF75/xbErR6gYbZ3jNwc8frloOPVB4SyHPT9mDtP4dMxos9G9ff/zpyjdgpY+zdE0KwqJaBkaMWrN07hXPRXUKFoanDpo+Dd8ySSdAeqWHymquFslRRw3STp5hnmgZpa0NLgZq41Sw6ehTNd99Kt4NpCXZfOkKCiO6WsONs0ZLUNEo4c3wSUc5djbOVBQA78zHUOogYJwWtLERy8UVw+4vCufKxYeHiOiXgm76B37v91WIf0TQcPG+K+kvrGnbvHSILh1I3xnkPPTUQxSzbPWBWfJyR6zuGYaFx0VWEuPetGh6VjA2Z5efs3l3CroLUqWDHaytk3AW6w85nuqEBGMrR6LuAa28li1PHiHHZNf8fefgwDEBbOkysYo/l2g5YCdSuH2IwfHP7SAXkDQ7IfpCxdn/DfltugZijeTXwydZlCb2jHk/+mmUHpbEKObc2d4CWe5mnUc2RczCeS9juBgH0Od7ekrPf1EOPWOTFUQvdQ9RK1G9UEExMk+OODUQpXWkHUYYot+3EDzL0+pzlYoh+ZzBS0y45OJaO0GuEPhayEeQreVZJQ1kXFxd6QusNAN2Ow17DNhy4I3uEY+aIBuyhzL3uBSxNHSwHiLoUo7dHTVKWIK5LKWaurW0jJqR71PZZOtcZspEENXLccku0b2sOdNOAA/GecbaywEp/qqTidrk09BBrPaAiPkWdamyMMQR8kDVIH7FLDtufZLaX5X5nYIpZtnvASKmtZGK50HdS4j5Lyoj6NFSdyvJz2Z4gdWlMUDtX34sQPdMkx2U0eji8m5xrJ8dRNulYSj0PcZ/utMi33Ynz/cF2kihtLymoS0lJSUlp05UiRSr7bDHg3293qYCspKSkpLTpytK1vXZeQyzfMlKUtZKSkpKS0hbQhj4huw5PK+ft5FbFUYVSIlOCnRbxO14PujlvjXni2pLlGkfiFvGEBuSkK9ckRT112d8r6OfMkecyAjmfF/ZUvyklnp1iRCtH89ua5FudpK05r/K8FeyJaxTwV9ZT3nNZRglz7boeYwMASoznt6wvSD3J88Akiu8e4MaYbHwVpdS58SGrSxEPblm/EeC7k1Rk9wUA6C7f17azFNS10ZR1QBOLA0C3YaB33WdZv9nQXBS2g2hxCKs5B83Ok6v84KD+iSvibpbp2hhjSO24Ooz+Bz5LJojYrWAmR3AGUQ3fbr6VTOiGpeOSPTH1m9ZMHK2+FOZJaFJ7IsAdb5zE8rI4mSSlKkYlSem/c/thklA+TXWMnbFHOF83NEzvo/Rw1V/Aew/+KfwcWav3+5i7b17w2s2GhnHwLf/3QD7KAFB2gSNmT6g7V28AWExSAI8hL9Oi5TYN4JEjGqo5y0rDqmA3058yp4TxD0TkPpplC90dnjCpa5qNK/d0kI+djhZhtz43kFe5Hvcx/eFXCSQ/sELz9+bmSR1T3ye7CnTLwj7QIKTpGqKxPchrvmPhhi/uFRY2pmnirDMuQTcUy2w0l3DFHdeRgKjbK/+dDwAlw8Ctl4rJKkquhvK55xIf6tRy8b+G30gCUac9jut7vy5Q9BxBDwBWo4rLWUKajjHXTnDJhIc45wnd7Gq469vH17SrYPX/58bdzMMzZD6rVi285spRoe62kWKq0SILNwsRupW17b5I4xS7P5nn8Le/lDHIBgfkfj/hE7aPuMhO4Td7srTQg9Y/jryyhF8JZ5KnEd3iNwlwpHZSa8CcniLH09hA1KYJ25spzb1ZtxPEGiV/QxjoGeL5C0EXj6Z7gIZ4rl1yUJckpecSytslB43c+Y5rsvRwLfCwU6ekqx8H8HNeu/3hysA+ysAqgZwja5l6A8BSQNsIACzbIr/p2IDt6Mg3iW3EbH8CAHOUuXbmI4sPCecncFCxaN+xsgjlmKGbGa/yNPCgjdE99lHPB2PXvdInmV0FnAd6YrmMozvQ9UAS3tslB6FHCd/hXpulzlcocHp1s+xgd85DWnNdWCX6JNvULdbjuh3HhKLnCHoAaNRN1oudG2N1JPAs2nd6YYpen9ax6K4CbndI0I/Y+cxomKTutpHBZrJAWVm05t0XABB3+Ldn21lpmiJdQ3KJtfztVpH6hqykpKSkpLQFpChrJSUlJaVNl/qGvMEBuVzmXxOf7HR1stbDjrAouMJJT3gbRc6aUgaLSN6cs9fIfwteVVGYiju/CGwD8MBNUbiMBZ4ktp6yuicxfWVY5PdOJa6f5b/1n+pcYONgqqK2kiXGkVTWb/LOcyfOl0FnBcqXZwNWxd1fWfnyuZRXxTWrbHxZktSQGwkx5hkKQN4ni/QnGewJAGaNtx/ezsqyFNka9i6t5W+3ijY0II+POfjo9WeTAKybJoGjAN7eLgpjdA6PwwvEDt71Msw9Mk1IUKvbxNu+c89A4IrulrDzDa8ik4xhO5iIDpLB0w1N3D1bI9aUB55uS8CrWTiOeA3NtPBTr36ZcI04NHHOy/eh1xMnNdu1WCAreXY24hLK58+3bY1NKF8OyyzQprkOJq/5WYFE1mtVvOzcHxPbRs3Q0SrtJpNPnGoM/EZtPQEg8A1MnX8GqUuSJLjv9u8LEI5pmTj8kj1AfpGhazjjzBryawlNA/bu0geyvQwTE7MFLRfnn56Ee1L/W5c+WW+gdtFVgCsumCLNxoK5lywc4nET176nKgSFKM5w6CjglMUJvborxDRjWZsECQ4MaDGa2Q5rCRtrNqYcCjFNVDVc+56LxaCl65hfNkm/DvohbvvcAwPBiiVXx5MTNTg5aDmIgOl96cBjZjXInnz8hYy7p2bzlrUJ7jockgVCvxfh+JMBWUhVSxo++ctiu6buGPZdcw7ClvitXDd1WFVJogClba0NDchpmmHHOF3CB7GBQ+3B7O18L8Ls0hA9t+9jzquS4ztbrYHBFcstsXaOieWCGjQCSawTizyZPWjQj3DsOH3Srg0b9Bpeijgz4OTeKMiALN+LpAnlWRCKeWqoRLz1qOa6sHaL1n6J5SJjbBtDOPAYcAWxQeAcztYTWGk/ri5B32dtG1tNel8c10Q/oP2piO1lCFrm1XLLLBcXfPEpZT36pFE3kNaptWICh7WVDGFgeEQM3n6QocO0dS3wWOtMv4DFqMwSNoHDQkyI+fIt9Wn5Qi8YGFZ0bROabhLAL4gy2A6957Ixw+mFjDtuXmh2gLwnbNBPcGSR1v2sSZB2jaNl6HoEd5jOoaejdaZ6Za2+ISspKSkpbQWtMSCTN2fbUIqyVlJSUlJS2gJST8hKSkpKSpuuNFtjcgkFdZ1aMqs5GXG7HtaPocnbcrIJwLl8cZATrXmw54WUj6OHi1jyFT1fRiZzieMBnqKVtYeMTC5Coxdpv6K2jetBgRcp97r0yYDxHcX6tHURsh7gLUY3si/kXbRWxd33IkT2yvHBSfz1GHdF5wXOblZz+DEKKOtM2d9vd2nZBvuN+WFCOqyua4gSnWxdMHUgjIG8GU6rE8PNsSiuoyEKQvRzuVnLZQMjvQXiZGPWKrCqlgBD6G4ZZr0qWHUCAAwLqekgS8Vra7qBVugI5bMtIAoT+IFYx1OVr1wrDVxHyzbIuaf6zfz5tgXYJt0mYupA2T8OhDmIxnZXbEpPbpNTtEesWQPdX9m9Ldp+/RAYHnLJubJ2ktXdMkQSt2if5Mq9Hn0SADLLgjk6Lhwr0tYA0OlnsIyce5QF1Lpz5Pd0t4yoG7HlK00Ov6h9od/x2PazHJv0kUzTMFTPWZq+gH4GgNzH9Rh3ReeFXaM6add44Si03DHdLcPeRZ3Ytqva7TYajQauetu9MG0KRQ6qOOzi23/zKrRaLdTr1BVwO2jDX1m7Nr/q5Z8ZeO0akSH+suKfUeDqvGQf10fZRausHIM3r7yOMq3DrSuNP/85z0rWHrJSFLm/69F+xUX7ZbEyA3z5Nq5PFmnr4YrkibDGT+RFfJE3si+M1jbyyW89+lORa6y9X1vTZxX4ve2tLEul+9wH/fvtLvUNWUlJSUlp06VeWauArKSkpKS0BaScutS2JyUlJSUlpS0h9YSspKSkpLTpSlM54T7o3293qYCspKSkpLTpytI1Ql2nQURWr6yVlJSUlJS2gNQTspKSkpLSpktR1iogKykpKSltASnKWr2yVlJSUlL6CdbnPvc5nHnmmXBdFxdddBHuu+++TSuLCshKSkpKSpuu1VfWa/lXVH/913+N3/qt38Lv/u7v4gc/+AGuuOIKXH311ZiZmdmAGj6/VEBWUlJSUtp0rVLWa/lXVH/4h3+IX/u1X8O73vUunH/++fijP/ojTE1N4eabb96AGj6/1DdkJSUlJaVNVxL3nv+kAf6+3W4Lxx3HgcNkzgrDEN///vdx/fXXC8df//rX47vf/e6ayvJCpQKykpKSktKmybZtTExM4MFvvW3N16pWq5iamhKOffzjH8cnPvEJcu7x48eRJAl27twpHN+5cyfm5+fXXJYXIhWQlZSUlJQ2Ta7r4plnnkEY0vzbRZVlGTRNzHTGPR2frPz53DVeLKmArKSkpKS0qXJdF65bPAHqWjQ2NgbDMMjT8MLCAnlqfrGkoC4lJSUlpZ842baNiy66CHfeeadw/M4778QrX/nKTSmTekJWUlJSUvqJ1Ac/+EG84x3vwMUXX4zLLrsMn//85zEzM4Pf+I3f2JTyqICspKSkpPQTqbe//e1YXFzEJz/5SRw5cgQXXnghvv71r2N6enpTyqNlWbb9DUCVlJSUlJS2udQ3ZCUlJSUlpS0gFZCVlJSUlJS2gFRAVlJSUlJS2gJSAVlJSUlJSWkLSAVkJSUlJSWlLSAVkJWUlJSUlLaAVEBWUlJSUlLaAlIBWUlJSUlJaQtIBWQlJSUlJaUtIBWQlZSUlJSUtoBUQFZSUlJSUtoC+v8ByEf+wF1DwnsAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"def plot_topo(topo: Grid):\n",
" \"\"\"Show the map with a colormap from blue to red.\"\"\"\n",
" plt.figure()\n",
" scatter = plt.scatter(Xs(topo), Ys(topo), c=list(topo.values()), \n",
" cmap='coolwarm', marker='s', s=12)\n",
" plt.colorbar(scatter, label='Elevation')\n",
" plt.axis('square')\n",
" plt.axis('off')\n",
"\n",
"plot_topo(topo)"
]
},
{
"cell_type": "markdown",
"id": "3e01d7f5-d0f0-4e7b-8cab-eef2afc02f6b",
"metadata": {},
"source": [
"# [Day 11](https://adventofcode.com/2024/day/11): Plutonian Pebbles\n",
"\n",
"Today's narrative involves a straight line of stones, each of which has a number enscribed on it. The input is a single line of these numbers:"
]
},
{
"cell_type": "code",
"execution_count": 111,
"id": "76b68cef-d8de-4145-b65c-b254fedf1671",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Puzzle input ➜ 1 str:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"0 27 5409930 828979 4471 3 68524 170\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Parsed representation ➜ 1 tuple:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"(0, 27, 5409930, 828979, 4471, 3, 68524, 170)\n"
]
}
],
"source": [
"stones = the(parse(11, ints))"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "a7302dc5-5163-4f0b-bdcc-8c00e367391c",
"metadata": {},
"source": [
"### Part 1: How many stones will you have after blinking 25 times?\n",
"\n",
"Every time you **blink**, the stones appear to change, according to these rules:\n",
"- A stone marked 0 changes to 1.\n",
"- Otherwise, a stone with an even number of digits splits into two stones, with the first and second halves of those digits.\n",
"- Otherwise, the stone's number is multiplied by 2024.\n",
"\n",
"\n",
"\n",
"\n",
"I'll define `blink` to simulate the effect of a given number of blinks, and `change_stone` to change a single stone, returning a list of either one or two stones (the two stones computed by `split_stone`):"
]
},
{
"cell_type": "code",
"execution_count": 113,
"id": "1513df56-3d6f-42cf-8aec-1bdbeb991d90",
"metadata": {},
"outputs": [],
"source": [
"def blink(stones: Ints, blinks=25) -> List[int]:\n",
" \"\"\"Simulate the changes in the list of stones after blinking `blinks` times.\"\"\"\n",
" for _ in range(blinks):\n",
" stones = append(map(change_stone, stones))\n",
" return stones\n",
" \n",
"def change_stone(stone: int) -> List[int]:\n",
" \"\"\"Change a single stone into one or two, according to the rules.\"\"\"\n",
" digits = str(stone)\n",
" return ([1] if stone == 0 else\n",
" split_stone(digits) if len(digits) % 2 == 0 else\n",
" [stone * 2024])\n",
"\n",
"def split_stone(digits: str) -> List[int]:\n",
" \"\"\"Split a stone into two halves.\"\"\"\n",
" half = len(digits) // 2\n",
" return [int(digits[:half]), int(digits[half:])]"
]
},
{
"cell_type": "code",
"execution_count": 114,
"id": "eff17cd0-a2c7-4d69-bc55-c0ef97917915",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 11.1: .067 seconds, answer 194482 ok"
]
},
"execution_count": 114,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(11.1, 194482, lambda:\n",
" len(blink(stones, 25)))"
]
},
{
"cell_type": "markdown",
"id": "2f65e94f-43e8-4f08-85df-827928c57e0b",
"metadata": {},
"source": [
"### Part 2: How many stones would you have after blinking a total of 75 times?\n",
"\n",
"It looks like the number of stones is roughly doubling every 1 or 2 blinks, so for 75 blinks we could have trillions of stones. I'd like something more efficient. I note that:\n",
"- Although the puzzle makes it clear that the stones are in a line, it turns out their position in the line is irrelevant.\n",
"- Because all the even-digit numbers get split in half, it seems like many small numbers will appear multiple times.\n",
" - (In the given example, after 6 blinks the number 2 appears 4 times.)\n",
"- Therefore, I'll keep a `Counter` of stones rather than a `list` of stones."
]
},
{
"cell_type": "code",
"execution_count": 116,
"id": "707b5a97-0296-48df-bdab-e34064cc67c2",
"metadata": {},
"outputs": [],
"source": [
"def blink2(stones: Ints, blinks=25) -> Counter:\n",
" \"\"\"Simulate the changes after blinking `blinks` times and return a Counter of stones.\"\"\"\n",
" counts = Counter(stones)\n",
" for _ in range(blinks):\n",
" counts = accumulate((s, counts[stone]) \n",
" for stone in counts \n",
" for s in change_stone(stone))\n",
" return counts"
]
},
{
"cell_type": "markdown",
"id": "f5bf07ce-b48e-40db-8992-b9b571e66554",
"metadata": {},
"source": [
"Now we can re-run Part 1 (it should be slightly faster), and run Part 2 without fear of having trillion-element lists:"
]
},
{
"cell_type": "code",
"execution_count": 118,
"id": "efdcdbf8-e8ec-4a85-9d09-90a20e08c66a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 11.1: .002 seconds, answer 194482 ok"
]
},
"execution_count": 118,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(11.1, 194482, lambda:\n",
" total(blink2(stones, 25)))"
]
},
{
"cell_type": "code",
"execution_count": 119,
"id": "657b1f13-ffcc-44c6-84f1-398fa2fcdac7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 11.2: .059 seconds, answer 232454623677743 ok"
]
},
"execution_count": 119,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(11.2, 232454623677743, lambda:\n",
" total(blink2(stones, 75)))"
]
},
{
"cell_type": "markdown",
"id": "ce377749-b3e2-4ca4-b50d-e7c3d2e7201a",
"metadata": {},
"source": [
"I'm glad I used the `Counter`; it would have taken a petabyte of storage (and a long, long time) to represent that many stones as a list.\n",
"\n",
"Again, I did pretty well, with no errors, and moving at what I thought was a good pace, but I didn't even crack the top 2000 on the leaderboard. \n",
"\n",
"### Part 3: Exploration\n",
"\n",
"Here I show how the stones grow, starting from a single stone marked \"0\" for 10 blinks, and how the total number of stones grows over 30 blinks."
]
},
{
"cell_type": "code",
"execution_count": 121,
"id": "8609fda3-c158-4fbb-bec5-4270c3a2dbe7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1]\n",
"[2024]\n",
"[20, 24]\n",
"[2, 0, 2, 4]\n",
"[4048, 1, 4048, 8096]\n",
"[40, 48, 2024, 40, 48, 80, 96]\n",
"[4, 0, 4, 8, 20, 24, 4, 0, 4, 8, 8, 0, 9, 6]\n",
"[8096, 1, 8096, 16192, 2, 0, 2, 4, 8096, 1, 8096, 16192, 16192, 1, 18216, 12144]\n",
"[80, 96, 2024, 80, 96, 32772608, 4048, 1, 4048, 8096, 80, 96, 2024, 80, 96, 32772608, 32772608, 2024, 36869184, 24579456]\n",
"[8, 0, 9, 6, 20, 24, 8, 0, 9, 6, 3277, 2608, 40, 48, 2024, 40, 48, 80, 96, 8, 0, 9, 6, 20, 24, 8, 0, 9, 6, 3277, 2608, 3277, 2608, 20, 24, 3686, 9184, 2457, 9456]\n"
]
}
],
"source": [
"S = [0]\n",
"for _ in range(10):\n",
" S = blink(S, 1)\n",
" print(S)"
]
},
{
"cell_type": "code",
"execution_count": 122,
"id": "100febf3-8397-4bce-a290-12de1f281f82",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1, 1, 2, 4, 4, 7, 14, 16, 20, 39, 62, 81, 110, 200, 328, 418, 667, 1059, 1546, 2377, 3572, 5602, 8268, 12343, 19778, 29165, 43726, 67724, 102131, 156451, "
]
}
],
"source": [
"S = [0]\n",
"for _ in range(30):\n",
" S = blink(S, 1)\n",
" print(len(S), end=', ')"
]
},
{
"cell_type": "markdown",
"id": "391cec1e-32fe-4e6e-81c2-4e38469b15e3",
"metadata": {},
"source": [
"# [Day 12](https://adventofcode.com/2024/day/12): Garden Groups\n",
"\n",
"Today's input is yet another 2D map. This one depicts different garden **plots** on a farm, each plot planted with a **crop**, indicated by a letter. Perhaps \"I\" is iceberg lettuce, \"O\" is okra, \"A\" is avocado, and so on."
]
},
{
"cell_type": "code",
"execution_count": 124,
"id": "8161ee7e-76e3-499a-abf8-a607991c9602",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Puzzle input ➜ 140 strs:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"IIIIIIIIIIIIIIIIIIIIIUUUUUUUUJLLLLAAAAAAMMMAUUUUPPXPZZZZZZZZZZZXXXXXXXXXXXXXXXXXXXXXFFFFFFFFFFZZ ...\n",
"IIIIIIIIIIIIIIIIIIIIUUUUUUUUUJALEAAAAAAAAAAAAUUUUPXPPZZZZZHHHHHHXHXXXXXXXXXXXXXXXXXXFXFFFFFFFFZZ ...\n",
"IIIIIIIIIIIIIIIIIIIIUUUUUUUUUJAAAAAAAAAAAAAAUUPPPPPPPZZZZZZZHHHHHHHXXXXXXXXXXXXXXXXXXXFFFFFFFFFZ ...\n",
"IIIIIIIIIIIAAIIIIIIIIIUUUUUUUJJAAAAAAAAAAAAAAVVPPPPPPPPZHHHHHHHHHHHXXXXXXXXXXXXXXXXXFFFFFFFFFFFZ ...\n",
"IOOIIIIIIIIAAIIIIIIIIIIUUUQVUJJAAAAAAAAAAAAAEVVZPPPPPPPHHHHHHHHHHHHXXXXXXXXXXXXXXXXXXXXFFFFFFLLL ...\n",
"OOOOOOOOIIAAAAAIIIIIIIIUQQQQVQJAAAAAAAAAAAAAAVVPPPPPIIHHHHHHHHHHHHHXXXXXUXXXXXXUUXXBBBSFFFLLLLLL ...\n",
"OOOOOOOOIAAAAAAIIIIIIQQQQQQQQQQQEADDAAAAAAAAHHVVPPPIIIIHHHHHHHHHHHHHXXXUUUUUXXUUUXXBBBSFFFLLELLL ...\n",
"OOOOOOOOIIIAAIIIIIQQQQQQQQQQTQJQEEDDDAAAAAAHHVVVVPIIIIIHHHHHHHHHHHHHXUUUUUUUUUUUMMXBBBSSSFFFLLLL ...\n",
"...\n"
]
}
],
"source": [
"farm = Grid(parse(12))"
]
},
{
"cell_type": "markdown",
"id": "bb95a10b-1f83-4940-a68b-b94696c3aab3",
"metadata": {},
"source": [
"### Part 1: What is the total price of fencing all regions on your map?\n",
"\n",
"We are asked to calculate the cost of putting fences around each region. A **region** is a set of garden plots with the same crop that abut each other horizontally or vertically. The **price** of the fence for a region is defined as the product of the region's area and its perimeter. (That seems like a strange way to do pricing, but what do I know.) If we represent a region as a **set** of (x, y) points, then the area is easy: it is just the number of points. The perimeter can be computed by, for each plot point in the region, counting the neighbors (in the 4 directions) that are *not* in the region."
]
},
{
"cell_type": "code",
"execution_count": 126,
"id": "79f91f38-e325-44f2-9e53-b64ce12d9d35",
"metadata": {},
"outputs": [],
"source": [
"Region = Set[Point]\n",
"region_area = len\n",
"\n",
"def fence_price(farm: Grid) -> int:\n",
" \"\"\"Total price of fences for all the regions in the farm.\"\"\"\n",
" return sum(map(region_price, all_regions(farm)))\n",
"\n",
"def region_price(region) -> int: return region_area(region) * perimeter_length(region)\n",
"\n",
"def perimeter_length(region: Region) -> int:\n",
" \"\"\"The number of sides on the perimeter of the region:\n",
" sides where the neighboring position in the given direction is not in the region.\"\"\"\n",
" return quantify(neighbor not in region \n",
" for plot in region for neighbor in neighbors(plot))"
]
},
{
"cell_type": "markdown",
"id": "9524ee15-c378-4cd4-a79b-14fb99b17cb3",
"metadata": {},
"source": [
"To find all the regions I'll start at a point and do a [flood fill](https://en.wikipedia.org/wiki/Flood_fill) to neighboring points with the same region letter, keeping track of points that have already been found. The function `all_regions` iterates over all points to make sure it finds every region, and `flood_fill` recursively expands to all points that neighbor `p` and have the same crop (letter). `flood_fill` mutates the set `already_found` as it goes (and also mutates the `region` it is building up)."
]
},
{
"cell_type": "code",
"execution_count": 128,
"id": "1fbabbfb-50c8-4197-8517-e7cee9582765",
"metadata": {},
"outputs": [],
"source": [
"def all_regions(farm: Grid) -> List[Region]:\n",
" \"\"\"Find all the regions in the farm.\"\"\"\n",
" already_found = set() # Set of plots already accounted for\n",
" return [flood_fill(p, farm, set(), already_found) \n",
" for p in farm if p not in already_found]\n",
"\n",
"def flood_fill(p: Point, grid: Grid, region: set, already_found: set) -> set:\n",
" \"\"\"Starting at point p, recursively add all neighboring points to `region`, keeping track of `already_found`.\"\"\"\n",
" if p not in already_found:\n",
" region.add(p)\n",
" already_found.add(p)\n",
" for p2 in grid.neighbors(p):\n",
" if farm[p2] == farm[p]:\n",
" flood_fill(p2, grid, region, already_found)\n",
" return region"
]
},
{
"cell_type": "code",
"execution_count": 129,
"id": "cdaf655b-d12c-4973-b19b-3132e5e691c6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 12.1: .031 seconds, answer 1402544 ok"
]
},
"execution_count": 129,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(12.1, 1402544, lambda:\n",
" fence_price(farm))"
]
},
{
"cell_type": "markdown",
"id": "b3383560-2bbc-4dfc-b643-feb103876823",
"metadata": {},
"source": [
"### Part 2: What is the total price of fencing all regions on your map, with the bulk discount?\n",
"\n",
"In Part 2 we get a **bulk discount** on the fencing; we only need to pay for the number of **straight line sides** on the perimeter, not the total length of the perimeter. For example, a 10 x 10 square has perimeter 40, but has only 4 sides. That's a 90% discount!\n",
"\n",
"It took me a while to figure out a good approach for this. At first I was reminded of the Convex Hull problem, for which I have [a notebook](https://github.com/norvig/pytudes/blob/main/ipynb/Convex%20Hull.ipynb). But that's not really appropriate here; our regions could be non-convex, and the set of sides in a region are not the same as the vertexes of a polygon (e.g., a region with one point has 4 sides, not 0). (*Funny story:* I wondered if an AI large language model (LLM) for programming would get confused like I did on this. So I described the problem in a way that hinted at convex hull, and the LLM suggested sorting the points by their angle to the centroid (a good idea for the convex hull problem), and then returning the length of the list of points. So, (1) that's not the right answer, and (2) if it was the right answer, it would have been right before sorting.)\n",
"\n",
"A better idea is to start with the perimeter length and subtract one for every case in which a point has an edge in one direction (e.g., an edge to the North) and also has a neighbor with the same edge. To be precise, I'll look for four cases:\n",
"- A point with an edge to the North whose neighbor to the East also has an edge to the North\n",
"- A point with an edge to the East whose neighbor to the South also has an edge to the East\n",
"- A point with an edge to the South whose neighbor to the West also has an edge to the South\n",
"- A point with an edge to the West whose neighbor to the North also has an edge to the West\n",
"\n",
"Here are two diagrams of two regions with two kinds of crop, \"`X`\" and \"`W`\", with a \"`-`\" marking each place where a perimeter piece would be subtracted.\n",
"\n",
" .X-... .-------..\n",
" -X-.X- .WWWWWWWW-\n",
" -XXXX- -WWWWWWWW-\n",
" ..XXX. -WWWWWWWW.\n",
" ...--. ..-------.\n",
"\n",
"I'll refactor `fence_price` to take a `region_price` parameter, and show that the change is backwards compatible to Part 1:"
]
},
{
"cell_type": "code",
"execution_count": 131,
"id": "38c30e15-3a33-40c2-b734-163a15af7a8a",
"metadata": {},
"outputs": [],
"source": [
"def fence_price(farm: Grid, region_price:Callable=region_price) -> int:\n",
" \"\"\"Total price of fences for all the regions in the farm, given the price function for a region.\"\"\"\n",
" return sum(map(region_price, all_regions(farm)))\n",
"\n",
"def discount_region_price(region) -> int: return region_area(region) * region_sides(region)\n",
" \n",
"def region_sides(region):\n",
" \"\"\"How many straight-line sides does this region have?\n",
" The perimeter minus all sides that are the same as their clockwise neighbor.\"\"\"\n",
" def has_edge(p: Point, d: Vector): return p in region and add(p, d) not in region\n",
" def neighbor(p: Point, d: Vector): return add(p, make_turn(d, 'R'))\n",
" subtract = quantify(has_edge(p, d) and has_edge(neighbor(p, d), d)\n",
" for p in region\n",
" for d in directions4)\n",
" return perimeter_length(region) - subtract"
]
},
{
"cell_type": "code",
"execution_count": 132,
"id": "72175812-dcd0-4f1b-9efa-0dceeeafa609",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 12.1: .051 seconds, answer 1402544 ok"
]
},
"execution_count": 132,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(12.1, 1402544, lambda:\n",
" fence_price(farm))"
]
},
{
"cell_type": "code",
"execution_count": 133,
"id": "9defcd35-91bc-41d4-a16f-bb7a4ede75e7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 12.2: .045 seconds, answer 862486 ok"
]
},
"execution_count": 133,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(12.2, 862486, lambda: \n",
" fence_price(farm, discount_region_price))"
]
},
{
"cell_type": "markdown",
"id": "faa9d750-a619-40dc-965c-a9a8e2543e32",
"metadata": {},
"source": [
"# [Day 13](https://adventofcode.com/2024/day/13): Claw Contraption\n",
"\n",
"Today's puzzle involves arcade claw machines. Each input paragraph describes a machine with two buttons, **A** and **B**; every push of a button moves the claw a specified amount in the X and Y directions (which is different for each machine). The prize is at a specified location (also different for each machine). We can parse the input by defining a `parse_claw` function and a `Claw` datatype to represent the machine.\n",
"\n",
""
]
},
{
"cell_type": "code",
"execution_count": 135,
"id": "e78f45c0-c420-4661-aad2-14e122b4473b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Puzzle input ➜ 1279 strs:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Button A: X+24, Y+19\n",
"Button B: X+32, Y+86\n",
"Prize: X=1072, Y=2062\n",
"\n",
"Button A: X+70, Y+12\n",
"Button B: X+11, Y+43\n",
"Prize: X=3400, Y=3872\n",
"\n",
"...\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Parsed representation ➜ 320 Claws:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Claw(A=(24, 19), B=(32, 86), Prize=(1072, 2062))\n",
"Claw(A=(70, 12), B=(11, 43), Prize=(3400, 3872))\n",
"Claw(A=(48, 77), B=(34, 12), Prize=(6510, 1583))\n",
"Claw(A=(76, 60), B=(29, 88), Prize=(5506, 6300))\n",
"Claw(A=(16, 75), B=(68, 20), Prize=(17148, 13490))\n",
"Claw(A=(46, 13), B=(33, 63), Prize=(15572, 9644))\n",
"Claw(A=(21, 79), B=(44, 32), Prize=(2433, 5147))\n",
"Claw(A=(13, 45), B=(36, 11), Prize=(4612, 19164))\n",
"...\n"
]
}
],
"source": [
"Claw = namedtuple('Claw', 'A, B, Prize') # A claw machine\n",
"\n",
"def parse_claw(text: str) -> Claw:\n",
" \"\"\"Parse a paragraph of text into a Claw object.\"\"\"\n",
" ax, ay, bx, by, px, py = ints(text)\n",
" return Claw((ax, ay), (bx, by), (px, py))\n",
" \n",
"claws = parse(13, parse_claw, sections=paragraphs)"
]
},
{
"cell_type": "markdown",
"id": "7f6da888-9288-42f1-bc51-2eb2a66d34a1",
"metadata": {},
"source": [
"### Part 1: What is the fewest tokens you would have to spend to win all possible prizes?\n",
"\n",
"We are told that for some machines it is possible to reach the prize and others it is impossible. We are also told that you need to spend 3 **tokens** to press the **A** button and 1 token to press the **B** button. There is a hint that no button will need to be pushed more than **100 times**. It is usually a good idea to accept the hint, so I will do the following:\n",
"- Exhaustively try every number from 0 to 100 presses of the **A** button.\n",
"- For each number, figure out what the resulting position of the claw would be after those presses.\n",
"- Calculate how many presses of the **B** button would be required to get to the prize's X location.\n",
"- If the number of presses is an integer, and would also arrive at the prize's Y location, then yield that (A-presses, B-presses) solution.\n",
"- Out of these solutions, the cheapest solution is the one that needs the fewest tokens.\n",
"- (If there are no solutions, `cheapest_solution` will return 0, whcih is convenient for adding the results up, but is worrisome because it doesn't distinguish between an impossible-to-reach prize and a prize at the origin. On this puzzle, that's ok, but it is still worrisome.)"
]
},
{
"cell_type": "code",
"execution_count": 137,
"id": "c2c4bbc9-42cd-483d-8da2-97cf051e93fe",
"metadata": {},
"outputs": [],
"source": [
"def solve_claw(claw: Claw, limit=100) -> Iterable[Tuple[int, int]]:\n",
" \"\"\"All possible (A-presses, B-presses) solutions to reach the prize on this machine.\"\"\"\n",
" A, B, Prize = claw\n",
" for Apresses in range(limit + 1):\n",
" pos = mul(A, Apresses)\n",
" if X_(pos) > X_(Prize) or Y_(pos) > Y_(Prize):\n",
" return\n",
" diff = sub(Prize, pos)\n",
" Bpresses = X_(diff) / X_(B)\n",
" if Bpresses.is_integer() and Bpresses * Y_(B) == Y_(diff):\n",
" yield (Apresses, int(Bpresses))\n",
"\n",
"def cheapest_solution(claw: Claw) -> int: \n",
" \"\"\"The minimum cost out of every possible solution to this claw machine.\"\"\"\n",
" return min((3 * A + B for (A, B) in solve_claw(claw)), default=0)"
]
},
{
"cell_type": "code",
"execution_count": 138,
"id": "f5638ed4-1e59-4b9f-b1fc-427d2eb0d036",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 13.1: .006 seconds, answer 29598 ok"
]
},
"execution_count": 138,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(13.1, 29598, lambda:\n",
" sum(map(cheapest_solution, claws)))"
]
},
{
"cell_type": "markdown",
"id": "3a36e76c-dd5b-4d80-ae88-9980e7d274ac",
"metadata": {},
"source": [
"### Part 2: Using the corrected prize coordinates, what is the fewest tokens you would have to spend to win all possible prizes?\n",
"\n",
"In Part 2, we discover that \"due to a unit conversion error\" the prize is actually **much** farther away, by 10,000,000,000,000 (ten trillion) steps in both the X and Y coordinates. Theoretically, we could still use `solve_claw` with a bigger `limit`, but that would take a *long* time.\n",
"Instead I can solve each claw machine *mathematically* rather than by trial and error. It looks like each claw machine defines two equations; what exactly are the equations? For my first claw machine, \n",
"\n",
" Button A: X+24, Y+19\n",
" Button B: X+32, Y+86\n",
" Prize: X=1072, Y=2062\n",
"\n",
"there are two linear equations to solve simultaneously, over the integers:\n",
"\n",
" 24 A + 32 B = 1072\n",
" 19 A + 86 B = 2062\n",
"\n",
"I know that an equation over the integers is called a [Diophantine equation](https://en.wikipedia.org/wiki/Diophantine_equation), but I don't remember much about them, and furthermore it seems like it is more important that these are linear equations than that they are Diophantine equations. In general, two linear equations in two unknowns can have zero solutions (if the lines are parallel), an infinite number of solutions (if the lines are the same), or exactly one solution (the intersection of the lines; the \"normal\" case). We can solve the linear equations, and then discard the answer if *A* and *B* are not integers. \n",
"\n",
"I defined `solve_claw` to yield multiple solutions, but let's see how many solutions each claw machine yields:"
]
},
{
"cell_type": "code",
"execution_count": 140,
"id": "df8da2ae-52f9-409b-a54f-ad7d21b32e45",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Counter({0: 168, 1: 152})"
]
},
"execution_count": 140,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Counter(quantify(solve_claw(c)) for c in claws)"
]
},
{
"cell_type": "markdown",
"id": "f0f97d47-5741-4c6e-ae96-5b3161ee2e56",
"metadata": {},
"source": [
"This says that 168 claw machines have no solution and 152 have exactly one solution. None of them have more than one solution.\n",
"\n",
"So, what is the intersection point of two lines? You could [look it up](https://www.wolframalpha.com/input?i=solve+for+a%2C+b%3A+p+*+a+%2B+q+*+b+%3D+r++and+++s+*+a+%2B+t+*+b+%3D+u) or work it out by hand, or [call a library function](https://numpy.org/doc/2.1/reference/generated/numpy.linalg.solve.html). Given the two equations over the variables *a* and *b*:\n",
"\n",
" p * a + q * b = r\n",
" s * a + t * b = u\n",
"\n",
"The solution is:\n",
"\n",
" a = (r * t - q * u) / (p * t - q * s)\n",
" b = (r * s - p * u) / (q * s - p * t)\n",
"\n",
"So we can rewrite `solve_claw` to use this:"
]
},
{
"cell_type": "code",
"execution_count": 142,
"id": "6bbd0934-d962-4c93-940b-810651e9e568",
"metadata": {},
"outputs": [],
"source": [
"def solve_claw(claw: Claw) -> Iterable[Tuple[int, int]]:\n",
" \"\"\"All possible (A-presses, B-presses) solutions to reach the prize on this machine.\"\"\"\n",
" ((p, s), (q, t), (r, u)) = claw\n",
" a = (r * t - q * u) / (p * t - q * s)\n",
" b = (r * s - p * u) / (q * s - p * t)\n",
" if a.is_integer() and b.is_integer():\n",
" yield (int(a), int(b))"
]
},
{
"cell_type": "markdown",
"id": "af52d98e-50e9-4c4d-875f-1ed2b3dc8111",
"metadata": {},
"source": [
"This raises an interesting style question: If you have a function that might return zero or one result of type `T`, should you define the return type as `Optional[T]` or as `Iterable[T]`? I guess it depends on the expected use cases of the function.\n",
"\n",
"We'll need a way to move the prizes further away:"
]
},
{
"cell_type": "code",
"execution_count": 144,
"id": "dd38ba4c-44ba-426b-b1c8-0e10adbdd642",
"metadata": {},
"outputs": [],
"source": [
"def move_prizes(claws, delta=(10**13, 10**13)) -> List[Claw]:\n",
" \"\"\"Move each claw's prize by the given displacement, delta.\"\"\"\n",
" return [claw._replace(Prize=(add(claw.Prize, delta))) for claw in claws]"
]
},
{
"cell_type": "markdown",
"id": "285bfa66-a33e-4d97-b7a7-cfd821953091",
"metadata": {},
"source": [
"Now we can answer Part 2:"
]
},
{
"cell_type": "code",
"execution_count": 146,
"id": "9f578b3e-6b6d-4eb0-9228-c98122a84747",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 13.2: .000 seconds, answer 93217456941970 ok"
]
},
"execution_count": 146,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(13.2, 93217456941970, lambda:\n",
" sum(map(cheapest_solution, move_prizes(claws))))"
]
},
{
"cell_type": "markdown",
"id": "db917eed-07e5-4409-a92d-b26534a1fcd4",
"metadata": {},
"source": [
"The refactored `solve_claw` is compatible with Part 1, and should be faster:"
]
},
{
"cell_type": "code",
"execution_count": 148,
"id": "609ed4ce-548c-4af4-8e09-c621aca0124e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 13.1: .000 seconds, answer 29598 ok"
]
},
"execution_count": 148,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(13.1, 29598, lambda:\n",
" sum(map(cheapest_solution, claws)))"
]
},
{
"cell_type": "markdown",
"id": "741bd221-cda4-432b-8ad2-b8c6950c7dc3",
"metadata": {},
"source": [
"I could have recognized in Part 1 that we have a system of two linear equations in two unknowns, and implemented the Part 2 solution. But I have no regrets; I took the hint that trial-and-test for 100 trials was a good idea, and I saved the complicated algebra for when I really needed it in Part 2. Having two independent implementations that produce the same answer increases my confidence in both of them."
]
},
{
"cell_type": "markdown",
"id": "2576ce68-3f1e-4887-ab0b-62fa94cbe55a",
"metadata": {},
"source": [
"# [Day 14](https://adventofcode.com/2024/day/14 ): Restroom Redoubt\n",
"\n",
"Today's narratives involve multiple robots roaming around a restroom. Each line of the input describes a robot's position and velocity in two dimensions:"
]
},
{
"cell_type": "code",
"execution_count": 151,
"id": "1a5f5875-426d-47ea-a35a-405c39ced5dd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Puzzle input ➜ 500 strs:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"p=62,20 v=85,-14\n",
"p=88,18 v=-70,97\n",
"p=51,21 v=35,-22\n",
"p=19,56 v=2,45\n",
"p=93,11 v=-87,26\n",
"p=90,67 v=44,-13\n",
"p=99,34 v=82,57\n",
"p=55,42 v=82,22\n",
"...\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Parsed representation ➜ 500 tuples:\n",
"────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"(62, 20, 85, -14)\n",
"(88, 18, -70, 97)\n",
"(51, 21, 35, -22)\n",
"(19, 56, 2, 45)\n",
"(93, 11, -87, 26)\n",
"(90, 67, 44, -13)\n",
"(99, 34, 82, 57)\n",
"(55, 42, 82, 22)\n",
"...\n"
]
}
],
"source": [
"robots = parse(14, ints) "
]
},
{
"cell_type": "markdown",
"id": "818a939d-2038-4574-a20b-c1194d403f2c",
"metadata": {},
"source": [
"### Part 1: What will the safety factor be after exactly 100 seconds have elapsed?\n",
"\n",
"Each second the robots move according to their velocity, and they wrap around when they reach the edge of their world, which has width 101 and height 103. They never collide; they can pass right through each other. We're asked to figure out where they are after 100 seconds. I can see that it is not necessary to simulate the robots movements time step by time step; we can just multiply their velocity by time, add it to their initial position, and then take the result modulo the width or height. That's done in `robot_dance`. \n",
"\n",
"We're asked to figure out how many robots end up in each **quadrant**. There are four quadrants, but a robot that is exactly on a middle line, either horizontally or vertically, doesn't count in any quadrant. Finally, the **safety factor** is the product of the four counts of robots in each quadrant."
]
},
{
"cell_type": "code",
"execution_count": 153,
"id": "be22ac94-7401-4cf6-ab83-e43775536af7",
"metadata": {},
"outputs": [],
"source": [
"def robot_dance(robots, steps=100, width=101, height=103) -> List[Point]:\n",
" \"\"\"Move each robot for `steps` number of steps.\"\"\"\n",
" return [((x + steps * dx) % width, (y + steps * dy) % height)\n",
" for (x, y, dx, dy) in robots]\n",
"\n",
"def quadrant_counts(positions, w=101//2, h=103//2) -> Counter:\n",
" \"\"\"How many robots are in each quadrant? Ignore robots exactly in the middle.\"\"\"\n",
" return Counter((sign(x - w), sign(y - h)) \n",
" for (x, y) in positions if x != w and y != h)\n",
"\n",
"def safety_factor(robots) -> int:\n",
" \"\"\"The product of the four counts of robots in each quadrant.\"\"\"\n",
" return prod(quadrant_counts(robot_dance(robots)).values())"
]
},
{
"cell_type": "code",
"execution_count": 154,
"id": "69093001-79aa-463a-b801-51cd5b4de4eb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Puzzle 14.1: .000 seconds, answer 216027840 ok"
]
},
"execution_count": 154,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer(14.1, 216027840, lambda:\n",
" safety_factor(robots))"
]
},
{
"cell_type": "markdown",
"id": "06b4e335-9863-40f7-983a-0744884dbc20",
"metadata": {},
"source": [
"In case you're curious, here are the quadrant counts after 100 steps:"
]
},
{
"cell_type": "code",
"execution_count": 156,
"id": "08661dc5-445c-4908-b0b4-57f3a53e5179",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Counter({(1, 1): 124, (-1, 1): 122, (-1, -1): 120, (1, -1): 119})"
]
},
"execution_count": 156,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"quadrant_counts(robot_dance(robots))"
]
},
{
"cell_type": "markdown",
"id": "a0cb27ad-82ff-4dcb-85cf-596b16ae9875",
"metadata": {},
"source": [
"### Part 2: What is the fewest number of seconds that must elapse for the robots to display a picture of a Christmas Tree?\n",
"\n",
"I was **so** sure that Part 2 was going to ask for 10 trillion steps, and I was going to be **so** clever for not simulating step-by-step. But I was wrong. \n",
"\n",
"Instead we have the very vague task of discovering when a picture emerges. There is a hint that \"*very rarely, most of the robots should arrange themselves into a picture of a Christmas tree.*\" Since I don't know exactly how to specify a picture of a Christmas tree, I see three options:\n",
"1) I could build an animation, and watch as each frame is displayed, stopping when I see something that looks like a tree.\n",
"2) The phrase \"*most of the robots should arrange themselves*\" suggests that most of the robots are in one area. I could check for that.\n",
"3) I could generate an image for each time step and send it off to an AI image recognition service. That would be iffy, slow, and probably expensive. \n",
"\n",
"I'll try the animation approach first. Google and Stack Overflow led me to the `matplotlib.animation.FuncAnimation` function:"
]
},
{
"cell_type": "code",
"execution_count": 158,
"id": "664c686e-0c3d-43b8-970f-88c0bf47dbf6",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.animation\n",
"\n",
"def animate_robots(robots, times: Ints):\n",
" \"\"\"Animate the robot dance over the given time steps.\"\"\"\n",
" plt.rcParams[\"animation.html\"] = \"jshtml\"\n",
" plt.rcParams['figure.dpi'] = 100 \n",
" plt.ioff()\n",
" fig, ax = plt.subplots()\n",
" def animate(t: int):\n",
" points = robot_dance(robots, t)\n",
" plt.cla()\n",
" ax.yaxis.set_inverted(True)\n",
" plt.plot(*T(points), 'go')\n",
" plt.title(f'{t} seconds')\n",
" return matplotlib.animation.FuncAnimation(fig, animate, frames=times)"
]
},
{
"cell_type": "markdown",
"id": "92048f28-a6a4-4c12-847f-62884177dec5",
"metadata": {},
"source": [
"Here's what it looks like:"
]
},
{
"cell_type": "code",
"execution_count": 160,
"id": "87843969-cb37-4fa5-9788-6a1b71c43521",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"
\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 160,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"animate_robots(robots, range(3))"
]
},
{
"cell_type": "markdown",
"id": "6f722d21-dc5e-473c-b9d1-c71915cbeb6f",
"metadata": {},
"source": [
"The animations take up a lot of space in the stored `.ipynb` file, so I only show 3 frames here. I looked at hundreds of frames, but no Christmas tree emerged. \n",
"\n",
"So, on to the second idea. If the hint had mentioned \"*all of the robots*\", I would look for an image frame with the minimum bounding box. But for \"*most of the robots*,\" I'll look for a frame that minimizes the mean distance from the centroid. "
]
},
{
"cell_type": "code",
"execution_count": 162,
"id": "9563d49c-54a3-439f-a833-f48c2a070609",
"metadata": {},
"outputs": [],
"source": [
"def mean_distance_to_centroid(points, distance=taxi_distance) -> float:\n",
" \"\"\"The mean of each point's distance to the centroid.\"\"\"\n",
" centroid = (mean(Xs(points)), mean(Ys(points)))\n",
" return mean(distance(p, centroid) for p in points)\n",
"\n",
"def most_clustered_time(robots, times=range(10_000)) -> int:\n",
" \"\"\"Out of all the given time steps, the one that has the robots clustered closest together.\"\"\"\n",
" return min(times, key=lambda t: mean_distance_to_centroid(robot_dance(robots, t)))"
]
},
{
"cell_type": "code",
"execution_count": 163,
"id": "ab8c7e3b-f400-4976-ad0d-5f92cbadec02",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"