## Solve Every Sudoku Puzzle ## See http://norvig.com/sudoku.html ## Throughout this program we have: ## r is a row, e.g. 'A' ## c is a column, e.g. '3' ## s is a square, e.g. 'A3' ## d is a digit, e.g. '9' ## u is a unit, e.g. ['A1','B1','C1','D1','E1','F1','G1','H1','I1'] ## grid is a grid,e.g. 81 non-blank chars, e.g. starting with '.18...7... ## values is a dict of possible values, e.g. {'A1':'12349', 'A2':'8', ...} def cross(A, B): "Cross product of elements in A and elements in B." return [a+b for a in A for b in B] digits = '123456789' rows = 'ABCDEFGHI' cols = digits squares = cross(rows, cols) unitlist = ([cross(rows, c) for c in cols] + [cross(r, cols) for r in rows] + [cross(rs, cs) for rs in ('ABC','DEF','GHI') for cs in ('123','456','789')]) units = dict((s, [u for u in unitlist if s in u]) for s in squares) peers = dict((s, set(sum(units[s],[]))-set([s])) for s in squares) ################ Parse a Grid ################ def parse_grid(grid): """Convert grid to a dict of possible values, {square: digits}, or return False if a contradiction is detected.""" ## To start, every square can be any digit; then assign values from the grid. values = dict((s, digits) for s in squares) for s,d in grid_values(grid).items(): if d in digits and not assign(values, s, d): return False ## (Fail if we can't assign d to square s.) return values def grid_values(grid): "Convert grid into a dict of {square: char} with '0' or '.' for empties." chars = [c for c in grid if c in digits or c in '0.'] if len(chars) != 81: print(grid, chars, len(chars)) assert len(chars) == 81 return dict(zip(squares, chars)) ################ Constraint Propagation ################ def assign(values, s, d): """Eliminate all the other values (except d) from values[s] and propagate. Return values, except return False if a contradiction is detected.""" other_values = values[s].replace(d, '') if all(eliminate(values, s, d2) for d2 in other_values): return values else: return False def eliminate(values, s, d): """Eliminate d from values[s]; propagate when values or places <= 2. Return values, except return False if a contradiction is detected.""" if d not in values[s]: return values ## Already eliminated values[s] = values[s].replace(d,'') ## (1) If a square s is reduced to one value d2, then eliminate d2 from the peers. if len(values[s]) == 0: return False ## Contradiction: removed last value elif len(values[s]) == 1: d2 = values[s] if not all(eliminate(values, s2, d2) for s2 in peers[s]): return False ## (2) If a unit u is reduced to only one place for a value d, then put it there. for u in units[s]: dplaces = [s for s in u if d in values[s]] if len(dplaces) == 0: return False ## Contradiction: no place for this value elif len(dplaces) == 1: # d can only be in one place in unit; assign it there if not assign(values, dplaces[0], d): return False return values ################ Display as 2-D grid ################ def display(values): "Display these values as a 2-D grid." width = 1+max(len(values[s]) for s in squares) line = '+'.join(['-'*(width*3)]*3) for r in rows: print(''.join(values[r+c].center(width) + ('|' if c in '36' else '') for c in cols)) if r in 'CF': print(line) print() ################ Search ################ def solve(grid): return search(parse_grid(grid)) def search(values): "Using depth-first search and propagation, try all possible values." if values is False: return False ## Failed earlier if all(len(values[s]) == 1 for s in squares): return values ## Solved! ## Chose the unfilled square s with the fewest possibilities n,s = min((len(values[s]), s) for s in squares if len(values[s]) > 1) for d in values[s]: result = search(assign(values.copy(), s, d)) if result: return result ################ Unit Tests ################ def test(): "A set of tests that must pass." assert len(squares) == 81 assert len(unitlist) == 27 assert all(len(units[s]) == 3 for s in squares) assert all(len(peers[s]) == 20 for s in squares) assert units['C2'] == [['A2', 'B2', 'C2', 'D2', 'E2', 'F2', 'G2', 'H2', 'I2'], ['C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], ['A1', 'A2', 'A3', 'B1', 'B2', 'B3', 'C1', 'C2', 'C3']] assert peers['C2'] == set(['A2', 'B2', 'D2', 'E2', 'F2', 'G2', 'H2', 'I2', 'C1', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9', 'A1', 'A3', 'B1', 'B3']) print('All tests pass.') ################ System test ################ import time def solve_all(grids, name=''): """Attempt to solve a sequence of grids. Report results.""" times, results = zip(*[time_solve(grid) for grid in grids]) N = len(results) if N > 1: print("Solved %d of %d %s puzzles (avg %.2f secs (%d Hz), max %.2f secs)." % ( sum(results), N, name, sum(times)/N, N/sum(times), max(times))) def time_solve(grid): start = time.clock() values = solve(grid) t = time.clock()-start return (t, solved(values)) def solved(values): "A puzzle is solved if each unit is a permutation of the digits 1 to 9." def unitsolved(unit): return set(values[s] for s in unit) == set(digits) return values is not False and all(unitsolved(unit) for unit in unitlist) grid1 = '003020600900305001001806400008102900700000008006708200002609500800203009005010300' grid2 = '4.....8.5.3..........7......2.....6.....8.4......1.......6.3.7.5..2.....1.4......' hard1 = '.....6....59.....82....8....45........3........6..3.54...325..6..................' if __name__ == '__main__': test() solve_all(open("sudoku-easy50.txt"), "easy") solve_all(open("sudoku-top95.txt"), "hard") solve_all(open("sudoku-hardest.txt"), "hardest")