"""Search for counterexamples to Beal's conjecture See http://norvig.com/beal.html and http://www.bealconjecture.com""" from __future__ import division, print_function from math import log from itertools import combinations, product from collections import defaultdict try: from math import gcd # For Python 3.6 and up except ImportError: from fractions import gcd # For older versions (works in 2.7 as well) def beal(max_A, max_x): """See if any A ** x + B ** y equals some C ** z, with gcd(A, B) == 1. Consider any 1 <= A,B <= max_A and x,y <= max_x, with x,y prime or 4.""" Apowers = make_Apowers(max_A, max_x) Czroots = make_Czroots(Apowers) for (A, B) in combinations(Apowers, 2): if gcd(A, B) == 1: for (Ax, By) in product(Apowers[A], Apowers[B]): Cz = Ax + By if Cz in Czroots: C = Czroots[Cz] x, y, z = exponent(Ax, A), exponent(By, B), exponent(Cz, C) print('{} ** {} + {} ** {} == {} ** {} == {}' .format(A, x, B, y, C, z, C ** z)) def make_Apowers(max_A, max_x): "A dict of {A: [A**3, A**4, ...], ...}." exponents = exponents_upto(max_x) return {A: [A ** x for x in (exponents if (A != 1) else [3])] for A in range(1, max_A+1)} def make_Czroots(Apowers): return {Cz: C for C in Apowers for Cz in Apowers[C]} def exponents_upto(max_x): "Return all odd primes up to max_x, as well as 4." exponents = [3, 4] if max_x >= 4 else [3] if max_x == 3 else [] for x in range(5, max_x, 2): if not any(x % p == 0 for p in exponents): exponents.append(x) return exponents def exponent(Cz, C): """Recover z such that C ** z == Cz (or equivalently z = log Cz base C). For exponent(1, 1), arbitrarily choose to return 3.""" return 3 if (Cz == C == 1) else int(round(log(Cz, C))) ############################################################################## def tests(): assert make_Apowers(6, 10) == { 1: [1], 2: [8, 16, 32, 128], 3: [27, 81, 243, 2187], 4: [64, 256, 1024, 16384], 5: [125, 625, 3125, 78125], 6: [216, 1296, 7776, 279936]} assert make_Czroots(make_Apowers(5, 8)) == { 1: 1, 8: 2, 16: 2, 27: 3, 32: 2, 64: 4, 81: 3, 125: 5, 128: 2, 243: 3, 256: 4, 625: 5, 1024: 4, 2187: 3, 3125: 5, 16384: 4, 78125: 5} Czroots = make_Czroots(make_Apowers(100, 100)) assert 3 ** 3 + 6 ** 3 in Czroots assert 99 ** 97 in Czroots assert 101 ** 100 not in Czroots assert Czroots[99 ** 97] == 99 assert exponent(10 ** 5, 10) == 5 assert exponent(7 ** 3, 7) == 3 assert exponent(1234 ** 999, 1234) == 999 assert exponent(12345 ** 6789, 12345) == 6789 assert exponent(3 ** 10000, 3) == 10000 assert exponent(1, 1) == 3 assert exponents_upto(2) == [] assert exponents_upto(3) == [3] assert exponents_upto(4) == [3, 4] assert exponents_upto(40) == [3, 4, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] assert exponents_upto(100) == [ 3, 4, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97] assert gcd(3, 6) == 3 assert gcd(3, 7) == 1 assert gcd(861591083269373931, 94815872265407) == 97 assert gcd(2*3*5*(7**10)*(11**12), 3*(7**5)*(11**13)*17) == 3*(7**5)*(11**12) return 'tests pass' ############################################################################## def beal_modp(max_A, max_x, p=2**31-1): """See if any A ** x + B ** y equals some C ** z (mod p), with gcd(A, B) == 1. If so, verify that the equation works without the (mod p). Consider any 1 <= A,B <= max_A and x,y <= max_x, with x,y prime or 4.""" assert p >= max_A Apowers = make_Apowers_modp(max_A, max_x, p) Czroots = make_Czroots_modp(Apowers) for (A, B) in combinations(Apowers, 2): if gcd(A, B) == 1: for (Axp, x), (Byp, y) in product(Apowers[A], Apowers[B]): Czp = (Axp + Byp) % p if Czp in Czroots: lhs = A ** x + B ** y for (C, z) in Czroots[Czp]: if lhs == C ** z: print('{} ** {} + {} ** {} == {} ** {} == {}' .format(A, x, B, y, C, z, C ** z)) def make_Apowers_modp(max_A, max_x, p): "A dict of {A: [(A**3 (mod p), 3), (A**4 (mod p), 4), ...]}." exponents = exponents_upto(max_x) return {A: [(pow(A, x, p), x) for x in (exponents if (A != 1) else [3])] for A in range(1, max_A+1)} def make_Czroots_modp(Apowers): "A dict of {C**z (mod p): [(C, z),...]}" Czroots = defaultdict(list) for A in Apowers: for (Axp, x) in Apowers[A]: Czroots[Axp].append((A, x)) return Czroots ############################################################################## def simpsons(bases, powers): """Find the integers (A, B, C, n) that come closest to solving Fermat's equation, A ** n + B ** n == C ** n. Let A, B range over all pairs of bases and n over all powers.""" equations = ((A, B, iroot(A ** n + B ** n, n), n) for A, B in combinations(bases, 2) for n in powers) return min(equations, key=relative_error) def iroot(i, n): "The integer closest to the nth root of i." return int(round(i ** (1./n))) def relative_error(equation): "Error between LHS and RHS of equation, relative to RHS." (A, B, C, n) = equation LHS = A ** n + B ** n RHS = C ** n return abs(LHS - RHS) / RHS if __name__ == '__main__': print(tests()) print("Searching beal(500, 100)") print(beal(500, 100)) print("Finding Simpson-esque near-solutions to Fermat's Equation") print(simpsons(range(1000, 2000), [11, 12, 13])) print(simpsons(range(3000, 5000), [12])) print("Searching beal_modp(500, 100)") print(beal_modp(500, 100))