""" Code to accompany the chapter "Natural Language Corpus Data" from the book "Beautiful Data" (Segaran and Hammerbacher, 2009) http://oreilly.com/catalog/9780596157111/ Code copyright (c) 2008-2009 by Peter Norvig You are free to use this code under the MIT licencse: http://www.opensource.org/licenses/mit-license.php """ from __future__ import print_function import re, string, random, glob, operator, heapq from collections import defaultdict from math import log10 def memo(f): "Memoize function f." table = {} def fmemo(*args): if args not in table: table[args] = f(*args) return table[args] fmemo.memo = table return fmemo def test(verbose=None): """Run some tests, taken from the chapter. Since the hillclimbing algorithm is randomized, some tests may fail.""" import doctest print('Running tests...') doctest.testfile('ngrams-test.txt', verbose=verbose) ################ Word Segmentation (p. 223) @memo def segment(text): "Return a list of words that is the best segmentation of text." if not text: return [] candidates = ([first]+segment(rem) for first,rem in splits(text)) return max(candidates, key=Pwords) def splits(text, L=20): "Return a list of all possible (first, rem) pairs, len(first)<=L." return [(text[:i+1], text[i+1:]) for i in range(min(len(text), L))] def Pwords(words): "The Naive Bayes probability of a sequence of words." return product(Pw(w) for w in words) #### Support functions (p. 224) def product(nums): "Return the product of a sequence of numbers." return reduce(operator.mul, nums, 1) class Pdist(dict): "A probability distribution estimated from counts in datafile." def __init__(self, data=[], N=None, missingfn=None): for key,count in data: self[key] = self.get(key, 0) + int(count) self.N = float(N or sum(self.itervalues())) self.missingfn = missingfn or (lambda k, N: 1./N) def __call__(self, key): if key in self: return self[key]/self.N else: return self.missingfn(key, self.N) def datafile(name, sep='\t'): "Read key,value pairs from file." for line in file(name): yield line.split(sep) def avoid_long_words(key, N): "Estimate the probability of an unknown word." return 10./(N * 10**len(key)) N = 1024908267229 ## Number of tokens Pw = Pdist(datafile('count_1w.txt'), N, avoid_long_words) #### segment2: second version, with bigram counts, (p. 226-227) def cPw(word, prev): "Conditional probability of word, given previous word." try: return P2w[prev + ' ' + word]/float(Pw[prev]) except KeyError: return Pw(word) P2w = Pdist(datafile('count_2w.txt'), N) @memo def segment2(text, prev=''): "Return (log P(words), words), where words is the best segmentation." if not text: return 0.0, [] candidates = [combine(log10(cPw(first, prev)), first, segment2(rem, first)) for first,rem in splits(text)] return max(candidates) def combine(Pfirst, first, Prem__rem): "Combine first and rem results into one (probability, words) pair." (Prem, rem) = Prem__rem return Pfirst+Prem, [first]+rem ################ Secret Codes (p. 228-230) def encode(msg, key): "Encode a message with a substitution cipher." return msg.translate(string.maketrans(ul(alphabet), ul(key))) def ul(text): return text.upper() + text.lower() alphabet = 'abcdefghijklmnopqrstuvwxyz' def shift(msg, n=13): "Encode a message with a shift (Caesar) cipher." return encode(msg, alphabet[n:]+alphabet[:n]) def logPwords(words): "The Naive Bayes probability of a string or sequence of words." if isinstance(words, str): words = allwords(words) return sum(log10(Pw(w)) for w in words) def allwords(text): "Return a list of alphabetic words in text, lowercase." return re.findall('[a-z]+', text.lower()) def decode_shift(msg): "Find the best decoding of a message encoded with a shift cipher." candidates = [shift(msg, n) for n in range(len(alphabet))] return max(candidates, key=logPwords) def shift2(msg, n=13): "Encode with a shift (Caesar) cipher, yielding only letters [a-z]." return shift(just_letters(msg), n) def just_letters(text): "Lowercase text and remove all characters except [a-z]." return re.sub('[^a-z]', '', text.lower()) def decode_shift2(msg): "Decode a message encoded with a shift cipher, with no spaces." candidates = [segment2(shift(msg, n)) for n in range(len(alphabet))] p, words = max(candidates) return ' '.join(words) #### General substitution cipher (p. 231-233) def logP3letters(text): "The log-probability of text using a letter 3-gram model." return sum(log10(P3l(g)) for g in ngrams(text, 3)) def ngrams(seq, n): "List all the (overlapping) ngrams in a sequence." return [seq[i:i+n] for i in range(1+len(seq)-n)] P3l = Pdist(datafile('count_3l.txt')) P2l = Pdist(datafile('count_2l.txt')) ## We'll need it later def hillclimb(x, f, neighbors, steps=10000): "Search for an x that maximizes f(x), considering neighbors(x)." fx = f(x) neighborhood = iter(neighbors(x)) for i in range(steps): x2 = neighborhood.next() fx2 = f(x2) if fx2 > fx: x, fx = x2, fx2 neighborhood = iter(neighbors(x)) if debugging: print('hillclimb:', x, int(fx)) return x debugging = False def decode_subst(msg, steps=4000, restarts=90): "Decode a substitution cipher with random restart hillclimbing." msg = cat(allwords(msg)) candidates = [hillclimb(encode(msg, key=cat(shuffled(alphabet))), logP3letters, neighboring_msgs, steps) for _ in range(restarts)] p, words = max(segment2(c) for c in candidates) return ' '.join(words) def shuffled(seq): "Return a randomly shuffled copy of the input sequence." seq = list(seq) random.shuffle(seq) return seq cat = ''.join def neighboring_msgs(msg): "Generate nearby keys, hopefully better ones." def swap(a,b): return msg.translate(string.maketrans(a+b, b+a)) for bigram in heapq.nsmallest(20, set(ngrams(msg, 2)), P2l): b1,b2 = bigram for c in alphabet: if b1==b2: if P2l(c+c) > P2l(bigram): yield swap(c,b1) else: if P2l(c+b2) > P2l(bigram): yield swap(c,b1) if P2l(b1+c) > P2l(bigram): yield swap(c,b2) while True: yield swap(random.choice(alphabet), random.choice(alphabet)) ################ Spelling Correction (p. 236-) def corrections(text): "Spell-correct all words in text." return re.sub('[a-zA-Z]+', lambda m: correct(m.group(0)), text) def correct(w): "Return the word that is the most likely spell correction of w." candidates = edits(w).items() c, edit = max(candidates, key=lambda (c,e): Pedit(e) * Pw(c)) return c def Pedit(edit): "The probability of an edit; can be '' or 'a|b' or 'a|b+c|d'." if edit == '': return (1. - p_spell_error) return p_spell_error*product(P1edit(e) for e in edit.split('+')) p_spell_error = 1./20. P1edit = Pdist(datafile('count_1edit.txt')) ## Probabilities of single edits def edits(word, d=2): "Return a dict of {correct: edit} pairs within d edits of word." results = {} def editsR(hd, tl, d, edits): def ed(L,R): return edits+[R+'|'+L] C = hd+tl if C in Pw: e = '+'.join(edits) if C not in results: results[C] = e else: results[C] = max(results[C], e, key=Pedit) if d <= 0: return extensions = [hd+c for c in alphabet if hd+c in PREFIXES] p = (hd[-1] if hd else '<') ## previous character ## Insertion for h in extensions: editsR(h, tl, d-1, ed(p+h[-1], p)) if not tl: return ## Deletion editsR(hd, tl[1:], d-1, ed(p, p+tl[0])) for h in extensions: if h[-1] == tl[0]: ## Match editsR(h, tl[1:], d, edits) else: ## Replacement editsR(h, tl[1:], d-1, ed(h[-1], tl[0])) ## Transpose if len(tl)>=2 and tl[0]!=tl[1] and hd+tl[1] in PREFIXES: editsR(hd+tl[1], tl[0]+tl[2:], d-1, ed(tl[1]+tl[0], tl[0:2])) ## Body of edits: editsR('', word, d, []) return results PREFIXES = set(w[:i] for w in Pw for i in range(len(w) + 1))