diff --git a/ipynb/Bike-Stats.ipynb b/ipynb/Bike-Stats.ipynb index ea3d982..a256e20 100644 --- a/ipynb/Bike-Stats.ipynb +++ b/ipynb/Bike-Stats.ipynb @@ -473,111 +473,111 @@ "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 datesquareclustertotalcommentdatesquareclustertotalcomment
04/28/20241412753382Livermore04/28/20241412753382Livermore
02/25/20241411963279Expanding through Santa Cruz and to the South02/25/20241411963279Expanding through Santa Cruz and to the South
01/01/20241410563105Start of this year01/01/20241410563105Start of this year
12/08/20231410423084Benicia ride connects East Bay and Napa clusters12/08/20231410423084Benicia ride connects East Bay and Napa clusters
11/05/2023149322914Alum Rock ride gets 14x14 max square11/05/2023149322914Alum Rock ride gets 14x14 max square
06/30/2023136892640Rides in east Bay fill in holes06/30/2023136892640Rides in east Bay fill in holes
04/14/2023136302595Black Sands Beach low-tide hike connects Marin to max cluster04/14/2023136302595Black Sands Beach low-tide hike connects Marin to max cluster
03/04/2023135832574Almaden rides connects Gilroy to max cluster03/04/2023135832574Almaden rides connects Gilroy to max cluster
10/22/2022133962495Alviso levees to get to 13x13 max square10/22/2022133962495Alviso levees to get to 13x13 max square
10/16/2022123932492Milpitas ride connects East Bay to max cluster10/16/2022123932492Milpitas ride connects East Bay to max cluster
09/08/2022113002487First started tracking tiles09/08/2022113002487First started tracking tiles
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 4, @@ -812,10 +812,20 @@ " \n", " \n", " \n", - " Sequoia Tract\n", + " Atherton\n", " SMC\n", - " 11.00\n", - " 11\n", + " 56.30\n", + " 56\n", + " 100%\n", + " 99%\n", + " \n", + " \n", + " \n", + " \n", + " Menlo Oaks\n", + " SMC\n", + " 3.50\n", + " 3.5\n", " 100%\n", " 99%\n", " \n", @@ -832,6 +842,26 @@ " \n", " \n", " \n", + " Ladera\n", + " SMC\n", + " 8.10\n", + " 8.1\n", + " 100%\n", + " 99%\n", + " \n", + " \n", + " \n", + " \n", + " Windy Hill Preserve\n", + " SMC\n", + " 4.10\n", + " 4.1\n", + " 100%\n", + " 99%\n", + " \n", + " \n", + " \n", + " \n", " Los Trancos OSP\n", " SMC\n", " 0.30\n", @@ -852,16 +882,6 @@ " \n", " \n", " \n", - " Menlo Oaks\n", - " SMC\n", - " 3.50\n", - " 3.5\n", - " 100%\n", - " 99%\n", - " \n", - " \n", - " \n", - " \n", " North Fair Oaks\n", " SMC\n", " 26.70\n", @@ -882,20 +902,10 @@ " \n", " \n", " \n", - " Ladera\n", + " Sequoia Tract\n", " SMC\n", - " 8.10\n", - " 8.1\n", - " 100%\n", - " 99%\n", - " \n", - " \n", - " \n", - " \n", - " Windy Hill Preserve\n", - " SMC\n", - " 4.10\n", - " 4.1\n", + " 11.00\n", + " 11\n", " 100%\n", " 99%\n", " \n", @@ -942,21 +952,61 @@ " \n", " \n", " \n", - " Los Altos\n", - " SCC\n", - " 138.20\n", - " 138\n", - " 99.80%\n", + " Portola Valley\n", + " SMC\n", + " 48.20\n", + " 48\n", + " 99.93%\n", " 99%\n", " \n", " \n", " \n", " \n", - " Atherton\n", + " Menlo Park\n", " SMC\n", - " 56.30\n", - " 56\n", - " 99.80%\n", + " 139.50\n", + " 139\n", + " 99.90%\n", + " 99%\n", + " \n", + " \n", + " \n", + " \n", + " Los Altos\n", + " SCC\n", + " 138.20\n", + " 138\n", + " 99.89%\n", + " 99%\n", + " \n", + " \n", + " \n", + " \n", + " Woodside\n", + " SMC\n", + " 75.20\n", + " 75\n", + " 99.83%\n", + " 99%\n", + " \n", + " \n", + " \n", + " \n", + " Mountain View\n", + " SCC\n", + " 208.10\n", + " 208\n", + " 99.81%\n", + " 99%\n", + " \n", + " \n", + " \n", + " \n", + " Los Altos Hills\n", + " SCC\n", + " 91.30\n", + " 91\n", + " 99.78%\n", " 99%\n", " \n", " \n", @@ -972,16 +1022,6 @@ " \n", " \n", " \n", - " Woodside\n", - " SMC\n", - " 75.20\n", - " 75\n", - " 99.74%\n", - " 99%\n", - " \n", - " \n", - " \n", - " \n", " Redwood City\n", " SMC\n", " 240.50\n", @@ -1002,41 +1042,11 @@ " \n", " \n", " \n", - " Menlo Park\n", - " SMC\n", - " 139.50\n", - " 139\n", - " 99.70%\n", - " 99%\n", - " \n", - " \n", - " \n", - " \n", - " Mountain View\n", - " SCC\n", - " 208.10\n", - " 207\n", - " 99.64%\n", - " 99%\n", - " \n", - " \n", - " \n", - " \n", - " Los Altos Hills\n", - " SCC\n", - " 91.30\n", - " 91\n", - " 99.56%\n", - " 99%\n", - " \n", - " \n", - " \n", - " \n", " Palo Alto\n", " SCC\n", " 297.20\n", " 296\n", - " 99.45%\n", + " 99.51%\n", " 99%\n", " \n", " \n", @@ -1045,8 +1055,8 @@ " San Carlos\n", " SMC\n", " 99.00\n", - " 98\n", - " 99.43%\n", + " 99\n", + " 99.50%\n", " 99%\n", " \n", " \n", @@ -1062,11 +1072,11 @@ " \n", " \n", " \n", - " Portola Valley\n", - " SMC\n", - " 48.20\n", - " 48\n", - " 99.12%\n", + " Stanford\n", + " SCC\n", + " 82.53\n", + " 82\n", + " 99.13%\n", " 99%\n", " \n", " \n", @@ -1092,6 +1102,16 @@ " \n", " \n", " \n", + " Belmont\n", + " SMC\n", + " 98.10\n", + " 87\n", + " 88.39%\n", + " 75%\n", + " 1.6 mi to 90%\n", + " \n", + " \n", + " \n", " Skyline Ridge OSP\n", " SMC\n", " 0.80\n", @@ -1102,16 +1122,6 @@ " \n", " \n", " \n", - " Belmont\n", - " SMC\n", - " 98.10\n", - " 74\n", - " 75.43%\n", - " 75%\n", - " 14 mi to 90%\n", - " \n", - " \n", - " \n", " Portola Redwoods SP\n", " SMC\n", " 2.90\n", @@ -1212,16 +1222,6 @@ " \n", " \n", " \n", - " Cupertino\n", - " SCC\n", - " 172.00\n", - " 95\n", - " 54.99%\n", - " 50%\n", - " 60 mi to 90%\n", - " \n", - " \n", - " \n", " San Mateo\n", " SMC\n", " 256.00\n", @@ -1232,6 +1232,26 @@ " \n", " \n", " \n", + " Cupertino\n", + " SCC\n", + " 172.00\n", + " 94\n", + " 54.42%\n", + " 50%\n", + " 61 mi to 90%\n", + " \n", + " \n", + " \n", + " Saratoga\n", + " SCC\n", + " 180.00\n", + " 97\n", + " 53.70%\n", + " 50%\n", + " 65 mi to 90%\n", + " \n", + " \n", + " \n", " Hillsborough\n", " SMC\n", " 85.30\n", @@ -1242,16 +1262,6 @@ " \n", " \n", " \n", - " Monte Sereno\n", - " SCC\n", - " 20.40\n", - " 11\n", - " 52.40%\n", - " 50%\n", - " 7.7 mi to 90%\n", - " \n", - " \n", - " \n", " Half Moon Bay State Beach\n", " SMC\n", " 4.40\n", @@ -1262,6 +1272,26 @@ " \n", " \n", " \n", + " Monte Sereno\n", + " SCC\n", + " 20.40\n", + " 11\n", + " 52.40%\n", + " 50%\n", + " 7.7 mi to 90%\n", + " \n", + " \n", + " \n", + " Los Gatos\n", + " SCC\n", + " 148.00\n", + " 77\n", + " 52.04%\n", + " 50%\n", + " 56 mi to 90%\n", + " \n", + " \n", + " \n", " Newark\n", " ALA\n", " 147.00\n", @@ -1272,26 +1302,6 @@ " \n", " \n", " \n", - " Los Gatos\n", - " SCC\n", - " 148.00\n", - " 76\n", - " 51.60%\n", - " 50%\n", - " 57 mi to 90%\n", - " \n", - " \n", - " \n", - " Saratoga\n", - " SCC\n", - " 180.00\n", - " 93\n", - " 51.40%\n", - " 50%\n", - " 69 mi to 90%\n", - " \n", - " \n", - " \n", " Millbrae\n", " SMC\n", " 65.00\n", @@ -1676,9 +1686,9 @@ " SCC\n", " 35.30\n", " 11\n", - " 31.50%\n", + " 31.85%\n", " 25%\n", - " 6.5 mi to 50%\n", + " 6.4 mi to 50%\n", " \n", " \n", " \n", @@ -1782,6 +1792,16 @@ " \n", " \n", " \n", + " San Jose\n", + " SCC\n", + " 2618.70\n", + " 749\n", + " 28.62%\n", + " 25%\n", + " 560 mi to 50%\n", + " \n", + " \n", + " \n", " Daly City\n", " SMC\n", " 148.10\n", @@ -1802,16 +1822,6 @@ " \n", " \n", " \n", - " San Jose\n", - " SCC\n", - " 2618.70\n", - " 733\n", - " 28.00%\n", - " 25%\n", - " 576 mi to 50%\n", - " \n", - " \n", - " \n", " Cherryland\n", " ALA\n", " 20.90\n", @@ -2196,36 +2206,37 @@ ], "text/plain": [ " name county total done pct badge \\\n", - " Sequoia Tract SMC 11.00 11 100% 99% \n", - " Kensington Square SMC 0.60 0.6 100% 99% \n", - " Los Trancos OSP SMC 0.30 0.3 100% 99% \n", - " Los Trancos Woods SMC 5.30 5.3 100% 99% \n", + " Atherton SMC 56.30 56 100% 99% \n", " Menlo Oaks SMC 3.50 3.5 100% 99% \n", - " North Fair Oaks SMC 26.70 27 100% 99% \n", - " Palomar Park SMC 4.00 4.0 100% 99% \n", + " Kensington Square SMC 0.60 0.6 100% 99% \n", " Ladera SMC 8.10 8.1 100% 99% \n", " Windy Hill Preserve SMC 4.10 4.1 100% 99% \n", + " Los Trancos OSP SMC 0.30 0.3 100% 99% \n", + " Los Trancos Woods SMC 5.30 5.3 100% 99% \n", + " North Fair Oaks SMC 26.70 27 100% 99% \n", + " Palomar Park SMC 4.00 4.0 100% 99% \n", + " Sequoia Tract SMC 11.00 11 100% 99% \n", " Foothills OS Preserve SCC 1.10 1.1 100% 99% \n", " Emerald Lake Hills SMC 24.60 25 99.96% 99% \n", " East Palo Alto SMC 48.30 48 99.95% 99% \n", " Loyola SCC 18.30 18 99.94% 99% \n", - " Los Altos SCC 138.20 138 99.80% 99% \n", - " Atherton SMC 56.30 56 99.80% 99% \n", + " Portola Valley SMC 48.20 48 99.93% 99% \n", + " Menlo Park SMC 139.50 139 99.90% 99% \n", + " Los Altos SCC 138.20 138 99.89% 99% \n", + " Woodside SMC 75.20 75 99.83% 99% \n", + " Mountain View SCC 208.10 208 99.81% 99% \n", + " Los Altos Hills SCC 91.30 91 99.78% 99% \n", " West Menlo Park SMC 11.20 11 99.75% 99% \n", - " Woodside SMC 75.20 75 99.74% 99% \n", " Redwood City SMC 240.50 240 99.73% 99% \n", " Sky Londa SMC 11.80 12 99.70% 99% \n", - " Menlo Park SMC 139.50 139 99.70% 99% \n", - " Mountain View SCC 208.10 207 99.64% 99% \n", - " Los Altos Hills SCC 91.30 91 99.56% 99% \n", - " Palo Alto SCC 297.20 296 99.45% 99% \n", - " San Carlos SMC 99.00 98 99.43% 99% \n", + " Palo Alto SCC 297.20 296 99.51% 99% \n", + " San Carlos SMC 99.00 99 99.50% 99% \n", " Foster City SMC 150.00 149 99.40% 99% \n", - " Portola Valley SMC 48.20 48 99.12% 99% \n", + " Stanford SCC 82.53 82 99.13% 99% \n", " Burleigh Murray Park SMC 2.10 2.0 95.08% 90% \n", " San Mateo Highlands SMC 18.00 17 93.50% 90% \n", + " Belmont SMC 98.10 87 88.39% 75% \n", " Skyline Ridge OSP SMC 0.80 0.6 76.40% 75% \n", - " Belmont SMC 98.10 74 75.43% 75% \n", " Portola Redwoods SP SMC 2.90 2.2 74.30% 50% \n", " Rosie Riveter Park CCC 5.50 4.0 73.20% 50% \n", " Burlingame Hills SMC 6.00 4.3 71.50% 50% \n", @@ -2236,14 +2247,14 @@ " Russian Ridge Preserve SMC 12.20 7.3 59.50% 50% \n", " Burlingame SMC 88.40 50 56.88% 50% \n", " Sunnyvale SCC 357.00 197 55.30% 50% \n", - " Cupertino SCC 172.00 95 54.99% 50% \n", " San Mateo SMC 256.00 140 54.60% 50% \n", + " Cupertino SCC 172.00 94 54.42% 50% \n", + " Saratoga SCC 180.00 97 53.70% 50% \n", " Hillsborough SMC 85.30 45 53.10% 50% \n", - " Monte Sereno SCC 20.40 11 52.40% 50% \n", " Half Moon Bay State Beach SMC 4.40 2.3 52.40% 50% \n", + " Monte Sereno SCC 20.40 11 52.40% 50% \n", + " Los Gatos SCC 148.00 77 52.04% 50% \n", " Newark ALA 147.00 76 51.60% 50% \n", - " Los Gatos SCC 148.00 76 51.60% 50% \n", - " Saratoga SCC 180.00 93 51.40% 50% \n", " Millbrae SMC 65.00 33 51.30% 50% \n", " Castle Rock State Park SCC 11.20 5.7 51.20% 50% \n", " Brisbane SMC 40.90 21 50.40% 50% \n", @@ -2282,7 +2293,7 @@ " Hayward ALA 444.50 148 33.20% 25% \n", " Stinson Beach MAR 11.20 3.7 32.90% 25% \n", " Marin Headlands GGNRA MAR 65.70 21 31.90% 25% \n", - " San Martin SCC 35.30 11 31.50% 25% \n", + " San Martin SCC 35.30 11 31.85% 25% \n", " South San Francisco SMC 185.30 57 30.98% 25% \n", " Willow Glen South SCC 63.30 20 30.90% 25% \n", " Forest of Nisene Marks SP SCC 44.00 14 30.70% 25% \n", @@ -2293,9 +2304,9 @@ " Fairview ALA 34.40 10 29.20% 25% \n", " Dawes Point NSW 1.80 0.5 29.20% 25% \n", " Bay Area Ridge Trail SMC 395.60 113 28.68% 25% \n", + " San Jose SCC 2618.70 749 28.62% 25% \n", " Daly City SMC 148.10 42 28.27% 25% \n", " San Leandro ALA 230.60 65 28.10% 25% \n", - " San Jose SCC 2618.70 733 28.00% 25% \n", " Cherryland ALA 20.90 5.8 27.80% 25% \n", " El Corte de Madera OSP SMC 34.54 9.3 26.88% 25% \n", " Mokelumne Hill CAL 14.70 3.9 26.80% 25% \n", @@ -2362,10 +2373,11 @@ " \n", " \n", " \n", + " \n", " 0.1 mi to 99% \n", " 1.0 mi to 99% \n", + " 1.6 mi to 90% \n", " 0.1 mi to 90% \n", - " 14 mi to 90% \n", " 0.5 mi to 90% \n", " 0.9 mi to 90% \n", " 1.1 mi to 90% \n", @@ -2376,14 +2388,14 @@ " 3.7 mi to 90% \n", " 29 mi to 90% \n", " 124 mi to 90% \n", - " 60 mi to 90% \n", " 91 mi to 90% \n", + " 61 mi to 90% \n", + " 65 mi to 90% \n", " 31 mi to 90% \n", - " 7.7 mi to 90% \n", " 1.7 mi to 90% \n", + " 7.7 mi to 90% \n", + " 56 mi to 90% \n", " 56 mi to 90% \n", - " 57 mi to 90% \n", - " 69 mi to 90% \n", " 25 mi to 90% \n", " 4.3 mi to 90% \n", " 16 mi to 90% \n", @@ -2422,7 +2434,7 @@ " 75 mi to 50% \n", " 1.9 mi to 50% \n", " 12 mi to 50% \n", - " 6.5 mi to 50% \n", + " 6.4 mi to 50% \n", " 35 mi to 50% \n", " 12 mi to 50% \n", " 8.5 mi to 50% \n", @@ -2433,9 +2445,9 @@ " 7.2 mi to 50% \n", " 0.4 mi to 50% \n", " 84 mi to 50% \n", + " 560 mi to 50% \n", " 32 mi to 50% \n", " 51 mi to 50% \n", - " 576 mi to 50% \n", " 4.6 mi to 50% \n", " 8.0 mi to 50% \n", " 3.4 mi to 50% \n", @@ -2814,63 +2826,63 @@ " \n", " \n", " 104\n", - " 4\n", + " 2\n", " 69\n", - " 6\n", + " 4\n", " \n", " \n", " \n", " 105\n", - " 10\n", + " 8\n", " 70\n", - " 18\n", + " 16\n", " \n", " \n", " \n", " 106\n", - " 14\n", + " 12\n", " 71\n", - " 28\n", + " 26\n", " \n", " \n", " \n", " 107\n", - " 22\n", + " 20\n", " 72\n", - " 31\n", + " 30\n", " \n", " \n", " \n", " 108\n", - " 26\n", + " 24\n", " 73\n", - " 36\n", + " 35\n", " \n", " \n", " \n", " 109\n", - " 32\n", + " 30\n", " 74\n", - " 39\n", + " 38\n", " \n", " \n", " \n", " 110\n", - " 40\n", + " 38\n", " 75\n", " 47\n", " \n", " \n", " \n", " 111\n", - " 48\n", + " 46\n", " 76\n", " 50\n", " \n", " \n", " \n", " 112\n", - " 59\n", + " 57\n", " 77\n", " 53\n", " \n", @@ -2880,15 +2892,15 @@ ], "text/plain": [ " kms kms gap miles miles gap\n", - " 104 4 69 6\n", - " 105 10 70 18\n", - " 106 14 71 28\n", - " 107 22 72 31\n", - " 108 26 73 36\n", - " 109 32 74 39\n", - " 110 40 75 47\n", - " 111 48 76 50\n", - " 112 59 77 53" + " 104 2 69 4\n", + " 105 8 70 16\n", + " 106 12 71 26\n", + " 107 20 72 30\n", + " 108 24 73 35\n", + " 109 30 74 38\n", + " 110 38 75 47\n", + " 111 46 76 50\n", + " 112 57 77 53" ] }, "execution_count": 9, @@ -2904,9 +2916,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "I need 4 rides of 104 kms or 6 rides of 69 miles to increase my Eddington numbers. Why so many? Apparently, I had a lot of rides that were about 103.5 kms, and a bunch of other rides that were about 68.5 miles.\n", + "I need 4 more rides of 69 miles to increase my Eddington number to 69. (I must have had multiple rides that were about 68.5 miles.) Also, I need just 2 rides of 104 kms.\n", "\n", - "I'm glad that my Eddington number (in miles) is greater than my age (in years), but I'm not sure how long I can keep that up. I might switch from tracking Eddington numbers to tracking my number of metric centuries:" + "I'm glad that my Eddington number (in miles) is greater than my age (in years), but I'm not sure how long I can keep that up. At some point I might switch from tracking Eddington numbers to tracking my number of metric centuries:" ] }, { @@ -2917,7 +2929,7 @@ { "data": { "text/plain": [ - "119" + "121" ] }, "execution_count": 10, @@ -2940,7 +2952,7 @@ " + *You would need 1 ride of 10 miles to improve from a number of 9 to 10.*\n", " + *You would then need 11 rides of 11 miles to improve from a number 10 to 11.*\n", "- Your metric Eddington number will always be greater than or equal to your imperial Eddington number.\n", - "- Your metric Eddington number will never be more than 1.609344 times your imperial Eddington number.\n", + "- Your metric Eddington number will never be more than 1.61 times your imperial Eddington number.\n", "- Of two riders, it is possible that one has a higher metric number and the other a higher imperial number.\n", "\n", "*Note:* the definition of Eddington Number seems precise, but what exactly does ***day*** mean? The New Oxford dictionary has three senses:\n", @@ -3012,7 +3024,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtUAAAGDCAYAAADkjOwcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAC0i0lEQVR4nOy9d5gcV5nv/zkdJuc8oyzZcpJtCcsBY+OAE17bYFhsg9PsEpbfZpa9u2b3XriwC6tdNsPuXUwaJ8CAscEgwBkHnGRbTpIsK43C5Dya0PH8/qiuUavV3dPddWrmlPt8nqcfaTq8db7fOlX19ulT5xVSSgwGg8FgMBgMBkPh+Ba7AQaDwWAwGAwGg9cxSbXBYDAYDAaDweAQk1QbDAaDwWAwGAwOMUm1wWAwGAwGg8HgEJNUGwwGg8FgMBgMDjFJtcFgMBgMBoPB4BCTVBsMHkUI8YQQ4hNZXj9ZCLGlwNjLhRCHhRD+XLalI0KIfUKISxZoW9cIIX6wENvSBSHEm0KICzO8dqEQ4uDCtig/hBBdQoi/d/D57wshPpj0998LIYaEEH1KGugRCj1XCCFKhRA7hBAt7rfSYFgYTFJtMOSJEOI8IcRvhRDjQogRIcQzQogzF7tdafg74J8L+aCUcr+UskpKGVPcpnckUsqfAeuEEKctdltUIIRYKYSQiWTpcOILym3J75FSniKlfMKl7W8UQvxcCDEqhBgTQmwTQnxZCFHvxvbyJbGfTwd+mvh7GfBZ4GQpZZvD2J1CiKedt3JhKPRcIaUMAd8B/tqdlhkMC49Jqg2GPBBC1AA/B74GNABLgC8CocVsVypCiHbgIuCBRW6K6wiLRTuXCSECif9+H/jUAm5vIaiTUlYBvwv8HyHEpW5vUAhxLvAE8AxwopSyDrgCiGIlsuk+s5CeAPwBcI88Uj1tBTAspRxY4HY4YrGPHeB7wK1CiNJFbIPBoAyTVBsM+bEWQEr5fSllTEo5I6V8SEr5GsyNMj0jhPhaYiR7hxDiffaHhRC1QohvCyF6hRCHEj8Z+5Ne/30hxPbECN2vhRArkl67NBFvXAjxdUBkaeelwMtSytmkz+8TQvwvIcRrQoipRDtahRC/FEJMCiEesUcCk0Yq0yYrmdqZuEj/mxBiINHO14QQ6zLEeEII8Q9CiBcS7/2pEKIh6fVzEr8IjAkhXk2eapD47JeFEM8A08DqDD6sT7RhXAhxrxCiLCnGJ4UQuxK/NvxMCNGRSbtI+kk7aR//mxBiBPi/ibc9AfxOBq23CSF+nPLcfwgh/jPx/4z9It32hBDHCSF+k9A1JIS4N8e2p/3cfEgptwBvAuuT4s5NrxFClAtrOsWoEGIbcNQvN0KIDiHEfUKIQSHEXiHEn2bZ3D8B35VS/oOUsj+x/f1Syi/YI+MZPFkjhHhMCDGc0HaPEKIuqQ0bhBAvJ/r6vUBZ8kaFEFcJIbYm+ttvRfZfHd4P/CbxuUuAh4EOYY3qdyWez9Z/0+5vIcRJwP8A707EGku3cbePHbEA5woAKeVBYBQ4J4vXBoN3kFKah3mYR44PoAYYBu7AurDWp7zeiTWi9hkgCFwPjAMNidcfAL4BVAItwAvAHyRe+yCwCzgJCAD/G/ht4rUmYAJrxDCYiB8FPpGhnV8F/ivluX3Ac0Ar1gj7APAysAEoBR4DvpB470pAAoHE30/Y25qnnZcDLwF1WEn/SUB7hjY+ARwC1iX8uA+4O/HakoTPV2J9+b808Xdz0mf3A6ck2hBME39fwt8OrF8VtgOfTrx2MTAEvCuh/WvAk+m0p9Fv7+M/SWy7PPF8Q+JzNWnasgIrgalJ/O0HeoFzcugXx2wPa1T8bxPelAHn5dj2tJ9L097U/X9Oov3Xpvh7SeL/m4CnEh4sA94ADiZe82H1ic8DJVhJ3B7g8jTbrQRiwIXzHIfpPDku0U9KgWbgSeDfE+8vAbo5clz+LhAB/j7x+ruwjoezE/vm1oS+0gxtlCT6YuK5C229Ofbf+fb30/PofwL3jx1XzxVJ2/oZ8KcLfS43D/Nw42FGqg2GPJBSTgDnYV1EvgkMCmuUszXpbQNYF/OIlPJe4C3gdxLveT/w51LKKWn9VPxvwA2Jz/0B8A9Syu1SyijwFayR1hVYF8htUsofSykjwL8D2W6IqgMm0zz/NSllv5TyEFYS9LyU8hVpzW+8H+uiOR/Z2hkBqoETAZF4T2+WWHdJKd+QUk4B/we4LjFCexOwWUq5WUoZl1I+DGxJ+GDTJaV8U0oZTXiSjv+UUvZIKUeABzky0noj8B0p5csJ7Z/DGh1cmYN+gB4p5dcS255JPGf7XZf6ZillN1ZS8sHEUxcD01LK53LoF+m2F8FK1DuklLNSylzn4Ob7uSEhxAzwLPDfZJ5OdB3wZSnliJTyAPCfSa+diZXQfUlKGZZS7sE6dm5IE6ceKxGc69tCiH9KjLhOCSH+d9J7j/JESrlLSvmwlDIkpRwE/hW4IPHec7CSafu4/DHwYlKsTwLfkFI+L61foO7AmtKVbgS1LvFvuuPLJmP/zXF/54Lbx47b5wqbSdIcMwaDFzFJtcGQJ4kLRKeUcinWSFEHVpJrc0hKKZP+7k68ZwXWhb03kSSMYY1W2Xe/rwD+I+m1EazR3iWJzx9IaoNM/jsNo1jJbSr9Sf+fSfN3VZaYNhnbKaV8DPg68F9AvxDidmHNQ89EsoZuLH+aEtv4iL2NxHbOA9ozfDYTyV88pjmiryOxPQCklIexRvOW5BAz07Ztv8cyfOZ7wEcT//9Y4m+Yv1+k295fYXn+grBW4fj9HNud7+easDz7S6zR2GCG9x3VP0nylkQSn7Iv/wZrFDSVUSBO0n6WUv6VtOZV34812mlzlCdCiBYhxA8S0ykmgLsT7bfbl+64TG7jZ1PauCzxuVTGEv+mO76S42Xqv7ns71xw+9hx9VyR9J5qMh8zBoOnMEm1weAAKeUOoAsrubZZIoRInu+8HOjBupCFgCYpZV3iUSOlPCXxvgNYPwHXJT3KpZS/xZoqsMwOmIi/jMy8RmL+twtkaydSyv+UUp6B9fPyWuB/ZYmVrGE51kjqUGIbd6Vso1JKuSnp/ckJUr70YF3wARBCVAKNWD+pTyWerkh6f+qKDum2fRKwL/FrRjp+BFwohFgKXMuRpHq+fnHM9qSUfVLKT0opO7BGA/9bCHHcfG3P8rmMJEZu/wWYBf4ww9uO6p9Y+9LmALA3ZV9WSymvJIXEqOvzwIeytcl+e8rf/5B47jQpZQ3WiK19HPaS/rhMbuOXU9pYIaX8foY27ib78ZWt/863v3Pt14t17ORD1nNFgpOAVxeoPQaDq5ik2mDIAyHEiUKIzyYSI3sprY9izT+0aQH+VAgRFEJ8BOuisVla0yAeAv5FCFEjhPAJ6+Yq+yfq/wE+J4Q4JRG7NvF5gF8ApwghPpS4IehPOTbRS+Zh4F0i6cY8hWRspxDiTCHE2UKIIFaCN4s1RzYTNwlrPe0K4EvAj6W1NNfdwNVCiMuFdQNXmbDWPl6qSMP3gN8TQqwX1soDX8H6eXtfYurAoUTb/InR3DU5xLwA+GWmFxNxnwC+i5Vkbk88P1+/OAYhxEeSvBjFSpJi87U90+dy0AbWvOm/ytCnfojVJ+oT8f8k6bUXgAkhxF8L64ZGvxBinci8DOVfAb8vrJs7WxLtXgqsmqd91cBhYEwIsYSjv8w9izUH+0+FEAEhxIeAs5Je/ybw6UTfFUKISiHE7wghMo1Gb+bI1JJ0ZOy/OezvfmCpEKJkHr2LdezkQ7ZzGon91MDR50+DwbOYpNpgyI9JrJuZnhdCTGFdDN7AWqPW5nngeKxRoy8DvyulHE68dgvWTVPbsJKaH5P4WVZKeT/wj8APEj9fv4E19xIp5RDwEazEZjgR/5lMjZTWqgmPAR9wrPjY2BnbiXUj5zcT2roTbc22VvZdWCP9fVg3zv1pYhsHEm3/G2AQa8Trf6HonCWlfBRrHup9WKOYazh6TusnE9sbxhpx/21qjDR8FOtn/Gx8D7iEI6PUNhn7RQbOxOqDh7Fu9PozKeXeHNqe7XPz8YtE2z6Z5rUvYu3vvVgJ4132C4lE72qs+ex7sY6LbwG16TYirXneFwPvBXYmpg38CusLydeytO+LWDccjifa+pOkmGGs0e/OhIbrU17fktD19cTruxLvzcTtwI0pI9/JGubrv9n292NYK630CSGGsrRhUY6dfJjnXAHWNKg7EvO0DQbPI46eYmYwGJwghOjEuvP9PA3acjLWKiVnSQ0PdCHEE1grFnxrsdviFCHE1cDNUsrrFrsthoVBCPE94IdSygcWYdtP4PFjJ/EL0avAe6XH1vc2GDKx0AvmGwyGBUJKecx6wQZ3kFI+iLW6iKFIkFJ+bLHb4GUSo9MnLnY7DAaVmOkfBoPBYDAYDAaDQ8z0D4PBYDAYDAaDwSFmpNpgMBgMBoPBYHCISaoNBoPBYDAYDAaHeOJGxaamJrly5UrHcWZmZigvL3feoCLGeKgG46NzjIfOMR46x3joHOOhc4yHarB9fOmll4aklM15B5BSav8444wzpApeeeUVJXGS6e/vL6p4xkM1qPZRd83GQz1jGg+do7uHbsQ0HuoXz1yb1WD7CGyRBeSrZvqHQ+rr64sqnhvortl4qF88N/CCZt19NB46xwuajYf6xXMD3TXr6KFJqh0yOTlZVPHcQHfNxkP94rmBFzTr7qPx0Dle0Gw81C+eG+iuWUcPXUuqhRDLhBCPCyG2CyHeFEL8WeL5rwohdgghXhNC3C+EqHOrDQuB6jlMusdzA901Gw/1i+cGXtCsu4/GQ+d4QbPxUL94bqC7Zh09dHOkOgp8Vkp5EnAO8EeJsskPA+uklKcBO4HPudgG14lEIkUVzw1012w81C+eG3hBs+4+Gg+d4wXNxkP94rmB7pp19NC1pFpK2SulfDnx/0lgO7BESvmQlDKaeNtzwFK32rAQCCGKKp4b6K7ZeKhfPDfwgmbdfTQeOscLmo2H+sVzA9016+jhglRUFEKsBJ7EGqGeSHr+QeBeKeXdaT7zKeBTAO3t7Wds3rzZcTuGh4dpbGx0HCeZaDRKIKBuZULd4xkP1aDaR901Gw/1jGk8dI7uHroR03ioXzxzbVaD7eOGDRteklJuzDtAIUuG5PMAqoCXgA+lPP+3wP0kEvtsD52X1BsdHS2qeMZDNaj2UXfNxkM9YxoPnaO7h27ENB7qF89cm9XgdEk9V4u/CCGCwH3APVLKnyQ9fytwFfC+ROM9S0VFRVHFcwPdNRsP9YvnBl7QrLuPxkPneEGz8VC/eG6gu2YdPXRz9Q8BfBvYLqX816TnrwD+GrhGSjnt1vYXiomJifnf9A6K5wa6azYe6hfPDbygWXcfjYfO8YJm46F+8dxAd806eujmSPV7gJuB14UQWxPP/Q3wn0Ap8HBikvlzUspPu9gOV2loaCiqeG6gu+Zi97CrqwuAzs5OJfF0xQv9RncfjYfO8YJm46F+8dxAd806eujm6h9PSymFlPI0KeX6xGOzlPI4KeWypOc8m1ADDAwMFFU8N9Bds/FQv3hu4AXNuvtoPHSOFzQbD/WL5wa6a9bRQ1fnVBcDbW1tRRXPDXTXXKwe2iPU3d3dgLMR62L1UDW6+2g8dI4XNBsP9YvnBrpr1tFDU6bcIT09PUUVzw1012w81C+eG3hBs+4+Gg+d4wXNxkP94rmB7pp19NCMVDuko6OjqOK5ge6ai9VDe0RaxZzqYvVQNbr7aDx0jhc0Gw/1i+cGumvW0UMzUu0Q3b956fhNLhXdNRsP9YvnBl7QrLuPxkPneEGz8VC/eG6gu2YdPTQj1Q7R/ZuXjt/kUtFdc7F76GSEOl08XfFCv9HdR+Ohc7yg2XioXzw30F2zjh5qPVIthLhaCHH7yMgI09PTTE5OMjExwczMDCMjI0QiEQYGBpBS0tvbCxz55tLb24uUkoGBASKRCCMjI0SjUSYmJpicnGR6epqxsTHC4TBDQ0PE43H6+vqOimH/29/fTzQaZXh4mNnZWcbHx5mammJqaoo9e/YwOzvL8PAw0WiU/v7+tDH6+vqIx+MMDQ0RDocZGxtLq+nQoUN5aZqZmcmqaceOHXlrGh8fV6ppvv3U19eXl6b59tOuXbuUatq/f7/jvpeqKRQKOe57yZp6enqU7qft27c77nvJmvr7+5X3PSml476XrGnXrl2O+16ypu7ubuXH065duxz3vWRNUkrHfS9ZU2q/cXqO6O/vd9z3UjX19PQoPe+FQiEl1ydb0759+5Rdn2xNu3btUnou7+vrU3J9sjVNT0877nvJmvr7+5Vdn2xNhw4dUnJ9sjXt2bNH6TU3HA4ruz7Zmnbu3Knk+mRrSr4OqDhH2OcbleeImZkZotEohSK8UNBw48aNcsuWLY7jbN26lfXr1ztvUBK617JXHc94qAbVPuqu2XioZ0zjoXN099CNmMZD/eKZa7MabB+FEC9JKTfm+3mtR6q9wPj4eFHFcwPdNRsP9YvnBl7QrLuPxkPneEGz8VC/eG6gu2YdPTRJtUMqKyuLKp4b6K7ZeKhfPDfwgmbdfTQeOscLmo2H+sVzA9016+ihSaodEgqFiiqeG+iu2XioXzw38IJm3X00HjrHC5qNh/rFcwPdNevooUmqHaJ6Po/u8dxAd83GQ/3iuYEXNOvuo/HQOV7QbDzUL54b6K5ZRw9NUm0wGAwGg8FgMDjEJNUOcbL0ihfjuYHumo2H+sVzAy9o1t1H46FzvKDZeKhfPDfQXbOOHpqk2iGlpaVFFc8NdNdsPNQvnht4QbPuPhoPneMFzcZD/eK5ge6adfTQJNUOmZqaKqp4bqC7ZuOhfvHcwAuadffReOgcL2g2HuoXzw1016yjh1on1V6oqAgorT5YUVGhtKLi7Oxs3poWuqJiTU2N0oqKsVhMqaZgMKh9RcXKykql+2lmZsZx30vWVFtbq31FxXg8rrSiYiAQUH48xeNxrSsqplbGc3qOqK2tVV5RsbKyUuuKin6/X3lFxVgspvRcXlNTo3VFxdraWuUVFSsqKpRWVAS0r6gYjUaVVlRMvg6oOEfY/UaniopIKbV/nHHGGVIFr7zyipI4yfT19RVVPOOhGlT7qLtm46GeMY2HztHdQzdiGg/1i2euzWqwfQS2yALyVa1Hqr1Aa2trUcVzA901Gw/1i+cGXtCsu4/GQ+d4QbPxUL94bqC7Zh09NEm1Q+yfDIolnhvortl4qF88N/CCZt19NB46xwuajYf6xXMD3TXr6KFJqh3S0dFRVPHcQHfNxkP94rmBFzTr7qPx0Dle0Gw81C+eG+iuWUcPTVLtEN2/een4TS4V3TUbD/WL5wZe0Ky7j8ZD53hBs/FQv3huoLtmHT00SbVDdP/mpeM3uVR012w81C+eG3hBs+4+Gg+d4wXNxkP94rmB7pp19NAk1Q6xl2UplnhuoLtm46F+8dzAC5p199F46BwvaDYe6hfPDXTXrKOHJql2SEtLS1HFcwPdNRsP9YvnBl7QrLuPxkPneEGz8VC/eG6gu2YdPTRJtUNGRkaKKp4b6K7ZeKhfPDfwgmbdfTQeOscLmo2H+sVzA9016+ih1kl1MVZULC8vL7qKitXV1aaiosOKVRUVFVpXVKypqSm6iop+v99UVHR4jrAr9znpe6maKioqtK6o6PP5tK+oWF1drXVFxZqaGuUVFcvLy4uuoqJ9XlR1jki+DrxTKyoKq3CM3mzcuFFu2bLFcZytW7eyfv165w1KYmxsjLq6uqKJZzxUg2ofdddsPNQzpvHQObp76EZM46F+8cy1WQ22j0KIl6SUG/P9vNYj1V6gpKSkqOK5ge6ajYf6xXMDL2jW3UfjoXO8oNl4qF88N9Bds44emqTaIbFYrKjiuYHumo2H+sVzAy9o1t1H46FzvKDZeKhfPDfQXbOOHpqk2iGqp8/oHs8NdNdsPNQvnht4QbPuPhoPneMFzcZD/eK5ge6adfTQJNUOCQaDRRXPDXTXbDzUL54beEGz7j4aD53jBc3GQ/3iuYHumnX00LWkWgixTAjxuBBiuxDiTSHEnyWebxBCPCyEeDvxb71bbVgI7FUSiiWeG+iu2XioXzw38IJm3X00HjrHC5qNh/rFcwPdNevooZsj1VHgs1LKk4BzgD8SQpwM3AY8KqU8Hng08bdnqa6uLqp4bqC7ZuOhfvHcwAuadffReOgcL2g2HuoXzw1016yjh64l1VLKXinly4n/TwLbgSXAB4A7Em+7A/igW21YCEZHR4sqnhvortl4qF88N/CCZt19NB46xwuajYf6xXMD3TXr6OGCzKkWQqwENgDPA61Syl6wEm9AvzqTedDc3FxU8dxAd83GQ/3iuYEXNOvuo/HQOV7QbDzUL54b6K5ZRw9dL/4ihKgCfgN8WUr5EyHEmJSyLun1USnlMfOqhRCfAj4F0N7efsbmzZsdt2V4eJjGxkbHcZKZnp6moqKiaOIZD9Wg2kfdNRsP9YxpPHSO7h66EdN4qF88c21Wg+3jhg0bCir+ElDamhSEEEHgPuAeKeVPEk/3CyHapZS9Qoh2YCDdZ6WUtwO3g1VRUUWlIDcqDhUbxkM1GB+dYzx0jvHQOcZD5xgPnWM8VINTH91c/UMA3wa2Syn/NemlnwG3Jv5/K/BTt9qwENj14oslnhvortl4qF88N/CCZt19NB46xwuajYf6xXMD3TXr6KGbI9XvAW4GXhdCbE089zfAJuCHQoiPA/uBj7jYBtfp6OgoqnhuoLtm46F+8dzAC5p199F46BwvaDYe6hfPDXTXrKOHbq7+8bSUUkgpT5NSrk88Nksph6WU75NSHp/4d8StNiwEvb29RRXPDXTXbDzUL54beEGz7j4aD53jBc3GQ/3iuYHumnX00FRUdEhbW1tRxXMD3TUbD/WL5wZe0Ky7j8ZD53hBs/FQv3huoLtmHT00SbVDBgcHiyqeG+iu2XioXzw38IJm3X00HjrHC5qNh/rFcwPdNevooUmqHVJfr7bKuu7x3EB3zcZD/eK5gRc06+6j8dA5XtBsPNQvnhvorllHD01S7ZDJycmiiucGums2HuoXzw28oFl3H42HzvGCZuOhfvHcQHfNOnpokmqHlJeXF1U8N9Bds/FQv3hu4AXNuvtoPHSOFzQbD/WL5wa6a9bRQ62TaiHE1UKI20dGRpienmZycpKJiQlmZmYYGRkhEokwMDCAlHLuLlB73cLe3l6klAwMDBCJRBgZGSEajTIxMcHk5CTT09OMjY0RDocZGhoiHo/T19d3VAz73/7+fqLRKMPDw8zOzjI+Ps7U1BRTU1OMjIwwOzvL8PAw0WiU/v7+tDH6+vqIx+MMDQ0RDocZGxtLq2lmZiYvTTMzM1k1pcbIRdP4+LhSTfPtp3A4nJem+fbT4OCgUk2Tk5OO+16qplAo5LjvJWuanZ1Vup9SYxTS95I1RSIR5X1PSum47yVrGhoactz3kjVNTEwoP56GhoYc971kTVJKx33PzXNEJBJx3PdSNSUfMyo0hUIhJdcnW9P4+Liy65OtaXBwUOl+CofDSq5Ptqbp6WmlfS8SiSi7Ptmakq/RKs4RIyMjSo+ncDis7PpkaxoYGFByfbI1JV8HVOcRqs4RMzMzRKNRCsX1MuUq2Lhxo9yyZYvjOG5UHJqcnKS6urpo4hkP1aDaR901Gw/1jGk8dI7uHroR03ioXzxzbVaD7aMQoqAy5VqPVHsBv99fVPHcQHfNxkP94rmBFzTr7qPx0Dle0Gw81C+eG+iuWUcPTVLtkHA4XFTx3EB3zcZD/eK5gRc06+6j8dA5XtBsPNQvnhvorllHD01S7ZCKioqiiucGums2HuoXzw28oFl3H42HzvGCZuOhfvHcQHfNOnpokmqHTExMFFU8N9Bds/FQv3hu4AXNuvtoPHSOFzQbD/WL5wa6a9bRQ5NUO6ShoaGo4rmB7pqNh/rFcwMvaNbdR+Ohc7yg2XioXzw30F2zjh6apNohAwMDRRXPDXTXbDzUL54beEGz7j4aD53jBc3GQ/3iuYHumnX00CTVDmlrayuqeG6gu2bjoX7x3MALmnX30XjoHC9oNh7qF88NdNeso4cmqXaIvWB4scRzA901Gw/1i+cGXtCsu4/GQ+d4QbPxUL94bqC7Zh091Dqp9kJFxcrKSqWVxZqbm5VWDfL5fHlrWuiKiu3t7UorKpaWlirVVFdXp31FxZaWFqX7SQjhuO8la+ro6NC+omJZWZnSioq1tbXKj6eysjKtKyraqDpHdHR0KK+o2NLSonVFxerqauUVFUtLS5Wey9vb27WuqNjR0aG8Ul9zc7PSioqVlZXaV1QsKSlRWlEx+Tqg4hxho1NFRaSU2j/OOOMMqYJXXnlFSZxkDh06VFTxjIdqUO2j7pqNh3rGNB46R3cP3YhpPNQvnrk2q8H2EdgiC8hXtR6p9gIdHR1FFc8NdNdsPNQvnht4QbPuPhoPneMFzcZD/eK5ge6adfTQJNUOSf3Z850ezw1012w81C+eG3hBs+4+Gg+d4wXNxkP94rmB7pp19NAk1Q5pbGwsqnhuoLtm46F+8dzAC5p199F46BwvaDYe6hfPDXTXrKOHJql2yPj4eFHFcwPdNRsP9YvnBl7QrLuPxkPneEGz8VC/eG6gu2YdPTRJtUMqKyuLKp4b6K7ZeKhfPDfwgmbdfTQeOscLmo2H+sVzA9016+ihSaodEgqFiiqeG+iu2XioXzw38IJm3X00HjrHC5qNh/rFcwPdNevooUmqHRIIBIoqnhvortl4qF88N/CCZt19NB46xwuajYf6xXMD3TXr6KFJqg0Gg8FgMBgMBodonVR7oaLi6Oio0uqDs7OzSisqqqyW5lZFRft1XTUdPnxY+4qKoVDI9f3kpO9Fo1HtKyqq7nuTk5OLcjzlo0kqrqiY2h6nmqLRqPL9FAqFtK6oODExocV5L5umSCSidUXFaDSq/HianZ1Veo4YHR3VvqLi4OCg0r6XfB1QcY5I/lfVOcJpRUVhFY7Rm40bN8otW7Y4jrN161bWr1/vvEFJzM7OUlZWVjTxjIdqUO2j7pqNh3rGNB46R3cP3YhpPNQvnrk2q8H2UQjxkpRyY76f13qk2gtMTU0VVTw30F2z8VC/eG7gBc26+2g8dI4XNBsP9YvnBrpr1tFDk1Q7pLa2tqjiuYHumo2H+sVzAy9o1t1H46FzvKDZeKhfPDfQXbOOHpqk2iHDw8NFFc8NdNdsPNQvnht4QbPuPhoPneMFzcZD/eK5ge6adfTQJNUOaW1tLap4bqC7ZuOhfvHcwAuadffReOgcL2g2HuoXzw1016yjhyapdoh9x2ixxHMD3TUbD/WL5wZe0Ky7j8ZD53hBs/FQv3huoLtmHT10LakWQnxHCDEghHgj6bn1QojnhBBbhRBbhBBnubX9haKjo6Oo4rmB7pqNh/rFcwMvaNbdR+Ohc7yg2XioXzw30F2zjh66OVLdBVyR8tw/AV+UUq4HPp/429Po/s1Lx29yqeiu2XioXzw38IJm3X00HjrHC5qNh/rFcwPdNevooWtJtZTySWAk9WmgJvH/WkA/R/JE929eOn6TS0V3zcZD/eK5gRc06+6j8dA5XtBsPNQvnhvorllHD10t/iKEWAn8XEq5LvH3ScCvAYGV0J8rpezO8NlPAZ8CaG9vP2Pz5s2O2zM8PExjY6PjOMnMzMxQXl5eNPGMh2pQ7aPumo2HesY0HjpHdw/diGk81C+euTarwfZxw4YNBRV/CShtzfz8f8BnpJT3CSGuA74NXJLujVLK24HbwaqoqKJSkBsVh+LxOD6fugF/3eMZD9Wg2kfdNRsP9YxpPHSO7h66EdN4qF88c21Wg1MfF3r1j1uBnyT+/yPA8zcqjoykznB5Z8dzA901Gw/1i+cGXtCsu4/GQ+d4QbPxUL94bqC7Zh09XOikuge4IPH/i4G3F3j7yqmpqZn/Te+geG6gu2bjoX7x3MALmnX30XjoHC9oNh7qF88NdNeso4duLqn3feBZ4AQhxEEhxMeBTwL/IoR4FfgKiTnTXmZ6erqo4rmB7pqNh/rFcwMvaNbdR+Ohc7yg2XioXzw30F2zjh66NqdaSvnRDC+d4dY2F4OSkpKiiucGums2HuoXzw28oFl3H42HzvGCZuOhfvHcQHfNOnpoKio6JBaLFVU8N9Bds/FQv3hu4AXNuvtoPHSOFzQbD/WL5wa6a9bRQ5NUO0T1koS6x3MD3TUbD/WL5wZe0Ky7j8ZD53hBs/FQv3huoLtmHT00SbVDgsFgUcVzA901Gw/1i+cGXtCsu4/GQ+d4QbPxUL94bqC7Zh09NEm1Q2ZmZooqnhvortl4qF88N/CCZt19NB46xwuajYf6xXMD3TXr6KFJqh1SXV1dVPHcQHfNxkP94rmBFzTr7qPx0Dle0Gw81C+eG+iuWUcPtU6qhRBXCyFuHxkZYXp6msnJSSYmJpiZmWFkZIRIJMLAwABSSnp7ewHo6ekBoLe3FyklAwMDRCIRRkZGiEajTExMMDk5yfT0NGNjY4TDYYaGhojH4/T19R0Vw/63v7+faDTK8PAws7OzjI+PMzU1xdTUFAcPHmR2dpbh4WGi0Sj9/f1pY/T19RGPxxkaGiIcDjM2NpZW0+DgYF6aZmZmsmras2dP3prGx8eVappvP42MjOSlab791N3drVRTX1+f476XqikUCjnue8mahoaGlO6n3bt3O+57yZpGR0eV9z0ppeO+l6xp//79jvtesqbe3l7lx9P+/fsd971kTVJKx30vWdOuXbuUniNGR0cd971UTUNDQ0rPe6FQSMn1ydbU09Oj7Ppka+ru7lZ6Lh8ZGVFyfbI12UujqTpHjI6OKrs+2ZoGBweVXJ9sTQcPHlR6zQ2Hw8quT7amffv2Kbk+2ZqSrwMqzhH2+UblOWJmZoZoNEqhCB0neqeyceNGuWXLFsdx3CjjKaVECFE08YyHalDto+6ajYd6xjQeOkd3D92IaTzUL565NqvB9lEI8ZKUcmO+n9d6pNoL2N92iiWeG+iu2XioXzw38IJm3X00HjrHC5qNh/rFcwPdNevooUmqHdLe3l5U8dxAd83GQ/3iuYEXNOvuo/HQOV7QbDzUL54b6K5ZRw9NUu0Qex5OscRzA901Gw/1i+cGXtCsu4/GQ+d4QbPxUL94bqC7Zh09NEm1Qzo6Oooqnhvortl4qF88N/CCZt19NB46xwuajYf6xXMD3TXr6KFJqh1i34VaLPHcQHfNxkP94rmBFzTr7qPx0Dle0Gw81C+eG+iuWUcPTVLtkLa2tqKK5wa6azYe6hfPDbygWXcfjYfO8YJm46F+8dxAd806emiSaocMDg4WVTw30F2z8VC/eG7gBc26+2g8dI4XNBsP9YvnBrpr1tFDk1Q7pL6+vqjiuYHumo2H+sVzAy9o1t1H46FzvKDZeKhfPDfQXbOOHmqdVHuhomJvb6/S6oOjo6NKKyru27cvb00LXVFxYmJCaUVFu8qlKk2Dg4PaV1QcGxtTup/27t3ruO8la5qcnNS+ouKhQ4eUVlQcGBhQfjwdOnRI64qKqf3G6TlicnJSeUXFsbExrSsq9vf3K6+oePDgQaXn8omJCa0rKk5OTiqvqDg6Oqq0oqJdcVXniooHDhxQWlEx+Tqg4hxhn29MRcU80bmi4szMDOXl5UUTz3ioBtU+6q7ZeKhnTOOhc3T30I2YxkP94plrsxpMRcVFJhKJFFU8N9Bdc3K8rq4uurq6lMZXgZc81BUvaNbdR+Ohc7yg2XioXzw30F2zjh6apNohquvO6x7PDXTXbDzUL54beEGz7j4aD53jBc3GQ/3iuYHumnX0MLDYDfA6fr+/qOK5ge6a/X7/3Oh0d3c3wNzfnZ2dSrdVKF7wUHe8oFl3H42HzvGCZuOhfvHcQHfNOnpoRqodEg6HiyqeG+iu2XioXzw38IJm3X00HjrHC5qNh/rFcwPdNevooRmpdkhFRUVRxXMD3TVXVFTMjUjrNkJt4wUPdccLmnX30XjoHC9oNh7qF88NdNeso4dmpNohExMTRRXPDXTXbDzUL54beEGz7j4aD53jBc3GQ/3iuYHumnX00IxUO6ShoaGo4rmB7pqT4+k2Qm3jJQ91xQuadffReOgcL2g2HuoXzw1016yjh2ak2iEDAwNFFc8NdNdsPNQvnht4QbPuPhoPneMFzcZD/eK5ge6adfRQ66TaCxUVy8vLlVYfbGxsVFpR0Ubnioqtra1KKyoGg0GlmmpqarSvqNjU1KR0P9lFoVRVVGxra9O+omJJSYnSiorV1dXKj6eSkhKtKyra5xxV54i2tjblFRWbmpq0rqhYWVmpvKJiMBhUei5vbW3VuqJiW1ub8oqKjY2NSisqlpeXa19RMRAIKK2omHwdUHGOsM83OlVUnLuA6vw444wzpApeeeUVJXGSOXToUFHFMx6qQbWPums2HuoZ03joHN09dCOm8VC/eObarAbbR2CLLCBf1Xqk2gt0dHQUVTw30F2z8VC/eG7gBc26+2g8dI4XNBsP9YvnBrpr1tFDk1Q7xP7JoFjiuYHumo2H+sVzAy9o1t1H46FzvKDZeKhfPDfQXbOOHpqk2iG6f/PS8ZtcKslt7OrqmlsLWkU8FXjNw2KI5wZe0Ky7j8ZD53hBs/FQv3huoLtmHT00SbVD7BsKiiWeG+iuudg87Orq4u6771YWD4rPQzfiuRVTJcZD53hBs/FQv3huoLtmHT0061Q7pLGxsajiuUFjY+Pc6HR3dzfgrHKh1z0sRLvqNjq6+zkNXumHOsdzK6ZKjIfO8YJm46F+8dxAd806eujaSLUQ4jtCiAEhxBspz/+JEOItIcSbQoh/cmv7C8X4+HhRxcuXXKZz6K55sT3MBRVttPdVd3c3Q0NDSqbi2BSLh27GcyumSoyHzvGCZuOhfvHcQHfNOnro5kh1F/B14E77CSHERcAHgNOklCEhRIuL218QKisriyqeG1RWVs6NyjoZoU6Op5KF8tDJaL3qNoZCIaXxvNIPdY7nVkyVGA+d4wXNxkP94rmB7pp19NC1pFpK+aQQYmXK0/8fsElKGUq8R79yOHkSCoUoKyvzZDwVCWwm8kkQveyhLqhoY/IXG7/fz80336ygZRbF4qGb8dyKqRLjoXO8oNl4qF88N9Bds44eCpmonOZKcCup/rmUcl3i763AT4ErgFngL6WUL2b47KeATwG0t7efsXnzZsftGR4edmXuaSCg7rvJQsbbuXMnAGvXrs05Xq4e2rEnJycBqK6uzrgtL3tYKNl8LGS/5NPG+eIXsv35WGgPC8EL/UZ1TOOhc3T30I2YxkP94pn8Rg22jxs2bHhJSrkx388v9I2KAaAeOAc4E/ihEGK1TJPZSylvB24H2Lhxo1y/fr3jjW/duhUVcZKZmppS+hPEQsRLHUW2S8TmMmKdq4f2e+xtXXfddWnf19XVhc/n45Zbbpk3Zq7ovk8gu49bt24FyKuv5tPG+eKvX7/e8x4Wghc0q45pPHSO7h66EdN4qF88k9+owamPC51UHwR+kkiiXxBCxIEmYHCB26EM1ask6B7PDYQQSuN53cP5vtykm0qTSxvzmZLjdQ8LwQuadffReOgcL2g2HuoXzw1016yjhwudVD8AXAw8IYRYC5QAQwvcBqWUlpZ6Lp7KmwLnI1Ps5AQvEAgobYvu+8QNktuowsti91DHeG7FVInx0Dle0Gw81C+eG+iuWUcPXUuqhRDfBy4EmoQQB4EvAN8BvpNYZi8M3Jpu6oeXmJqaUjpRXvd4bqD6wMimuZCEMx8PF+vmz1zamM+XqWLsh17QrLuPxkPneEGz8VC/eG6gu2YdPXRz9Y+PZnjpJre2uRjU1tZ6Np6bI9Tz4eZoeT4e5rJ91fvEDWpra5UW0NG9X7uBFzTr7qPx0Dle0Gw81C+eG+iuWUcPTUVFhwwPD9Pa2lo08dzAjbt3bc2pxUtSE85842VCZUKbiWxfRIaHh/OOk41i7Ide0Ky7j8ZD53hBs/FQv3huoLtmHT00SbVDVO9Q3eOpxo3R8lw09/X1AUeKnGRLgnX3EKw2qhz9L7Z+CN7QrLuPxkPneEGz8VC/eG6gu2YdPXStTHmx0NPTU1Tx8iWXUtduaE4uuW2PHgOsWLGCFStW0NbWRltbW87x5qOzs5POzs65+Pbf6ejq6ppbC7oQ0sXOx8PF2ie64wXNuvtoPHSOFzQbD/WL5wa6a9bRQzNS7ZCOjo6iiucGi6E5n1Hd5HgLsWJKISS3UUXbTD/UL55bMVViPHSOFzQbD/WL5wa6a9bRQ61HqoUQVwshbh8ZGWF6eprJyUkmJiaYmZlhZGSESCTCwMAAUkp6e3uBI99cent7kVIyMDBAJBJhZGSEaDTKxMQEk5OTTE9PMzY2RjgcZmhoiHg8PjclwI5h/9vf3080GmV4eJjZ2VnGx8eZmppiamqKXbt2MTs7y/DwMNFolP7+/rQx+vr6iMfjDA0NEQ6HGRsbS6tp//79eWmamZnJqmnbtm15axofH3es6c477+SOO+5gcHCQAwcOcPfdd9PV1ZVW06FDh/LSNN9+euutt7jhhhu49tprWbVqFatWreLaa6/lhhtu4Oqrr+amm26a0xQMBufVtHfv3rn9JITA7/dn7HudnZ1cfvnlaffTnXfeyZ133klPTw/T09Pccccd3H333QX3veT9dODAgXn30913380dd9zBwMAAPT09c+1Jdzy9+eabjvtesib7obLvSSnnPZ7yOUfs3LnTcd9L1rRnzx5lx5OtaefOnXmf97JpklI67nvJmt544428NWXbTz09PY77XqqmAwcOKD3vhUIhJdcnW9Pu3buVXZ9sTW+99ZaS65Ot6dChQ0quT7YmuwCZqnNET0+P476Xqmn//v1Krk+2pl27dim95obDYcd9L1XTjh07lFyfbE3J1wEV5wj7fKPyHDEzM+No/WtXy5SrYuPGjXLLli2O47hRcajYyNXD1Bv3VqxYASz8CK+qkWUVepJjLF26FL/fr6RthWwfFm+fqMIcz84xHjrHeOgc46FzjIdqsH0UQhRUplzrkWovYH/bKZZ4uZLPHOPkNuYy33c+kuNl224h8ZyQ7El1dbWSttnk0sZC98lCtW+x8YJm3X00HjrHC5qNh/rFcwPdNevooZlT7ZCWlpaiiucGKtvoxpznlpaWBa1CWQi695ti64duxHMrpkqMh87xgmbjoX7x3EB3zTp6aEaqHTIyMlJU8fIll9HYkZGRY1brcDJirXrd62weprYzl3Z3dnaydu1aRa2zyGc/57pPVLLY/TAXnLQx3X53Q7PuPnqh3xSbh27ENB7qF88NdNeso4dmpNohNTU1RRVPNV1dXQghlMQBa76w3+9XOqKc7KGKeF1dXVRUVMzNf1PRVt37je79ELyhWXcfjYfO8YJm46F+8dxAd806emiSaodMT09TUlJSNPHcwOfzcfPNNwNqEkzVetN5mHrT36ZNm4Dcism4wUL2m0K0eaEfFtLGbJU03dCsu49eOH8Vm4duxDQe6hfPDXTXrKOHJql2iOodqns8VSQnI8FgcO7vQm88SJ7z7PP5uOWWWxS00kKVh6mrf2RKxG3ySVp17zdO4y3ElxTdNC9UTJUYD53jBc3GQ/3iuYHumnX00CTVDonFYkUVzw18viNT+3OtcriQpPMw042Li3UjY3IbVbQhneZso7KFxNONQtqYbb+7oVl3H71w/io2D92IaTzUL54b6K5ZRw9NUp0jmRII1et86x5PFakjy/F4HJg/YZsvkevs7GRiYkJpW1V5mKy5oqKCj3/843N/J1NI0qp7vyk0npNEPl900bzQMVViPHSOFzQbD/WL5wa6a9bRQ61X/9CpoiKA3+8/pmrQzMyM0oqKgNKKimNjYxk1zVcJ6a677qKrq0tZFa50moLBIFLKuRU7KioqCAaD+Hw+fD7fMZrsz2TS1NXVxc9+9jOlVSKj0WhGTbfeeiuXX375XIzUiopdXV3cddddR+0nn8+HECKtJvvf2tpawFrJJJeKVUKIuaqVY2NjdHd3c88999DV1VXQfhodHT2m7916661ceeWVrFixgtWrV3P99dfzoQ99KKfjKRgMFlSFy+4Xth+2P25UVLSP50LOEe9///u56aabjtJkx1RZUXFqakrrior2OUzVOSIYDCqvqCiE0LqiYjgcVl5R8fDhw0orKgYCAa0rKgaDQeUVFe3+raqion0861xRcXJyUmlFxeTrgIpzhH2+MRUV82QxKyrOV4VuZGSEhoYGx22z0SleulFBN6o2JbdxvhHq+aoBdnV14ff75258VN2+fMmkJ5uPhYzGjoyM8LOf/QxQUzExm+ZC2+ekXy9EX9Tp2FuomMZD5+juoRsxjYf6xXP72lwM8cB5RUUz/cMh1dXV77h4C/mTO6jRnNxmn8+ntM1e8VDlvO5smguJq7pfu4EOx95ixFSJ8dA5XtBsPNQvnhvorllHD01SPQ/zJSqjo6NKq/roHs8NktuYba405JYwVlRUKGxdfh4WWrAmmUKS1kLamG07uvXDhbjxUzfNCxVTJcZD53hBs/FQv3huoLtmHT00SbVDmpub33Hx3FzJIl1MFZrteJs2bSISiShtsxMP7WXznLQnl/2Q3EYV2nXohwuNFzTr7qPx0Dle0Gw81C+eG+iuWUcPc06qhRDnAiuTPyOlvNOFNmlJpkSlr6+P9vZ2ZdvRPV6+5JIQZmtj6udzSRirqqryaOH85OJhpukebpDOUydtTOfpO60f5oIXNOvuo/HQOV7QbDzUL54b6K5ZRw9zSqqFEHcBa4CtgL0woASKJqnOhOodqlM8N0ao0yV02dq4f//+vOKHQiFCoZDSUfbk9uUa176zOJcKi7nenJmtQI5O/WYh4rmBFzTr7qPx0Dle0Gw81C+eG+iuWUcPcx2p3gicLL2wVMgC09PTQ0dHR9HEy5XUhLC0tDTje9O10f683eXySZLt5dfy/Vw6urq6CAaD3HjjjUDmio+pU2ZsbP0qyJao57Kf85nW807ph/ngBc26+2g8dI4XNBsP9YvnBrpr1tHDXJPqN4A2oNfFtngS1TtU93iFklopMTmhS9fG1BHq+UasMyWMqUluIUl2JBI5aiQ8Wxw78b3tttvm3d58U0ZS52WnkpzgJ3uoYpT+ndoPs+EFzbr7aDx0jhc0Gw/1i+cGumvW0cOsSbUQ4kGsaR7VwDYhxAtAyH5dSnmNu83Tn97eXqU/QSTHU5EcqW5fMtnalynJTZcgpmtjSUkJcCSJtf/OhWAw6HiOc/Lna2trj6nSmGnEOvXLQ6b3FYId29aUvK189nMu/clL/VAVbh7LOsdUifHQOV7QbDzUL54b6K5ZRw/nq6j4z8C/AP8X+CDwlcTf9sNVdKqomKlqUHl5udKKio2NjXOaUisHpmq66667uOOOO7JqslFRLe2ee+5h586dR1VDBLJq8vv9wJEqkcuWLaOtre0oTa2trcdUQvrDP/xD/uiP/oiSkhIqKir4i7/4Cz7xiU/Mu59uuukmLr/8coQQ+P1+SkpKKCkpYXR0lMHBQYaGhjhw4MBc9cFM+ykQCCCEoLy8nOnpaaqqqqiuriYYDFJRUUFbWxtLly6d63tdXV3cc889dHd3MzY2RldXF3fffTdtbW0sWbLkmOpOoVAIIcTcdmpqaujr62NqamouxqZNm/ja175GJBIhEAjQ09PDwMDAMZqGh4dpamrKuaLiXXfdxZ133pn1eLKn3aRWvsylYpXdjuT9lLzPnVZLs/eT6oqKpaWlyqqljY+PU11drbyiYmlpqdYVFe1zjqqKim1tbcorKjY1NWldUbGqqkp5RcVgMKi0omJra6vWFRXb2tqUV1RsbGxUWlGxvLxc+4qKgUBAaUXF5OuAinOEfb7xZEVFIUQbcBbWyPWLUkp1Q3DzsJgVFedjYGBA6frAAwMDbN68GZi/Mp496mtPNXDavvno6uqioqJi7gSYS+W+THOMkz+TrY25aEwlOV4u209H8kh1VVUVjY2NwLHTO9K9H47MIbdH2pO3t2nTpqNGmTN9JvXvVIQQAHz+85/Pq9+o7oeppIuvsh/aqD6eVbfRDc2qYxoPnaO7h27ENB7qF2+x85t3QjxYoIqKQohPAJ8HHgME8DUhxJeklN/Jd4PvNOrr6xcsXmqCmMvKEiral5wwLl26lMHBQccxk8nWxnyS6WzxnKy9PT09PZdUp07vyBTfJtuNivNNkUmdl50ac/ny5Wk/n+9qIqr6Tbb4qo8TN1jIY1mnmCoxHjrHC5qNh/rFcwPdNevoYa43Kv4vYIOUchhACNEI/BYo+qR6cnJy3trz+SQzk5OT8950lzpP1/47Xdxc2ucGqZrtUc50o535tDGXpNiJ5nSe+/1+br755rzak24fbtq0iU2bNhEKhYjFYsfML890M2Tq6PiXvvSltG1USbZ+WGi8xeiH+aC6jW5o1t1H46FzvKDZeKhfPDfQXbOOHuaaVB8EJpP+ngQOqG+O9ygvL3ctXmqybCeo9s/++cYrlOTkqqKiYi6BK2S5uHQ37i2Ehzb5JoZ9fX0EArkXHi0k8cw0+p3p9dQR6u7u7qNuzszUhnyS5EL2Sbb4qvexG7jZD3WOqRLjoXO8oNl4qF88N9Bds44e5potHAKeF0L8NPH3NcALQoi/AJBS/qsbjfMCkUhk3h2bTzKTHC9TspU6D94e2Uw3Ep6tffO1J59R2FRyXeIOcvMwn9H+SCTCvffeC+Q2RSZb/La2Nny+Y+/nzbU9yX/bI82bNm3C7/cfs5pH6mi+TaZtJHupeqQ6eZ84GaFOF88NVIymq26jG5rd9tEpxkPneEGz8VC/eG6gu2YdPcw1qd6deNjZ3E85stReUZNt1LiQC70QYt6pE6lFQOw2pLvpNJ9R7fno7Oxk69atBX02WxKqso1gac40RSZXkj0uLS1VkrSpJnkOdjAYzLltubzPyT5JF1/1PnYDN/qhanT30XjoHC9oNh7qF88NdNeso4e5JtWbgb8BViZ9RkopT8v0ASHEd4CrgAEp5bqU1/4S+CrQLKUcyrfROpHPCGEuqzDkEi91bq09HSDddIzkeJlueMs0AprPKGym92UboU7XxkzkM9qfbhR4vikW2W40TF6aMPX99rzofJLt22677ag7teeLkcuNiOna6ATVI9+q49nk8wvGfHhBs1s+qsJ46BwvaDYe6hfPDXTXrKOHuSbVdwN/iVVZMderdxfwdeDO5CeFEMuAS4HsJfI8QjgcpqKi4qjnCr3Q2zec5Zqw2QVRso3KpmvfYpAtIUxuYyFL6KUSDocdJb2p7c12o6IKwuFw1tczjbIn39jo8/mUjqar7je69MNseEGz7j4aD53jBc3GQ/3iuYHumnX0MNekelBK+WA+gaWUTwohVqZ56d+Av8KaQuIZMiUshezQTEk3WCOOmVaByJQsZRqV7erqQggxNy0kl5U4CsHpaGE+HuYSMznefCPU88Xv6+tL+204332UjL1OtT2Vxt4/mWIk7084dl1rmD8xzxfVJyq3Tnz5/IIxH17QrNsFJBXjoXO8oNl4qF88N9Bds44e5ppUf0EI8S3gUY4uU/6TfDYmhLgGOCSlfFXHuTCFMDExQVNT01HP5XuhT56/W1VVRSQSSfu++aZhpI7Kbtq0iYqKCmpqauYXkqY9mf52QjovJiYm+Na3vgUcSVKdjFgn7xOnXxja2tqOWv0j2zSWfJnP52xJtN02m0AgwE033ZTTdnPpl+n6tRNUx3MDL2jW3UfjoXO8oNl4qF88N9Bds44e5lRRUQhxN3Ai8CZHpn9IKeXvz/O5lcDPpZTrhBAVwOPAZVLKcSHEPmBjpjnVQohPAZ8CaG9vP8Ou7uaE4eHhuSIeubJz507AWg8RoLraujdz7dq1gDXKmOkLgv1Z+72ZXreZnJxECEFVVdVRz9uft99vVzSMxWLAsfOK7G9vqfHsz81XdSmTZrCSt9WrV6fVN5/eTEgpefXVV9NqKqRCVLZ9kivJHuSyT3LRbI9Mx2IxKisr5/aHfQym9q1s+6HQNuT6fhUeuhkPCjues+EFzapjGg+do7uHbsQ0HuoXT7WHoL9mN68rGzZscK+iInC6lPLUfIOnsAZYBdij1EuBl4UQZ6UreS6lvB24Hawy5SrKb+ZTxtMeKbVHAw8ePAgcmTJhx+nr68s4xWC+bdlJVvLIdjAY5Lrrrpv7O/l9qetU28mYPYJpt2PPnj2ANepbU1PDwMAAcGSKQK43xNkefPzjH597vaKiYk6X3S7771/96lcAc+3Plb6+PjZs2HDUNlOrCeYz4pxtn+SKre3gwYNHeWiPpNsJsU0u/cr2JxQKpa1MafucGjPdfkh+ff369UdpzuRZ6si3rSGdt048TLf9XNqXL6rL8qroN27GcyOm8dA5unvoRkzjoX7x3ChTrrtmN/azUx9zTaqfE0KcLKXcVuiGpJSvA3NF2ucbqdaF+aZyONmh6ZKK5KkfmVaksFf7sKcLpM6pTp4mMDExMff3fHN3U0k3l3fp0qVzSV7qfOJcvJhvJQsVc4NVH2TJHqaS76ofAF/84heP+jvTlJJ85m2r1qx7PDfwgmbdfTQeOscLmo2H+sVzA9016+hhrkn1ecCtQoi9WHOqBfMvqfd94EKgSQhxEPiClPLbDtvrOqkJY+qIdTL2yPKNN96YU+z5ktnOzk56enrSPp/u86llrm2SE9Pa2lrGx8ePej21UqNNuhsncyF13ex8RyKDweDc/9NVC8w3Zk9PDx0dHTltO5V02mtra6mrqzvquUJGWVP3l4qVTmx6enp46KGHgMye5TrXP99+nfy5TNufr30qVy4pFCf9ZiHiuRVTJcZD53hBs/FQv3huoLtmHT3MNam+It/AUsqPzvP6ynxjLiaZLvbJI8sqEoNsHST1RrbUZMzefnKSOz4+fsx0EfsLQupIdyaSk7FCy5SnJlyZvrzYf2caGc7FYycHme1JpuknKm9UzMR8o/npUH1iyXSzbKHoduJLh+o2uqFZdx+Nh87xgmbjoX7x3EB3zTp6mFNSLaXMPXvyOLkUDUlOEGtra+dNtLItoQdHJ0vZvnnl+lNHcnGY2tpa/uzP/gw4dqTUTmAzrUKROvLsFrW1tczOzh71XKrWXJNap6Os6TQnj6Q7+cKUvF+EEAWPUKcb4e7p6ck5CZ9vTn1qv840NzvTKjTpvhQkV3xMHaHu6upSUrzFKV4YRdFxZCYZ46FzvKDZeKhfPDfQXbOOHuY6Um3IwPj4+FxCmO/0h3RL1aXrILkm5anbk1IyNjY293fqCLWN3W6bTPOaOxNlylNLlYdCIfwySgVhyggR3tdHKWHY3gSRaYhM03mC9e+ro68TkGF8MoZfxpieHcc/FqO6ohS/jDEjpxFIjvevBhmnp6cHgaRn09cBwXmzISSCA//4DSQ+lq9cBf4S8JeCP8jZw3uICT88uhuC5RCsSPq3AkoqoLQGSquPPEqqMn6xUDE1I1cKnfLiRiI6Pj5+zJQXJ6ge+XYDL4yi6HYBScV46BwvaDYe6hfPDXTXrKOHJqlOwU5Mbv9OF9MxHxdf/btE4nF29k8SjUliccnpF3+AWFyyb/Mv8fn8TMViSAn90wNIBLOTJUjg12/2IaXkzQmr8uFgtB6AA/tnAIhErKXv/vI/vw/AhRdewEQimRHAE088jgAEJQgBg7EaBBCdCuIDhAAfkpf3jxLwCfw+QcDn48GfPoBPSA7HS6iuquC/vnUHfgE+AX4BUlqftUmdHrJ82TKCcpaxA29RxRS3blwHhwfg0S+x9MBO6gb2UxabQshRKpilnFkCxI41894fH/PUqQhiooSYCBATAcJIpC9IZFoQx0clAong0J4dSARLly4DIejv70cQp4wQAklpLIYgDsNxiIY4PD6KjygrYmECxIk/9SS+nIt/wmdFKSFfBYdlgBnKEL4Gwr4KeHiayXgZ1a0roaIJKhsT/zZDSUVO85Pt1+3/SymRUuadDGeb75+8lnauI8upJI8kp1v3OtekP3VEuru7m+rq6rTvz2eKi9v09/fT2tqqbTy3YqrEeOgcL2g2HuoXzw1016yjhyapzsC2yVIe6K3h37/6eJZ31aX/+5D1zw/ueinxfO3R/6YO2iXuTfzx915JeaE2/d8Hjn72O//925T3NST+bbRuKx0++tVKqljhG2AJgywRQ7SLEdrFMG1ihDYxQvO+ccpE0mj1j38IQAw/Jb4qArKScVHJWLyNw1Qgy+sJ+8oZnYoQopQLLvsdAhU1lFTUUVpRTXllNWXlVYiSSnz+ID4hsCdU/CiRTO3fb1WttxN7O9H//Mc/D4B92GRKvn6clMD5fD6WLVuGT0YJxMP4ZYTrr73KGjUPT0HoMIQmIDTJC08/RlDOsuHE1QRnxuh9/UXK5AzLKsMw0w/PvUR1LMOKJCVVXBsvZ8ZfAz96AqparUdNB1S3Q80SAvEQUV/6+eGpZJs+kQ77FwVbc+qc+kyj7LkksNFo9Jj3O2FqaoqGhob537iIqF7jVXU8t2Kqwo0vRsXmIXhDs/FQv3huoLtmHT00SXUG/vzGazh374g1+uu3RoCtkWBrRNh+HJ6coL6uDr8PNm/ejA+45uqrESIxkizE3L8PPPAAAENDQwiOJEXBEmsk+xOf+ASjo2M88ZsnkBJ6e3uRQFt7B1KCBOISJIK4hL7+fiSC5pZW4hJGRseIAzW1dZTFD1MyspOlgXGa5DBNjNAsh2llmFoxdZTWKH6GqaM/XseO+Aqeoo4hWcegrGVQ1jEo6uiL1xOuaOFwKEYoGidO0lB3as75cysqDCUelhcVQT8VpQEqSvxUlgSoKg3Qs7+EsoCguvxkSn2S2ckxgsRoa6qj1Cd54q0BqssCVJcFqS4LEIpDSdKmUy/kmzZtory8/NiEtHFN2v382MO9AGy4wkpAnxk/Oh5SMty3n8bSOEwPw9QgTA3x0pO/oiw+iZzooyo6xfhbz1AeG6dEHj2V5iZghlJGv7yJSwJ1LD3l3bw0NkA4PsG7L70O6pZBPA4+X9r2JZM8JxuOrJTS3d1NeXn5Me/PNLI8X4XMzs5OhoeH0z6fHCefkW+/38/NN98873sXk/HxcaUnadXx8o25GKP/qYWonLLYHi4GXtBsPNQvnhvorllHD7VOqoUQVwNXr1q1iunpaWKxGFJKgsEgMzMzVFdXMzo6SnNzM319fbS3t89NXO/t7aWtrY3BwUHq6+uZnJwkGo0yMTGBEAK/3084HKaiooKJiQkaGhoYGBigra2Nnp4ennjoIasQy4030t/fT2NjI+Pj41RWVhIKheZ+bp+qiVNTU8HU1BSf++QNDA8P09paO9eOnp4eOto76Ovro6U0RiAQoLWsAZ/Px4EDB/D5fHR0NCKlpCkYoX1JHc9MDXL48GFW1ddY2wwNMz4+zic/+cmjNP3X179GZWSIG9+zHP/wTt767c9pYpT2mSnE7Bj4AQlxfEwF6hmMVrK/5ERClR1MlzSzbyxGuKyZm/7gLyiLRNn6058C8IEPfIDS0lK+/vWvUzo7yxc/eT2tra309PQwMDBAS0sLza1t3HnP95kJRzn/wvcRKKvgru/fy2xEcun7f4eZcJRwXDA+NUtMBBidmIJACUPjk0h/KcPjh4n5IOIv43AUxqJVzETiTEWtKTEk8r4ff/fFlF7RjF/Af3zpISoCgvBUFRUBeO6ulygRUbpn2qmK+/ijf7uXiiBMjUxSKmL8x7fvoVTEKA8IZNzaD9FolLKyMsbHx7nnnnuIRCJcccUVtLS0MDQ0RE1NDdPT0/jKapgMBJA1jQQbT2FmZobXX7Ni7J7cPbfkXjAYRIYOUyOmKZkdolpOEBrcS51/hqbgLJXRMeQbP+GM2TEYA75jlWaX/hJi1UsINB3HVEkzJ49PM1PWwgO3f4WZsjYOHDhEeXk5d9xxBz6fb+7GyWuvvXZuP0UiESYnJ5mamprTZD9qamqYnJxkYmKCUCiEz+cjGo1y5513AvCRj3zkmOPp8OHDPPjggwSDwaNuXLT7vd/vZ2ZmhkgkMu/xFAwGiUajc8dEtuMpGo1SWlrK1NQUtbW1ieOp9ejjqcM6nqSUR+2nkpISR+eISCSSs6bU9qTTJIRgamoqL00tLS2MjIxk1BSJRIhEImk1PZQ4Z33sYx+bKyw0336SUs4VUMhFU7r99OCDDxIIBOju7qahoeGom4Vz0ZRtPzU0NKQ9l5eXlxe8nyorKxkeHnbU95I1hUIhJdcnWxNYhZmc9L1UTeFwmGg06qjvJWuqrq6mt7c3Z03z7Se7EJWqc0RDQ4Pjvpeqqby8nJGREUd9L1lTLBZjamrKUd9L1hQOh5mZmXHU91I1hUIh4vG4o76XrKm2ttZx30vWdPjwYRobG5WeI2ZmZo76pTZfcipTvths3LhRbtmyxXGcfCrl5DrKMz4+Tm1t6jSN3EhXPdDv93PokDV/JHl5uVI5y2dueB/0v8HOpx+gPtxLTbiH0qS5JJNUMkQ9Y/5mRkQDw6KBw6Vt/P5nvgD+4DE/49sjmHaVyFRSX7dvVLQ9nC9eZ2dnxrWYk+cHl5eXz93sGYtLovhpWbKcUFwQigtmY4Jzzr+Iydkok7MRJmYjvPDKG8zGBWOHZwnhJ0KQkPQTkj5iZBstk5T7JSUyQpmIUiIjlIooFQFJmYhx7ZWX0lBZQkNlCfUV1r8iMk194qa9TJrtJQDtfZbq6VH9KDTJjucf4cS2ShjfD6PdMNYNo/tgZB+Ejl5XfIIqhqlj3N/EiKhnIFrNEA2MiTriwo+UkvLycmZmZo76XGqlzdRVXezX000TGR8f5/777z9KY/J+zRcnx0kmVFcQU91GNzRni5nL8ZiKCg+TfxEpLy+npaUl4/byZaE9LATd+6EbMY2H+sVzo6Ki7prdvK4IIVwtU1405LsCQ/INYvmSumxcX18fwWCQ2/7kE9Czlce+92+0yQFOLg9bCdcd/wbAMl8VoyXtbGUdAzQyQBODNBISVpIkpABpTQ8I+HzgD6ZuOi3zzeHtSilTnjzlIlVHPtjfSMG6mbKEGOO9+wBrjnUJMPyK9eXhD+xtvvIA+CBUaiWIyTdb+oOl1La0MxvzcXBwlLD0U1rTwEzMR9/IBCEZIOIvYVYGmIqXMCLLCYdLiEjBCz95/Zj2+QRziXZ4spZKf5xKv6QyECcUbaJMRKmJCipEBJ+MEBTz3CBZWs1szSpYu/6op7u6uqAd+ve9RT3jrG0OUBMZJDixn3o5ytrYW1RwJHGOSR+jspYhGhgNNTNALUM0MiAbCIuSjOuRZ1su0iYQCCi9idDJcbJQqG6jG5rTxUw9Z2Va490tkvuJz+fjlltuURZ7oTzUCS9oNh7qF88NdNeso4f6taiI6OzshMgsv/ifL9Ac6uZ3ZrexdLYPvmrNmb0YGBV10H4hvOsWaD8d2k6jvKqFcuChxMXUD7Rx5KJakpij3d3dTUlJScYl+OxkeL4b5OZLttMla/v372fTpk0ZK1Pao6ObNm0iGAzS3t5+VAxbQ+pyf5mw39/W1obP5yMej1MdiDEdGwWgdGYSgI5g8khy5Kib+mbCMUanw4xMhef+HZkK0zc6xZY3djA15WN6NsyIDBIWpczGfUCl1YCkeeVBIekYrKS5qpTmauvxtUffprm6lJaaUp574mFaq0s59bTT8fvEMb7OijJ6KaOk0hph7Js9khSXxKaZOvAaTYyyujZGbaSfxpkejo/txZ+02sm4rGayfyljwVbGK9sYLWnnqo99BEoqj9nvhncWmdZ4NxgMBoO7mKTaIXnPvZkagv3Pwf5nrUfva/xO3BqFHaeKPv9SXhHvok+087HPbqK+bP6fNlJHhpPXmU6+cSi1PHnqutr2ChypJI+ELV269Jhk2/73i1/84tzfmUqop8OXw016+SCS1wtMkEsxmfISP+Ul5XTUHX3T3/j4OPcPWdOPkkcDY1IwHooxI4PUNC/hcFQwFfNxOOqjZekSBidDvD1wmGf3DDM2nbzki7W04pff2ExTVSn+SB3VgTgbTzmetpoyhsfKqA7E6ZuNUROMMzsbmlsCMeyvYLhsJcOs5NrPHPliUlYS4M9vvRYGd/DSr+6hLtJHXaSPttldBKS1bfmVf2cy0MhHS9oZDXbAm/dD66nQsPqYGyWT+7WKpMzJHLWFQnUb3dCss4+dnZ2Mj4/P/8Y8KDYPwRuajYf6xXMD3TXr6KFJqh2S7afWrq4uKqJjXHdmG3Q/YyXTQzutF/2lsOQMePcf8djOSQZLV7Dj0BgBX4AlS5ZY78khoYbMxVpWrFiBEGJuasV8FRTt9+W7hFrq+7u6umhra6Ozs3NupYrU0Wz7M7fddhuzs7P84Ac/yGub2aYyxOPxeUfjbXIprJIuSQfwC0mliFApIqyoCmeNF4rG+H/fvYfJqI+9vcOU1jbTPxFiOhRgMupnKBTkgS37mI75gOqjt0MDFSJMQ7ePmmCcmkAlNYEYv36zj47acj7xx5+h0h+H8nJoXMPrzw3OfVbIOOPdr9HKEGvrotSHe1lZPsWKkYfhR78GICJKGC3poOXUi6F1HbSdRmnt6qM8yMWrbCz0lIRCUN1GNzQnx5zvOF2MEWqveagjXtBsPNQvnhvorllHD01SnUK+80jt1RaOPDEE+56CvU9y7cGfUxsdgINAWS0HxBL6669m47V/DB0bIGB1iP2HuhIfHiuok6ROlbD/BmsU2L7x0SY1CU+dYmGPWNtLtiUnqH6//xhPMiXpuTI1NXVMEpx882ZyG3IheeQ7VWshiYbP5yMWO7q4Tb4/sZcG/NQF49QF48T9Yyytq2IwYiW/yTc3RuNwxbXX0T8Ron9ilr7xWR757RYmIj4qGtvonZjhrfEQ4VicX86tgw5Bv6C9tpyOujI66taztM4ace+oK+cXPeOM+9q5/s//GkjcEFsZ5uYrzoT+N3n7sXtpCPfA6/fBlu9Y7RU+aDwe2k/n5PEwIyVLYWYMyusK2ifHHCcp6FD8Zb42Lna8TDF1KqDjVQ91wguajYf6xXMD3TXr6KFJqh1SW1UOe5+CXY/Arkeh37rRLSJK6ZcdPMcFzHaczWiwHYSV7G1cfk7GeKkrOKQj9cakTCOpfX19CCGOGdXNFfv9ySt1xGKxnEayw+EwXV1dpK4uk24lAnu5NnsbkP9oefLKFj6fb67NqaPvuSYcyR7bxWTgyDfj+eaZp8P+zJe+9CWEEFm/OCytr5j7v2/XbxKvvxuAeFwyPBWmd3yGnrFZ+sZnODQ6Te9EiN7xWZ7bPUzfxCzxOevXAvDA3z3MkvpyIuM11AViPPODndQFfcxMnE+1CHHciqVUxkb5yHknIA9t5cCWzTRue4izYmNWmH/8OhOBJi4oWcZQ6XLYu8aa519WM6/2+e7QzveLmBuovotcdTw7ZqabqXXAKx7qjBc0Gw/1i+cGumvW0UOTVGcga/I12j2XRPv2PAGRKfAFYNk5cPH/4RfbDjNUuox9+w8CUDriBwaOSRhT5yTb6wDb5aFzTQRTR6qTk+jq6uqjkrl0708tU57vTYJOSVdoxCaT9kxJbXd3N5WVlRw+fPio51Pnk+czmldZWXnMcnSFxLE/k1qmfD5St+HzibkbIE9baj2XWq41Govz9e/czXjEx+7eUQ7LEmYi5Yz2lTARC7BTlhHDHtG3Tkzlu+LUBet5bEsbDaWXM1ayhvrKGL7BHRwnDrE8MERbvI+26d2smn4F7rDWNafxeOuXlyVnwNKN1hSS4NGjB/a6q5k8ceKrKjK1UZd4yeuEp0O1Z4Xsi2TNKvalag/diqkSL2g2HuoXzw1016yjhyapzoV4HA69BG9thrd+CYPbrefrluM7/QY47hJYdT6UWnNhf+e91suZ1o3NRK7TKDL93GuPziZ/bnJy8pibBlNHrudLopOXZku+8THbSHlJSQmdnZ05XVhbW1sL/gk7tSS3/Xm7JHYuy8elI1vSXiiZ9m+mcuKZSOdR6okl4PfNTTchMAIcvZa2lNC0dCVjEX/i4aN19ckcHJ3hrf5JDo7OEI7ac7vPASQ1gTj1wRglkXGWiGHOrRtlrdzL8ulu2rb9iorXrXL2+ILQtg6WbEwk2mfS2pK+oqXTqUMqUX1yduNkH41GtZrukYoXPNTtIpyKFzQbD/WL5wa6a9bRQ62T6sWsqNjRVMfwlp/QOPgcsR2/xD8zhBR+4svfTfiCzyOPuxRZv5revj6WLl3K1OEpav1HV6wCjqos9qtf/YpAIMB1113H9PT0MZqWLFmCz+fj7rvvTlvtz66oduWVV1JfX8/Q0BDhcHhOU0dHB0KIuSIM4XCY1tZW+vr6qK2tJRQKUVtbS19fH5WVlfh8PsrLy2lubsbn882NVAshiMfjDA4OMjMzM1d9sLq6ek5TJBKZq9RXV1eXSNQk0WiUjo4OwJrK4vf7icViDAwMpN1P99xzDwCXXnop9fX1+P1+4vF4zvvJrtgH1mhtf38/DQ0N3HzzzYRCIb71LatqoR3X1mR7fNlll2Wt7uT3+/H7/Vx99dVIKbn//vvx+XzccMMNjI6OsmnTJqqqqvjjP/7jeStW2b4cPHgQv99Pe3s7fr+frqQKdLlUrLLnjI+Pj89VrLKrUCVX4bK12f3nqquuoqamhnvvvRcpJddee+3Rmq46kdHRUTZv3kxJRxlDh8NMyhJ2HBgiXFLDrL+S0WiAXhp4O9rME0MA1pSUMl+cM5sinF+5n1NiOzg+tJuGl+8h8OI3AYiX1hJuOY2y497LaOVxVJ94IeMhSXt7Oz6fj4MHrV91lixZQjwen6u+5VZFxdTqg/X19ezdu5dly5Ypq6hot91ptbQf//jHgFVtrr6+/qgRa7vvF1rVLl1FRbu/jIyMMDU1xV133UU8HueDH/zgvFXt3njjDbZs2TJXibOmpmauvfZ5L5/9ZJ+PVFZUtN+ra0XFwcFB2tvblVZU7O7uZs2aNcoqKkYiEXw+n7YVFcG6F0ZlRcXZ2VmqqqqUVVQ8ePDg3FKyulZU3LNnD2vXrlVWUdG+N0lVRcU33niDdevWmYqK+bIYFRV58dvwi7+A0ho4/lI44Uo47n1QXl/w9jONLGWaI23vm9TKeJlu6rNJngOdjtT481VUTB7hXLp06dxodepIa7r2zDeaVuhoW6pnmSoYZhppzlRlLt/2ZtoH2di0adPc6ii5bDN12/lWOEyNn6tGm3Qeh+MwGvYzEvGzp3+CCVlKpLSOkYifiaifuAQfcY4ThzinZC/nle1hndxJe7gbgUQiiDediH/F2bDsbL6xeSujop7bPve5rFqScVJBrJD9tlgUut9zIZ2HTrfnZnt1xI1KdsWG8dA5xkM1mIqKbnHyB6BxDSw/FwIlGd9mf7vJhVwuKrW1tUxMTBz1nL2ChX2RsudG20lxtgQhOZ79fntVj0ztSp0ukrqCRqb5xflMsUi+8CbffJXaplwTzuQ2JcfLN2lOR/I+Tk2mU4vb5JKktbW1UVFRkfGGs0KSj2z9MDXefMm0vU/qEqXZs30BaS2LUTHSb71vufVl7WM33cLB0Wm6h6fZOzTFvuEpvnlwhN7DUSZCw5wqdnOGeJt39b/NGUM/pPqlLv4AmBRVDNz+Ar4V76buhPMJLH3X3Ao5qsg2hzufYzkXVMVLPhbsXzTcxMn0kp6eHqXTU1TvE7diqsQLmo2H+sVzA9016+ihSaozUdkEqy+c922qL5rAXDJTaHXBZOwpAtm2l0rqnOvkJLyiomJupDp1fnHyxTOfhHF8fHxOc65zarONRCfHy5Vs7VV90HZ2drJ161a2bt2a9+dS22ajuo2FeGhTEvCxurmK1c1VXJTyWiga48DINHsGp3hraIpfDUwS7ttO/ehWTghv54yD21nT8xg8C2GCdJedwGD9u4gtPZvq489j1bIl1JYHC9aVbQ63ag9Vx9NhhZT50N1Dt2KqxAuajYf6xXMD3TXr6KFJqh1iz0dURfJI1HxrNtsj1qmjo/bfX/rSl6iuruYzn/nMUZ+3yTSKOx8qRqJSR98iEavqX+rIb66rQiSPIFdVVSn9qTndPs425UU1ufisoh9mGhHNtV9kw25facDPcS3VHNeSXOBmPfBRxmci7B2a4hcHuwnve46qvhdZevhVzuy5h2DvncRfELwll/HrwMn01r6LnrLjeXW6juNbqjiutYrmqtKMy0vaZCsapPpYVh0v+f6BhaCQYyhZs4pjULWHbsVUiRc0Gw/1i+cGumvW0UOTVDtA9d33nZ2dxOPxub9VdJbkpeWcttMeYc31vZCbR5FIJGup9Xy2EwqF5tbInm+7uba3paUlpxgLRTpNqttof8nJpR2pVSvTkUv7asuDrF9Wx/pldXS99Qrj9edx6We+RXT2ML07nmX67aeo6nmeD4z/htLRXwGw71ArL8RP5L74SWwrOZWqttUc11LN8S1VHN9axQmt1TRXH0m2s7VZtYeq4iX/iiKE0HLVDxtdPXQ7pkq8oNl4qF88N9Bds44emqTaIdnWjS2EkZERmpqagMxzYe2LaqbCJsmvV1ZW5nxjWuqNRamFTlJRcVHv7OxkaGiIn//850e1Yb5539morKw85jkn85eT90kqTkaoMyXymW4UzNbmbG0spF1DQ0NK53w7aV+grIr29ZfC+kutJ2IR6HuNg7/9MW2ze7j2wHNcF7YK5AwOtPBc34k8FTmBrvjJ7Jct1JaXcEJrNce3VrG2tZq1rdVUN7VTGTj6Jm2VHqqIl+4XgnR9Wyd083ChYqrEC5qNh/rFcwPdNevooUmqCyA52bCXRAM1SWZNzfzV6fIhlwqNbpKLJzU1NcdMaZlv3nem7WzatIl4PF7wvkj3OdX7xA1UtzGXeNlu+iskXnKMrIm8PwhLzmDoeD9L16+31pEf3A77nqG5+2mu2vcMV08/CcBUaSs7y9fz7PRJPPjqGu6ZbQAE0ERzdSmPfvt5TmitZm1bNWsay6iqjVEWPLIWuxNU7ZPkY0EIwa233pr2faleLcYKJ4vRD3WIqRIvaDYe6hfPDXTXrKOHJql2iH0TYToKSbbtNRqzMd/UiuTX/X4/N998c17xbBaqyl2y5lTtuW4zOcErLy8/ps1O5oHnsk+ckNq2fH8xcKON09PTSubOJ8dzzUOfD1pPsR5nfwohJfd/8x9pm93Fu9ujbNj3NBumfs0fArHmJQw2nsmO8g08HTmJ50bD3PVcN6GoNe3KJ2BlUyUntdVwQls1J7ZVc1J7DUvry+edr51KoZozfbGwpPrSfEIf3OiH+cTLpa+6fTw7xY32LfZ+WWiMh2rQXbOOHpqkugCSkw2fz8ctt9yiLLbqDuKFdchLSkryGvVMJt1ItpOF29OxWAdtPqXRVbdRZbx8jhOnifxcQtob4jWW8VbNCmi6gM5b3w37nsK/7yna9j1F2/QDXAhQv5L4me9lsOksXuZEdkzXsqNvgjd6xvnF671zcatLA5zYbiXY9uOE1mrKSzKPaqveJ52dnXNFMtJqLmDJTdXo3A/djKkSL2g2HuoXzw1016yjh1on1YtaUTGHqkE+nw+fz8fs7OxRVYN++ctfzlUUs9dMDgaDHDhwgIqKCj796U9nrBokhODw4cM0Nzfzve99j0gkMlcZL1XTNddcQ3l5eUZNt9xyy9yFNhdNH/nIRwD4yU9+Qjwep7Ky8qiKinalKhWVkJL3U2Vl5dw2Kioq5qp1gfVNNNt+6uvro7q6ei6Gz+ejsrISIQQ+n4+pqSngSHWnq6++mtraWvr7+3OuWBUOh5VVS7P3k31DZbKmzsRayXa1v0gkQiAQYO/evZSXl2fUNDU1hd/vZ3JyUkm1NFvT6tWr59Yd7u3tRUp5lCYhBEIISktLicfjc1Urh4aGjtpPwWCQWCyWVxWu8fFxZmdn5/aTXeXPPhYyVVS0+00wGJxbKSMQDCKbT6AvVkv7WZ+k59BBOgLjjL/6c2qGt8Kb99MavpP3A5c3riW67Fxip5zHVMc5bBuGfeMRXt8/zJ7RCD/ecoDpyJFR7WV1pZy+vJHl1YIz1rSxtBKWtVgVRmdnZ+eqjD7wwAP4fD4++tGPzlstLVPly5mZGUZGRggGg0ftJ1svHFmXvqqqiqmpKcrKyub63OTkZE4VFZ1Utevt7WXNmjXKzhHV1dU5HU/33XffXCXOqampY/pLsqbS0lJmZma0rahof3FSWVFxeHiYkpISZRUVy8rK6O3t1baiYnV1tbLrk60pGAwyOzurrKLi2NjY3BdfXSsqDg0NsXTpUmUVFSsqKpRdn9rb2+fON6aiYp4sSkXFHJmYmDhmXk+mn/FTKxDOF8/pz+6pI4T5jv6mq4im2kNVbUyu+lhWVkZra2tOcXIh3T52SjYfM924mE2Lkzami59LvGz9JPX1fPdJLh4ke1iIZ3PEY9D3GrPbH6Ks53nY/yxEpkH4oH09rHqvtWb98nOI+8s4MDrN9t4JtvVMsK13ku29ExwaO3LvQmtNKTWxCTrKY3z0ivM5paOGR376Q4TIrz+mW1Iz24h/IXOqVR/P2fpNIeezXPv1fH2xkJi5spAe6hLTeKhfvIXKb97J8cBUVHSNXC8A6daNTb2wp/6Mn+1iFwwGs86pzKVNyRTypUnlXNpcKKSNmQphrFixIuvNXIWwkGsDQ2F+J7cx3/2WzstcNGcrpJJKLBbLqS2pfT/X9codFUbx+el66FWEaOPWW38C0TAcfBH2Pgl7fwPPfh2e+Xfwl+Jbfg4rVl/IitUXcMXJ68FnTf8YnQpbiXbvBG/2TPD0m1PsmirhN3e/BEAJ9TT6pnnon35Ee1mUP/7YNaxoqMDnyzxPO92SmsnHykIdn/mg+ljJNV4+56yFPp7zxY32LdZ+WSyMh2rQXbOOHpqk2iEzMzOUl5cX9Nl0FwAVq3UkJyYVFRV5F1JZCFLbmG+bshXxUH0zl5N9rIJcPCmkjdnmsecSL9s+sOPYcXO5YbYQCp2Ln465fhMogZXvsR4XfQ5Ch63R6z1PWI9HvwiPAmV1sOp8WH0R9Wsu4tzjVrPz6Z9zOlDn7ybYUMlgOMhQrJz+cAnD8QqeHy0nJgX3/fMTVJcGOGVJDacuqWXdklpOW1rHioYK7rzzDiD9F4vkYyWVVM0LueqHTbp+k2mQwK1+vRgxVeIFzcZD/eK5ge6adfTQJNUp5HsBqK6uTvt8us+kjlDbf6fGy7QaRyEXpdnZ2Zy/zaXGXaike3Z2Nu/PpP7EndzWXAqX5Mp8Xi/GF5R026yurs6772Yaac5VU7Z9kEquI9WZRhxzHaHOV0OyZz6fL/3nSqvg+EutB8DhAWsUe8/jsPsJ2P6g9XzdCt4d7aCn/AT6ZTnhkI/TlyWvoTrNx276Xd4emOSNQ+O8fmic1w9NcMez3YQTq49UlwVo9NXSURalJFpPk2+KEgn2wiOzs7N53cC60GQ7Hy5EvFw8yBZTBy9Ve+hGTDfaqBLjoRp016yjhyapdsjo6GjeVX2yja4VEi+V5GSnoqKCP/3TPz1mO26QLn6mbaa2Mdc2pcZL9xO5Cg+TUV3gxympiWRXV5fyNuYTb77Kn52dnQwMDDhtUtZtZxotz0S60d6KiorcNlrVAqf+rvWQEoZ3JxLsxzlh31OccPhZLkQwHFhO07LfhTUXc+fjO4iLACUBH6d01PLiQ/dzHPD3f9RJJBbn7f7DvHFonNcOjfH6wXG29E4Sjq0BoN4f5NSldTC8j+WVkrqSWaoDck5zrixEwpju2HMynUz1sexWTJV4QbPxUL94bqC7Zh091Ctb0IB8LwDNzc05x840Qp2cJCXHS912IReldEtwpeLk51kV5NLGTKRrYz77JBPzebIYnmX6MgbWndb59t3UhNQmX025aM53n2T6EmbT1dV11Jex1GMqVw2FJnxHvb/pOOtx1ichFoWel9l637/SMbMDnv53eOpfuCVYaU0neW4G1lxsJeOJ4eeg38fJHTWc3FHDdWcuAyAcjfPP3/oePTMBKpedzKsHx3hruAI5LIAqOmrLqA3UsKQswuXvvYRTl9Tm1O58KKRPqzj23IyXKeZinwOTWSjNOsVTjfFQDbpr1tFD15JqIcR3gKuAASnlusRzXwWuBsLAbuD3pJRjbrVhIbCXdsmHbKNrhcRLJTn5spf0A/dHqJMvSPYyXfMlpbm2MZ+LngoPk6mtVZ+wFELqCPX+/fsB6+a1ZA9zxfbOXtc4uV+q1qx6n9j9K18y9SNQdNOLPwDLzmLDn/+A3t5eqK+AfU/D7sesx9sPAXAt1exmBU/81yv0lq3lox//o6PClAR8/M2nbzrquelwlCdf28vBGT+vHhzn6W1TbJ8s5ZHbn8MnYG1rNacvrWPD8jrWL6/j+JZq/D6xoAljtv2c7/a6EkuR3njjjQpadgTVfVE1brTPjePPeKhXPDfQXbOOHro5Ut0FfB24M+m5h4HPSSmjQoh/BD4H/LWLbSiYXC8AhezQbHNRk+OpmOM8Pj5OXV1dQe1ZqNGaXNqYDyoOsvk8WGiP4NgvY/bC96FQ6CgP822LHcdNTfPtk3znQIdCIWKx2NzftjfZjq1s5DtCnUuCOqf5xN+xHsCPv/kvdMy+Rd3wy5zM25QNvoFEMPiV/6Gn/ERO/9BfwNKNVin2FCpKAlyx8fikZzYwMhXm1QNjbD0wxqsHx/j1tj7u3XIAgMoSP6ctrcM/XsnSsgjIAOVi/vVXnSThqi9wKu+PsEnXxsU4njPhRpKgOqZuiUwqxkM16K5ZRw9dS6qllE8KIVamPPdQ0p/PAb/r1vYXCnvB8EJIN9LmJJ5N8gXCjZGebNtL/jvTc8l/b9q06aibM+fbRi7JkgoPk9Fl2Z5UD5LXLy5kP2ebTpKP5lwSEVX7JNtofXJbMpGtr6ruN+ni/e4nPzu3/RdljFsvOQ2x+zHiz36fU8cfhu8+BKU11trYay6G494H9SszxmyoLOGiE1u46ERrXqGUku7haV45MMor+61ke9toJdG4BNZTF4xxQdky3rW8ntcPjieeV4cKD5OTejd+aVO9n1Xi1jl7Ifq2TrjRvmLzEPTXrKOHrhZ/SSTVP7enf6S89iBwr5Ty7gyf/RTwKYD29vYzNm/e7Lg9w8PDNDY2Oo7jNjt37gRgcnISOHKH69q1awuKM9/nUrfn91tr79orNiRvP5uH6baX+lzq31u3bgXIedH6fN+vK0764nye5hvH7X6W7fV825D8/srKyrmVY+y+mq3v5tPm+VD1eZvJyUlK4jOsFgdoO/wmy0I7KZnpB2C2cimTLWcy2Xo2h5vWEw/kt4RUKCrZMxrmsdf2cXAmSF+0nNFZa7WREh8c31jCiU3W44SmEvq6d8+1CQrvF4Wiql8uFCqvK077lVfxyrVZZ4yHarB93LBhg3eKvwgh/haIAvdkeo+U8nbgdrAqKqpIotyoOGSXalUZz04cDx48CBypDpZv29evX59T+1K3l1ydMHX72TxM93zqc/a27H/t0Sj771znVNuke78b+0T1z0xO+mLq53Ldz5ni2N5ed911c6/lEi91n9g3nKbuk61btxIMBtPqzbev289v2rQJv99/zMizzXzx0sXPx8Ncvtxli5fqvd3e2IqTeLvuJDpvvRWGd8GuRynb/Shle39F8977kb4gYsW7Yc374LhLoPWUI+vtZeFsIHRoOzDDrbdey6GxGV7eP8ZDL+3kwHSAn741wX3bDwPQWFLKsvIIldOztPgOc9pKP0Lkdv5RcawkexMMBo/qlypQfTyruK6kjs5nOpYKRfdzouprsxvn7GLzEPTXrNu1GRYhqRZC3Ip1A+P7pBdqpM9DITdLzRdP5fy+XNqXaXsqf3ZNTcDsxB3Uz6l2Y5/ojo6ac5mbq7qvOYmXj+Zc4uZz7KWd1tR0vPU459MQmbUK0Ox61Lrh8ZEvWI+qNmuKyJqLrUdFwzHbSN0Pd9xxx9y2lssB1q9fz0w4xmsHx3hp/ygvd4/yUvcooxFrRPzxA0E2rqhn5ondbFxZz6lLaikL+gvWnA9uzKnW/XhWfT4EPc8PbuJG+4rNQ9Bfs44eLmhSLYS4AuvGxAuklIWvo6YRg4ODStdJ1D2eKpIPhkAgwE033ZTl3fklSwvpoQ43NsHi9Jt89klVVVXWWPmWGW9raztqXWkV/mt97AXLYM1FDFafQsvlfw8TPVZyvetR2PEL2HoPIGDJu6wR7OMugY53WauR5EB5iZ+zVzdy9mrr52MpJZ/7yr/RG62k5aRzeKl7lEe2W2uNl/h9nL6slo0rGzhrZQPvWlFPbXmQrsR66fMdy7nS6dL65jqeE5OPpXw8zPX8o3XfdgE32ldsHoL+mnX00M0l9b4PXAg0CSEOAl/AWu2jFHhYWD9ZPiel/LRbbVgI6uvrlcVSsdpHKvm0L9PNhCrINhoejc6/IkE+qNwnbsRzg8XUnCkhzifpzrdoS3d3N0uXLp33Rth8WAwPM90smq79R71W0wEbbrIe8Rgcehl2Pwq7HoEnvwq/+Ucoq4XVF9F52iVw3Pvo+slDGWOn2055dJLVTLJi6hVOaYKrP/1RXuoeZUv3KC/uG+GbT+7h/z2xGyHghNZqqmerWFER4bKJWVpqyubVngtuHHu6H8+qz4dQfOdEL/Qb3T0E/TXr6KGbq398NM3T33Zre4vF5OQkDQ3H/uRaKPaNVqpQ3T7VdHZ2MjIyktf750O15nTxFnLt31woRHM2DfnEyyUhztSvVfmown83+42q/pHWR58flp1pPS68DaZHYM8T1ij2rkdg2wMAfCDYzqHyk2DPSlj+bgiUHhsrCw/++PsA/E1Cw0w4xisHRvnm/Y/RPRHmlekSXhwr58dfeZSGYJRLTl/JmSsbOHtVI8sayhE5zP1OxY3zlxv7RRW5ng/zPW4W4pyoE273Gx3juYHumnX00FRUdEh5eX534qcj+QQZDAaVnuhVtE8l6TQlt1GFdtWadfMwHfm0cb5l53KNl+uFvbOzk5mZmZzbl43k0e+Kioq5m9hy0TQfTvZzOu25xMtlND/v80NFA6z7kPWQEga2wdsPU7/7Ueq7n4I7H4NgBax6L01lJ8LyGmhYPW+bUj0uL/Fz7pomdjZZM/n27utmwl/DVGUH3dNBHtrWzw+3WDdgtteWcdYqK8E+e3UDq5sqc0qy3Tj2dD+evaDZeKhfPDfQXbOOHpqk2iGRSETpjlU9Uq26fW6guo0LEc+NmzmdUIjmbBoWap849VHlLwb5aM5lO5FIhHvvvVdZ+6CA84MQ1gohrafAeX8OocOw7ynY9QgTr9zP0uiv4LV/h/pVR+ZirzwPSo/MgZ/P4+R96PP5uOWW6wH4zne7GAz76TjtfJ7bO8Izu4b56dYeAJqrSzlrVQPnrG7k3asbWNNclTbJduP85cZ+UUkumvM9bnQ/x6rGrX5TTB6C/pp19NAk1Q4p5CfNVI69KN3iOKaNiva5jRBqSymr1uwVD+cjk8eFxsv1wu5Gv+7s7GTr1q1zS9upoJD9nK3f5hMvWz9XdX44aj+d8H5+MngqLf5Jrlxbak0T2XoPvPhN8JfA8nPoPN5Ksrs2v5DTsn2p+AS0lsa4+d0rufndK5FSsmdoiuf3jPD83mGe3zPCL17rBaCpqpRzVltJ9jmrG1nTbI1ku3Hs6XQ8pzt2vKBZJw/TYTxUg+6adfTQJNUOUT2yrBrd2wfq27iQ8XQY2QJnmtNpWOh+U6iPKn8xSNacKV5qEp28NGS6eDr9omHfUJqsIbZ0KV3b/cCVdP71XYll+x6x5mM//Hl4+PN0VrfDmvfxxFSAnrK1fCyDhs7OTqanp7N+0VjTXMWa5io+dvbyueqPz+0Z5rk9wzy7Z5ifJ5Ls5upS3r26kY3LqrngJB/LGyqUXUB12y+p5HPs5dpu3c+xqnGjfcXmIeivWUcPfYvdgGwIIa4WQtw+MjLC9PQ0k5OTTExMMDMzw8jICJFIhIGBAaSU9PZaJ+OeHuvnxd7eXqSUDAwMEIlEGBkZIRqNMjExweTkJNPT04yNjREOhxkaGiIej89ddOwY9r/9/f1Eo1GGh4eZnZ1lfHycqakppqamGBkZYXZ2luHhYaLRKP39/Wlj9PX1EY/HGRoaIhwOMzY2doyma665hiuvvDIvTTMzM1k1pcbIRdP4+LgyTbnsp1AoxJVXXsmNN97I6tWrWblyJR/60If48Ic/XNB+GhwcVKrJ9tdJ30vdT6FQyHHfS9Y0MzMzr6arrrqKj33sY6xevZpVq1bx4Q9/mA996ENpNaXGyKbpwx/+MNddd90x++mee+6hq6uLsbEx+vr65v6+++676erqctz3pJRz+8nv9+Pz+Rztp6GhoTlNPp8Pn893jCa7fHttbS0Ay5Yto62tjTVr1rBixQquvvpqbrjhBsbHx+d0jY+PI4TA7/c7Op6uv/56Lrzwwrz73h133MGdd94JQDweZ2xsjMHBwbllDm1NPQPDsPpCetb9Ifzhswze/CSxq/6TUOsG5PYHuXCwixsO/C2xb1zM7K/+L6HdTzM8OHCUpkOHDh0Vs6amBrCWzUzVNDk5SWulj8uOq+KrH17Hzz5+Ko9/9gJue99yzl3TyDNvD/D5n7/FBV99gvf842P80Z3P8cMXutnR3TvveS/T8XT33Xdz3333zfU9u984OUeEQqG8z3v2sTA8PMyBAwe46667uOOOO5iYmJjzSMX1ydY0ODhYcN+78847ueOOO47SFAqFlFyfbE12sRtV16dwOKzs+mRrmp6ezkvTfPtpZGRE6TU3HA4ruz7ZmgYGBpRcn2xN4XBYaR5hn2+c9L3U9szMzDhagcfVMuWq2Lhxo9yyZYvjOG5UHAqHw5SUlBRNPLc9VDFypLuHoN7HfNqYi8cqNCePWPr9fpYuXXrU68nbL2S/u+Hh9773PeDIKKtdkTHTiHW2EU/V+yTfmDZ2YRl72b7k0fXkYlNZiUX5xTf/jiUz21lfNWQt4YeEsjpYc1GiwuP7CJc1KTuWpZTs6Bljy/5xnt0zzHN7RhiZCgOwuqmSc49r5D1rmjhndSP1lbn7LITg1ltvLahN6SikH6aO5if3MzfON05iOu3bubCY58PFiqm7h6C/ZjevzUII75QpfycxMTFBU1NT0cRzg+Q2qvgZttg9TKWQ5EaF5uSEMxAIzH371/HmMLA0q46nut8UEtNe8tD23f4714I7cwlgv48tnMLW+hWULvswHz27LbFs36Pw5v0A+BqOhxMuhzUX449HiPmCebU1GSEEzUlzsuNxyY6+SX67e4jf7h7m/pcPcfdz+xECTm6v4bzjmnjPcU2cubKB8pKjfxZOTmKrqqoWve9l+zKmS7/JNo1H93OiLh4uZDw30F2zjh6apNohqtdI1D1eNgq9UOmuWbd1MNOhu+ZMP6f19fXR1dWlRaLd0NCQ81zbXNqXi4f53qBbyH6xY9kj1jahUIhYLDbv/PF0hPyVsO7D1kNK6H8Tdj+Kf9ej8MLt8OzXuTlQBiveA89OWSPZzSfkfcNjsl6fT3ByRw0nd9TwifNXE4nFee3gGM/sGua3u4f4zjN7+caTeyjx+zhjRT3vOa6R9xzXxGlL646KOTU1RWNjY17tWEjcON/ofn5QjfFQDbpr1tFDk1Q7ZGBgQGn9ed3juYGTNqZLCIyHFqkJW+o0gGwJnErNnZ2d9PX1zcVL3m62xG2hKURztqTYjX7jJGahn5v3i4YQ0LYO2tbRv+Z62hqqYd8ziQqPj8Kv/8Z6X82SI1NFVl9orac9D9n0Bv0+zljRwBkrGvjT9x3PdDjKi/tGeWbXEE+/PcQ/P7STf35oJzVlAc5dcyrnHd9Edfg3tFb6ufHGGwvyQjVuH3tOYmba711dXQSDQW08TIcuHi5kPDfQXbOOHpqk2iGqd6ju8dLhdDk83TXrdtCmYyE1FzKa7DUPnY6U5+pRvqtQ5ONjaszUbc33uVyWXszYvrWXWQ+Asf2w+zHrsf1BeOVuQMCSd8Gai63H0jPBf+xUkUxfFNP5VFES4IK1zVywthmA4cMhntk9zNNvD/L020P86s0+oJG6YIw373+d9x7fxLvXNFFbXvgUFTdw41hRHTMSiSiNpxoveOi1c2IxxFOBSaod0tPTQ0dHR9HEc4NC2pgtkTceWmQbaUr+O9d4qtqnyxzqVArRPN9onmoWsy/mst/Stq9uOZzRaT1iUeh55cgo9lP/Ak9+FUqqYdX5VoK9+iJoXEPXHXc4GhFtrCrlmtM7uOb0jrk1sp9+e4iHXz/Iz7b28L3n9+P3CdYvq+P845s4//hmTl9aS8C/uItiubGPncRM7ePd3d3U1tYu+rz0bOjm4ULEcwPdNevooUmqHaJ6h+oeLx1O13zVXbNuB206FkKzk18kMrVPp/WCk9tYyBeR5Pfl61GuunPZz/O1IVlTcqn31LbM1/Z0r8/bPn8Alp1pPS68DWbGrAqPux9jcutPqX5rs/W+2mWsP9zAPt8qmH4/XT/8WVZN8yGEmFsj+9ZzVxKJxXll/xhPvT3Ik28P8R+Pvs2/P/I2NWUBzju+ifce38x71zbTUbfw1drcON+ojjk+Pk5dXZ3SmCrxgofmuqJfPBWYpNohun/z0vGbXCoqRwgLjZcNr3uYmngUPOLoAK97OB/pplbYa1mrRCcf060eknf7yuvgpKvhpKu5b+h0qiNDdMzsoGP2LU6MbWd97FXkP/2Uy0UrgzXrELKOAzjTb7fxrFUNnLWqgc9edgKjU2Ge2T3EkzsHeXLnEJtft7Qd31LFBWutBPusVQ2UBd0vNqHrKKuX5lTr6qGb8dxAd806emjWqTbkhW4e6jDCWQi6+ZgPunjuhoepo7z2ms72zZ2Z1q3OFGcxPcqlDarXWC6E1HhzlRPjMZbQx9rAIVbG9rJM9EE8SlQECaw+37rZcfWF0Hoq+NRN2ZBSsrP/ME/uHOQ3Owd5Ye8I4VicsqCPd69u5MITWrjwhGZWNFYC3j6WC8GNvl1sHrqB8VANTtepNhUVHVas2rNnj9Lqg4cOHVJaUXHHjh15a1roiop9fX0FV0Lq7OzksssuO0rTrl27lGrav3+/9hUVe3p6lO6n7du3Z9QEVnnYfPZTf3+/8r6XXFHRabW0SCTCrl27EELg8/koLS0lGAxSVlaG3++nqqoKIcSR6oPz7Ce/308wGMxZU1dXF/fcc8+8+2nXrl05a8plP0kp8+57w8PDjI6OEggEqKyspL+/n8nJSYBj+k0ufc8uNWxXeKypqUFKSU1dPeM1J/BS1SV8V1zP4O+/wCMtn+TtmvcQHztolVH/xnuRX11D+J4biT7/LUZ2vzzv8dTT05O1742MjLCmqZxrTqjk7k+czS8/tY7vdG7kqpMa2DM0xRd+9iYXfPUJ3vuPj/L5B17j+f2TjIxP5tT37EqK2c4R+/btU15RcdeuXcrO5VdeeSVXXHGF1hUV+/v7lVdUPHTokNKKinv27NG+ouLOnTuVVlRMvg6oyCPs842pqJgnOo9UR6NRAgF1s2h0j6ebh+lGTXT3ENT7qLtmr3lY6Jxqm3znI6d7/0L07Xw8TF0FJN1IdT7ty+SBfbELhUL4fL65LzK33Xbb0QEmemHvb2D349a/k9aFlrrlsOoCaxR71QVQ1XzUx5x6uG9oiifeGuCJnYM8u3uYUNQaxT53TRMXndDMhSe0sKyhIifN6VC9j90YWdb9uuLG+Ub3c6Ju12YvxgNTUXHRGR8fV1pIQPd4bqC7ZuNhfqS7iL/TPMwlUbFHYHOJk+sNeIvpo53s2smtve656v1sx//Sl75EeXk5f/mXf5n+jTXtcPoN1kNKGNoJe35jJdjbfgav3GW9r+UUWPVe67HiXManY47auLKpks6mVXS+ZxWzkRjfe+RF9keqefytAR7bMQC8yXEtVVx0QjMXndjCmSsbuOeuO4Hc9rMb+ziXvpgPC9kPC/lS4Eb7dDrHLhS6a9bRQ5NUO6SysrKo4rlBtjZmOqFmS0aMh+/8eG6Q3Mb5bu7MVOI7uV8GAoGMo7Gpc7ZTY3dlqDK5kD6mjkynFg1Kt0ZsLu3L9YtESUkJOf+SKoRVsbH5BDj7U9bSfb2vwt4nYO+T8NJ34fn/B8JHfdtpiVHs82H5u6GkcE/Lgn7e1V7G768/hf/LKewdmuLxHQM8/tYAd/y2m28+tZfq0gDLSmo4vjJEuQxQLrL/tKxqH8/XF52g+/HsRvuK/ZxYDPFUYJJqh4RCIcrKyoomnhvortl4mBvZkqV3ioe2plyqUuayTnVqYtqZpcpkV1cXfr+fm2++ed64Kkn9ApE6Yp2Myv182223MT4+XtiH/QFYeob1OP+zEA3BwRdh75PE334M37Nfh2f+HXwBWHIGrDzfSrKXnQ3BwpfRW9VUyarzVvH7561iKhTlmV1DcyPY2/pCwOksKYty/bJTuPjEFqSUR27MTODGsaJ6zfSFOJ6dLOHpRvt0OMcuNLpr1tFDk1Q7RPV8Ht3juUG6Nuaz1m7y35niqW6fbuiu+Z3iYaYE0ya5X/p8Pm655ZaMr6f7e773LMQ9MPONpmerYpaLh/nMU1fWbwKlsPI8WHkeobP+jEBAwoHnYN/TsPcpePrf4Kl/Bn8JLNk4916Wngkl6edHz0dlaYDLTmnjslPakFLyZs8E//L9X7PzcAn/9shO/vXhnbTVlHHxSS1cclIL565poizoV6Z5vr7oBN2PZzfaZ86J7/x4KtCvRQaDwZMUelOfG7jVBjuhtBPOhSiTm5zklpSULLi/tkb7C8RCbdeNZHCO0io47hLrATA7Afufg31Pwr5nrAT7yX8CXxCWboQV74GV77FGsguYLiKEYN2SWr77l1ahncHJkDWCvX2An75yiO89v5+yoI/zjmvm/DW1vP/0ZbRUL84InA7Hb/L2dWmPwZALJql2iJOlV7wYzw3StTHXE2q6542H7/x4bpBLG+3+lu4mvVRSf9ZPFyeXbSWPYudzw1kuK5BUVFQcs2JALqPpmchnP+fiQTYPcyHTCirHUFYDay+zHnAkye5+2hrNtkeyfQFoXw8rzrUS7eXnFNSu5upSrtu4jOs2LiMUjfH8nhEe2d7Po9sHeGR7P1/4+U7WL6vjkpNauOTkVk5orS7Yi87OzsKn0WRA9+PZjfaZc+I7P54KTFLtkHQ3Gr2T47mB7pqNh/mRLllaKA+dzMPMp425jFDH4/F535NLe5OTWiEEt956a87tVIlqDzPh5g12kGMbU5Ps0CQceB66f2s9nv8f+O1/AoITalbDoYthxbutGx9r8qvwVhrw895E1cYvXiN5rXuIJ3eP8cj2fv75oZ3880M7WdZQziUntXLpya2ctbKBgD+/EhO5aM7n2FnIc2Ih+92N9ul0jl0odNeso4cmqXbI1NSU0onyusdzg2xtLOSEajx858dzg3zamG30F6zEpLKyUnlC6MuhcuB8yVHy60uXLs3YRh2OvUIvmtk8KKiNpdVHTxeJzMChl2DfM0TefIjyrd+DF79pvVa3wkqul59jPZpOyLnioxCCpdU+/uR9x/Mn7zuegYlZHkmMXt/z/H6++8w+asuDXHxiC5ee3Mp71zZTVTr/ZbzYjmc32ldsHoL+mnX00FRUdFixClBafbCiokJpRcXZ2dm8NS10RcWamhollZBsTbFYTKmmYDCofUVFu7Kdqv00MzPjuO8la6qtrV2Qioof/vCH+dCHPsTKlStZvXo1N954I1deeWVO+ykejzvue36/HyEE5eXlxGIxfD4ffr8/o6bOREXQFStWcNxxx3HLLbdw1VVXpd1P119/PVdcccW8fQ+sG3h8Ph8VFRVzVSJtTXYb7QqGuVaJzGU/pVbGK6TvXX755XR2dtLU1EQsFuPyyy/n1ltvzavv2Zpqa2uP0tjf309lZaXz856/lKGqEwmf+xm2b/wK03+2g6kbf8HshV8g1rKO+NsPw8//HP77HOQ/rWL2O9fAk//M0JYHIDyd9Xjy+/1zmurKfFy2poJv3XIGv/rUafzPTe/i3BXWmth/eM/LvOvvHubGbzzNPc/tY+f+3oyaYrHYvJrsvmcfO9dddx0f/vCH0+6nmpoarSsq1tbWKq+oWFFRobSiIqB9RcVoNKq0omLydUBFHmH3G1NRMU90rqjY399Pa2tr0cQzHqpBtY+6a15oDwsZIc6njbnMVw4EAtx0001K4rnVxoqKCq677rqc4uWCiv2cPMpcXV1NQ0MDUNjIeToPFuScKCWM7LHmZR94DvY/D0NvWa/5AtB2Kiw9C5adZa0wUrfcWms7x/ZFY3G2dI/y8LZ+fv1mHwdHZxACzlhez+WntHHZKa2saDxyQ6XKfpNvvFzQ/XzoRkzdPQT9Nbt5XTEVFRcJ1TtU93huoLtm46F+8eajkARMdRtV37QH+vdF1e2bnJycS6pVkU8bC56+IwQ0rrEeG260npsegQMvWHOzD75oVXx84RvWa1WtVnK99Exal26EUKW1QkkGAn4f56xu5JzVjfzv3zmJ7b2TPLStj4fe7OfLm7fz5c3bObGtmstPaePyU9o4qb0l56bnorXY+qEbMXX3EPTXrKOHJql2SE9PDx0d+d2Y4uV4bqC7ZuOhfvHcIJc25nozV2dn59zPiSrJx8fUNqVb633r1q3qGoea/Zw89zsYDHLjjTc6jpXMovXFigY44QrrAVbVx4E3E4n2C1aivePn1mvCBy0nW4Vplm60/m0+EXzHrv4ihODkjhpO7qjhzy9Zy4GRaR7a1s+v3+jjPx97m/949G06akq48rQlXLGujXctr8fnc7aqiu7HsxvtM+fEd348FZik2iGqd6ju8dxAd83GQ/3iuYEXNOvuo+r2RSIRpfEgtzY6WUUmZ/wBaD/depz1SQC+/+2v0xzq5pIT6+DQFtj2ALx8h/X+YIX13o53wZJ3QccGaFg9N23EZllDBR8/bxUfP28Vg5MhHtluTRG549l9fOvpvTRXl3L5Ka28f107Z6/KfyURKL5+6EZM3T0E/TXr6KFJqh2i+zcvHb/JpaK7ZuOhfvHcIJc25lOQQpfRsgVJEBOo1KzDaP9CMbePDg7TX7uEg/vrgCV0/tV9MLIbDr0MPS9bK468+C14LmR9sKw2kZivh4711r9JiXZzdSkfPWs5FywNUPXRDTy+Y4BfvdHHfS8d4u7n9lNXEeTSk1p5/6ltvOe4JkoDua2DrqOHyehy7C1kPDfQXbOOHpqk2iG6f/PSrcOlQ3fNxkP94rmBFzQnx9Sx0pzXPMzEYlbzGx8fp66uzvrD54Om463H6ddbz8UiMLDNSrR7t0LPVmvd7FjYer201roRsv00aDsN2k6lo/UE8Af5wPolfGD9EmbCMX6zc5Bfv9nHr97s40cvHaS6NMD7Tmrh/ae2c8HaZsqCmRNs3Y9nM1KthgXXHI9bU6L2PWMVXopF4GP3Llj7VOBaUi2E+A5wFTAgpVyXeK4BuBdYCewDrpNSjrrVhoWgr69Paali3eO5ge6ajYf6xXODfNqYS5LlhuZCYi5kguiFfqNjX8xrHrk/eGTaiE00DIPbrQS7dyv0vgZbvgtRa2lM6S9BtJwMbeug9VTKW0/hitWncMW69YSjcZ7ZPcQvX+/loW39PLC1h4oSPxed2MKV69q56MRmKkqOThV09DCZhe43hRxbunsIC3A8xyLQ/4ZVUGnfM9D9DMyOWa/VrYDVF1or6WSoJqqjh26OVHcBXwfuTHruNuBRKeUmIcRtib//2sU2uE5LS+53Vb8T4rmB7pqNh/rFcwMvaG5paVnQ6Rz54hUPc2UxPC1oHnmgJCnRTlTcjEVheBf0vW4l2n2vw1u/hFfuPvK5miWUtK7jotaTuWjtyXz53SfwwmQTv9g+wq/f6OMXr/VSHvRz0YnNXHlqOxef2EJFSUD743mx+81ixHMD5ZqrArDz19YKOAdesKYzRay1pqlfBSddBSvPhxXvgbplC94+FbiWVEspnxRCrEx5+gPAhYn/3wE8gceT6pGREZqamoomnhvortl4qF88N/CC5pGRkYI/m2+CWEiy7hUPde2LnZ2dDA0NqQnmD0DLidByIsMdF1mapYTD/dboYP+b0PeG9f/dj0I8ShB4j/DxnoY1fPn4EzlYspJnx5u4f89BPvv6fkSwjItOaOH8lVV88Kw1x4xg64Lb/WbTpk0Ac6OkhXzB1bkf2jhqY3jK+iJ36GXoeQV6XsY3vMt6Tfit6UnvusVaq33ZOVC7ZGHb5xILfUS0Sil7AaSUvUII/b5m5ElNTU1RxXMD3TU7ibdQo4g6aV6IeG7gBc01NTWLOt93Przioc64qlkIqG6zHnbJdbCmj4zshoHticc2xOB2lo38gmUyznWALBOMlrTz5u523tzRzlce6qBh+SmcdvoZvOe0kyjPoVz6QuGFfqN7P4Q82jg9Yn05s7+k9bwCgztAxq3XqzugYz3RU68nsPJca+WaksrsMVW2bwFxtaJiYqT650lzqseklHVJr49KKeszfPZTwKcA2tvbz9i8ebPj9gwPD9PY2Og4TjLhcJiSkpKiiWc8zI+dO3cCsHbt2qOeV+2jTpoXIh4Un4epMTP1rXxI56Edd3JyEoDq6uqct+M1D1Wgez90ElPEQpQePkjZZDdlk92UHu6mdKKb0sMH8Msj01QmZTmDwSVEa5ZR0bicWPUSQpVLCFctIVpSl3FOrI1XPNy2bRsAsVgMAL/fupmzoqICyO9Y1L0fwrFtFLEQZZP7KT3cTdnEPsrHd1E+sZuSmYG590RK65muO4GZuhOYTjyi5U1p46lunwpsHzds2OCJior9Qoj2xCh1OzCQ6Y1SytuB28EqU66i/KYbZTynp6fnDqhiiGc8zI3Uea/T09a8MXtUUbWPOmheyHhQfB6mxnTrnGgXhDl48CAAK1asyGl7XV1d+Hw+brnlFsftsnHbw3xJ9+uA7v3Qecyzj413eJKKyAixwbfpfvtV+ve8CcNvs2z4dTqGn8AnkgbrSqqhYaV141n9Sqske92KxL/LobTKMx4+9thjAIRC1pKGpaWlwJFpIPlo0PbaLCVM9sHIbkJ9Oygd3A+DO62R59F9QGLfCj80rYXjLoDWdXM3wQarW6kFatOE9sI51qmPC51U/wzrLopNiX9/usDbV479jbVY4rmB7pqNh/rFcwMvaF4IH3WaXrLYHi6GB4utOad4Eqhfgb9+BavXXsJqIBqL8+yeYf77lW7e2PY6jeFDnFAyyHlVk5wshqgfehux69G5FUnmKK9nbUkjbDvemldbuxRqllr/r26DqjYoyS9xcsvD2267DTgyp9r+u9B4i0ZoEsYOwNh+GD8AY91WwjyyF0b2zN08WArgL4HG46110E+/AZpPsKp7NqyGQGlem/XCOdYpbi6p932smxKbhBAHgS9gJdM/FEJ8HNgPfMSt7S8UqqfP6B7PDXTXXEi8hU5MdNC8kPHcwAuadfQx+VeZsrIypX1eFw8XcsUVXTTnGy/g93H+8c2cf3wz4ei7eHrXID9/tZdPb+vncChKY2UJV65r40MnlnB65Ti+8f1WMjd+kMiB7VZyt/+3MDt+7AbLaqG6/UiSXdUMlc1Q2ZL4f4v1d0UDBEo966FjomGYHoKpQZjsh8kemOiFycRjohcmDsJMykrG/lJrtY2GNbDqvVbC3LCaydJWqpecBL7cigLNhyc8dIibq398NMNL73Nrm4tBMBgsqnhuoLtm46F+8dzAC5oX0sdCEkbVI0eL5WFqEm3/zL8QeKHfzBevJODj4hNbufjEVmYjMZ54a5AHX+vhRy8f5K7n43TUlnHV6adw9WmXsm5JDXtfffXIT+6hwzBxCCZ6rGkIk72JfxN/d/8WpgYgOpuhcZVUlddDZSOUN1iJdlntsY/SWiitsm6YK6mEksT/gxVp54Ana3YyQp0u3hxSQjQE4cPWaHJ4CsKHefjn91MSn+aCs06z1nGeSTxmx2DKSqLXTfbDA4fTbElYXzhq2q1fAZadlZh6s8yahlO7zHrdd2y5+sDMjLKEOqNmjeKpQJ/bdT3KzMwM5eXlRRPPDXTX7CTeQv1srJPmhYjnBl7QrKOPyb/K+P1+br75ZiVxVcezKcTD1AITbh7XXug3+cQrC/q5Yl0bV6xr43AoyiPb+nnw1R6+8/Rebn9yD6ubKjmrzUfNksOsbq6yEt3mE6xHJqS0ks6pQetxeMD6d2YEpkeJjPVQGpuyVqUY64bZCWsEPJ7LGuACAmUQLLP+DZRCoIwgASgtB1/g2Ifwpb8ZU0qIR5MescS/EYKzh0FGrSQ6Oms9IjMgj/1ieqn9H3u9hmAFlNVBeR1UNEL76YzWQfOKk6GyyXpUtR1Z6cVfWPKp+zlRx/OhSaodYt8ZXyzx3EB3zcZD/eK5gRc06+6jF+ZM5uJhpulb9t9u4oV+U2i8qtIAH9ywhA9uWMLYdJhfvtHHN371Eve+EeQHb/yGU5fU8oH1HVx1WgdttWWZAwkBZTXWo3HNMS/7IhFIHcWU0kpaQ4kEe3bcGhEOT82NCBOeskbK7SQ3OjuX9PrC01bCG4tYyXE0dCRZtpeOS0dqAh4oBV8lvspWKClPJO5JCXxpVWLUvIrHf/siEV8pB/rHmKWUpqXHEfJXcMvvfeKYzRzaupVmxYsI6NJvFiqeCkxS7ZDR0VGlVX10j+cGums2HuoXzw28oFlnHzs7OxkYyLigU84kT72oqqpSPn/ZiYcL8cuTF/qNinh1FSV89KzlhLY9RiRQiVhxBj/d2sPf/2I7X968nXNWNfLBDR1csa6d2vL8RlrTtk8I64bHkgpr9DZPhgYGlHqYS7zuV62R9YPCmoZUGVjYdZl17DduxlOBSaod0tzcXFTx3EB3zcZD/eK5gRc06+6j6vYdPnxY+dq7+bRxMVY+cephui8hOvbt5C9PS5cuxb/7ST5cDf/x2d/lp1t7+NmrPfz1fa/zf376Jhef0MIHN3Rw4QktlAXnn+PrhWMvl3iLvRKPjv3GzXgqOHZmuiEv+vr6iiqeG+iu2XioXzw38IJm3X1U0b7Ozk46OztZsWIFxx133NzfqigGD92O6aaHq5ur+Myla3nssxfwwB+9h4+dtZwt3SN8+u6XOfPLj3Dbfa/x3J5h4vHMKz8Uu4eq0F2zjh5qnVQLIa4WQtw+MjLC9PQ0k5OTTExMMDMzw8jICJFIhIGBAaSU9Pb2AtDT0wNAb28vUkoGBgaIRCKMjIwQjUaZmJhgcnKS6elpxsbGCIfDDA0NEY/H53aQHcP+t7+/n2g0yvDwMLOzs4yPjzM1NcXU1BQVFRXMzs4yPDxMNBqlv78/bYy+vj7i8ThDQ0OEw2HGxsbSampqaspL08zMTFZNInHzRD6axsfHlWqabz+1tbXlpWm+/VRSUqJUU21treO+l6opFAo57nvJmpqbm5XuJxsnfS9ZU3t7u/K+J6V03PeSNZWWljrue8maampqlB9PpaWljvtesiYppeO+l6zJ7jsqzhHBYJBIJOK476Vqam5uVnreC4VCSq5PtqaqqqqC+t5dd93FHXfcwcDAAL29vdx5553cddddzM7OUlJSovRc3tbW5rjv3XLLLVxxxRWsWLGC2tpaOjs7ueyyy+Y0xWIxllXEuO2yNfz6j87kGx87jYuOb+SnWw9xw+3Pce6mR9i0eRvPbtt3jKb29nZl1ydbU1NTk5Lrk933Kioqcu57l112GZ2dnVk1hcNhZdcnW1MwGFRyfbI1JV8HVJwj7PONynPEzMwM0WiUQnG1TLkqNm7cKLds2eI4jhvVAHt6eujo6CiaeMZDNaj2UXfNxkM9YxoPnaOLh6nLANqVMDs7O7XeL11dXVRUVHDdddfl9P7pcJSHt/Vz/yuHeOrtIWJxySkdNVy7YQnXrO+gpbrME/1G934I+mt287oihCioTLlJqg15YTxUg/HROcZD5xgPnaObhzpUwsyXQj0cnAzx89d6uP+VQ7x2cByfgPOPb+ZD71rCZSe3UV6ibo1l3dGtH3oVp0m11tM/vID9M0SxxHMD3TUbD/WL5wZe0Ky7j8ZD53hBsy4eNleX8nvvWcXP/vg8HvmLC/j/LlzD2/2T/NkPtnLmlx/hf/3oVX67eyjr/Otcead6mA3dNevooVn9wyGpRQHe6fHcQHfNxkP94rmBFzTr7qPx0DlO25duhNoL+8Upx7VU8b8uP5HPXnoCz+8d5icvH2Lz67386KWDLKkr59oNS/jwGUtZ1VRZUPxi8DAV3TXr6KEZqXbI4OBgUcVzA901Gw/1i+cGXtCsu4/GQ+d4QbPOHvp8gjXVcb76kdPZ8r8v5T9uWM+alir++4ldXPTPT/Ch/36Ge57vZnw6l+qKRygmD21016yjh2ak2iH19fVFFc8NdNdsPNQvnht4QbPuPhoPneMFzV7xsLzEzwfWL+ED65fQNz7LA1sPcd9LB/nb+9/giw9u49KTW/ndM5Zy/nFNBPzZxxiLzUPQX7OOHpqRaodMTk4WVTw30F2z8VC/eG7gBc26+2g8dI4XNHvRw7baMj59wRoe+sx7efCPz+NjZy3nmV1D/N53X+TcTY/xD7/cztv9mXUVm4egv2YdPTQj1Q4pLy8vqnhuoLtm46F+8dzAC5p199F46BwvaPayh0IITl1ay6lLa/nclSfy+I4BfvzSQb711F6+8Zs9nL6sjt89YynXnN5xVHn0YvMQ9Neso4dmpNohkUh+87K8Hs8NdNdsPNQvnht4QbPuPhoPneMFze8UD0sDfq5Y1863bj2T5z73Pv7375zEbDjG/3ngDc788iP86fdf4am3B4nFZdF5CPr3Gx091Dqp9kJFxcOHDyutPhiLxZRWVBweHs5b00JXVASUVlS0269K0+zsrPYVFePxuNL9NDQ05LjvJWsSQmhfUdH+nKpzxMzMjPLjaWJiQuuKivaNQ6rOEUII5RUV7fOirhUVp6enlV2fks+FKs/ltgZV54jp6WnHfS9ZkxAib01NVSX8znHl/OrPz+c7N5zADWcu4/Ed/dz87Rc49x8e4T8f38tre3qUnSMOHz6s9JrrRkXFsbExpRUVk68DKs4R9vnGVFTME52Lv0xPT1NRUVE08YyHalDto+6ajYd6xjQeOkd3D92IWSwezkZiPLytnx+9dJCndg4igXNWN3D9mct4/7p2yoKFF5fR3UPQv9+4eV0xxV8WiXA4XFTx3EB3zcZD/eK5gRc06+6j8dA5XtBcLB6WBf1cfXoHd/7+WfzqDzfyl5etpWdsls/c+ypnfvkR/vb+13nt4BiFDE7q7iHo32909NDcqOgQ1d+SdI/nBrprNh7qF88NvKBZdx+Nh87xguZi9HBVWz1/vLyVP7zwOJ7fO8KPthzgvpcPcs/z+zmxrZrrz1zGB9cvob6yZNHaqBrd+42OHpqRaodMTEwUVTw30F2z8VC/eG7gBc26+2g8dI4XNBezhz6f4N1rGvnX69fzwt9ewt9/cB2lAR9ffHAbZ3/lUf7k+6/w9Nvzl0bX3UPQv9/o6KEZqXZIQ0NDUcVzA901Gw/1i+cGXtCsu4/GQ+d4QbPx0KKmLMhN56zgpnNWsK1ngh9uOcD9rxziwVd7WFpfznUbl/GRjUtprz126TfdPQT9+42OHpqRaofYd0IXSzw30F2z8VC/eG7gBc26+2g8dM5ia+7q6qKrq0tZvMVgMTw8uaOG/3vNKTz/N+/jP25Yz/KGCv714Z28Z9NjfLzrRR7e1k80Fne1japZzOPZq/3QjFQ7pK2trajiuYHumo2H+sVzAy9o1t1H46FzvKDZeJiZsuCR0ujdw1Pc++IBfvTSQR69cwutNaV85IxlXH/mMpZp7iHo32907IdmpNoh9tqGxRLPDXTXbDzUL54beEGz7j4aD52zWJrtkcHu7m66u7uzjhQaD3NjRWMlf3XFifz2tov5xs1ncHJ7Df/9xC7O/6fHue6/n+SXr/cSSRq91o3FOJ693g/NSLVDOjo6iiqeG+iu2XioXzw38IJm3X00HjrHC5qNh/kR9Pu4/JQ2Lj+ljZ6xGX645QA/fPEA/989L9NUVcpHNi7lhjOXsaKxUmGLnaN7v9GxH2o9Uu2Fioq7du1SWn1w//79Sisqbtu2LW9NC11R8dChQ0orKr711ltKNe3du1f7iooHDhxQup/efPNNx30vWZP9UNn3VFdU3Llzp9KKinv27FF+PO3cuVPriopvvPGG0nNET0+P8oqKBw4c0Lqi4u7du5VXVHzrrbfm1XTLLbdw1VVXsXLlSlavXs11113Hhz/84bSaDh06pHVFxZ6eHmXXJ1vT/v37lVyfSmPTfPq85Xz3w8v57xtO5dSOKr7xm91c8NUnuP7/Pc2DWw9yqKc3bYyFrqi4Y8cOpRUVk68DmTR98IMf5LrrrmPVqlWsWrWK66+/nmuuuSatJvt8Yyoq5onOFRWLDeOhGoyPzjEeOsd46Jx3mof2T+2dnZ0Lts13mof50jc+y4+2HOAHLx7g0NgMTVWlXLdxKR89aznLGnJbi/md5uFi9EMwFRUXHftbcrHEcwPdNRsP9YvnBl7QrLuPxkPnLLbmzs7OeRMZ46HaeG21ZfzJ+47nyb+6iO90bmT9slr+5ze7ee9XH+fW77zAr9/sO2rlkIViMY9nr/ZDM6faIY2NjUUVzw1012w81C+eG3hBs+4+Gg+d4wXNxkN34vl9gotPbOXiE1vpGZvhBy8e4N4X9/MHd71EW00ZN5y1jBvOXE5bbZnStuTTxndyPBWYkWqHjI+PF1U8N9Bds/FQv3hu4AXNuvtoPHSOFzQbD92P11FXzl9cupZn/tpaOWRtWzX//sjbvOcfH+MP7trCU28Pzlu10e02vtPiqcCMVDukslLt3bq6x3MD3TUbD/WL5wZe0Ky7j8ZD53hBs/Fw4eIFklYO6R6e4nsv7OdHWw7y6zf7WdFYwY1nL+cjZyxT2rZ82/hOiacCM1LtkFAoVFTx3EB3zcZD/eK5gRc06+6j8dA5XtBsPFyceCsaK/nc+0/i2c9dzH/csJ6W6lK+snkHZ//Do/zHc6NsPTCGysUndNC8kPFUsCgj1UKIzwCfACTwOvB7UsrZxWiLUwIBtRbqHs8NdNdsPNQvnht4QbPuPhoPneMFzcbDxY1XGjhStXFH3wR3P9fNj7cc4PH/eoZ1S2q4+ZwVXHP6EspL/IvWRi/GU8GCj1QLIZYAfwpslFKuA/zADQvdDoPBYDAYDAYvc2JbDX//wVP57gfa+LsPriMSlfz1fa9z9lce4e9+vo19Q1OL3cSiYrHS/ABQLoSIABWAfrUmc8TJIuFejOcGums2HuoXzw28oFl3H42HzvGCZuOhfvHKgz5uPnMFN529nBf3jXLXc93c8dt9fPvpvbx3bTO3nLOCi05swe8Ti9ZG3eOpYFGKvwgh/gz4MjADPCSlvDHNez4FfAqgvb39jM2bNzve7vDwsPIlWGKxGH6/s59YvBTPeKgG1T7qrtl4qGdM46FzdPfQjZjGQ/3ipfNwZCbGw7un+PXuKUZm4rRU+rniuEouWV1BTen829Zds5vXlQ0bNhRU/GXBk2ohRD1wH3A9MAb8CPixlPLuTJ/RuaKi6pOB7vGMh2pQ7aPumo2HesY0HjpHdw/diGk81C9eNg8jsTgPb+vnzmf38dyeEUoCPq45vYPOc1eybkntgrVR93jgvKLiYkz/uATYK6UcBBBC/AQ4F8iYVOtMbW3mDvlOjOcGums2HuoXzw28oFl3H42HzvGCZuOhfvGyEfT7uPLUdq48tZ23+ia589l93P/KIX780kHetbyOW89dyfvXtVMSOPo2O90169gPF2NJvf3AOUKICiGEAN4HbF+EdihheHi4qOK5ge6ajYf6xXMDL2jW3UfjoXO8oNl4qF+8XDmhrZovX3sqz/3N+/jC1SczOh3hz36wlXM3Pca/PryTgYkjC7HprlnHfrjgI9VSyueFED8GXgaiwCvA7QvdDlW0trYWVTw30F2z8VC/eG7gBc26+2g8dI4XNBsP9YuXLzVlQX7vPau49d0reWrXEHf+dh9fe+xt/vvxXVx5ajud71nJhmUtSrf5TvMwHYtS/EVK+QUp5YlSynVSypullPqt4J0jPT1qFy7RPZ4b6K7ZeKhfPDfwgmbdfTQeOscLmo2H+sUrFJ9PcMHaZr7deSaPf/ZCbnn3Sh7fMcCH/vu3vP/fnuC+lw7+/+3dfXBc1XkG8Oe1V5ZlGQfZsmpbplhgOwlOTSEtxTWmYJexMwkm05QZMvnwNNAZOgRohgTsMEOY6R91U1KSSZMwDLgmxA0hBAr9SGuP7SEhxZjwaYgx+EtCWLK01if6lvX2j71bdoRka3XO8b7H9/nNMNZerV7O++juvWdXd/dgYPikl//X2ZphIa6o6GjBggWpqheC9Z6Zob16IcTQs/UcmaG7GHpmhvbq+bCouhL3XHsR9nxzTe4zr1Vwx89fw8rNu3H/jrfR0u22Rl8aMuSk2pH1Z14Wn8mNZr1nZmivXggx9Gw9R2boLoaemaG9ej5VlmfwpcvPx49vWIJHb7wMyxd+BN/b+Q5Wbt6Fr/3sVbze2DGpumnI0N4aj5Gx/szL4jO50az3zAzt1Qshhp6t58gM3cXQMzO0Vy+E2tpa1AJYtWQujmR78Mj/HsUTLzXiqVfew6W/fy6+ckUd1i2bh8zUib0+m4YM+Uq1o+bm5lTVC8F6z8zQXr0QYujZeo7M0F0MPTNDe/VCKBxjXXUl7l2/DM9vWo1vXXsRTvQM4qv/+gqu/PZuPPDsIXT0DhZVz/f4rDA9qRaRa0Xkwba2NvT29qK7uxtdXV3o6+tDW1sbhoaG0NLSAlVFU1MTgA/+HNDU1ARVRUtLC4aGhtDW1obh4WF0dXWhu7sbvb296OjowODgILLZLEZGRv7/F5Svkf/3+PHjGB4exokTJ9Df34/Ozk709PSgp6cH5eXl6O/vx4kTJzA8PIzjx4+PWaO5uRkjIyPIZrMYHBxER0fHmD1VVVUV1VNfX98pe8ov7lNMT52dnV57Ot3vae7cuUX1dLrfUyaT8drTzJkznfe90T0NDAw473uFPc2ePdvr7+nkyZPO+15hTzU1Nd73PVV13vcKeyorK3Pe9wp7qqys9P54Kisrc973CntSVed9r7Cn0fuN6zGipqbGed8b3dPs2bO9HvcGBga8nJ/yPc2YMcPb+SnfUyaT8Xosnzt3rpfzU76n3t5e532vsKeamhpv56d8T1VVVV7OT/meysvLvZ5zBwcHvZ2f8j1NmTLlQz2dM70Ma+vKseuOq3Df+sU4f84MbP7lW1jx9ztx589ewr76lnF7KjwP+DhG5I83Po8RfX19Tsufl2SZ8mJZXlExm82iuro6NfWYoR++c7TeMzO0WZMZurOeYYiazNBevVKem/c3dWHrb47iqVffw+DwCP5s6VzceEUdVi2pRm45kuLq+R5fMVxXVDT9SnUMZs2alap6IVjvmRnaqxdCDD1bz5EZuouhZ2Zor14IEx3jx+fPwj/85XI8v3E17rhmKX7X1IUvb9mLtd/9FR7b24D+oZNF1fM9vjOJk2pH+T9bpaVeCNZ7Zob26oUQQ8/Wc2SG7mLomRnaqxdCsWOcM7Mct65Zgufuuhrfuf5iZKZMwcYn9+VWa9x+AA0tHSUd35nAT/9wNG3atFTVC8F6z8zQXr0QYujZeo7M0F0MPTNDe/VCmOwYyzNT8blPLsRfXFqLPYfb8PBzh/H93Qfxo2cFn/3DWty4qg4fm+f+KrPFDDmpdpS/UD4t9UKw3jMztFcvhBh6tp4jM3QXQ8/M0F69EFzHKCJYceEcrLhwDo5ke/DA7gN4+vVj+PlLjVi1pBo3rboAV4667vpMji8EXv7hyPcbPa3XC8F6z8zQXr0QYujZeo7M0F0MPTNDe/VC8DnGuupK3L12MZ7fuAbfWPtRHGjuxobkuuvHX3x3UkuhW8yQk2pHZWVlqaoXgvWemaG9eiHE0LP1HJmhuxh6Zob26oUQoueqymm45erFeO6u1fjO9Rdj6pQpuPMXr2Pl5t34513voL3n9J93HWp8PnBS7aivry9V9UKw3jMztFcvhBh6tp4jM3QXQ8/M0F69EEL2PC0zBZ/75EL8121XYNtNf4JlC2bhvu1vY8Xmnbjn6TdQf6LnjI/PB15T7eicc85JVb0QrPfMDO3VCyGGnq3nyAzdxdAzM7RXL4Qz0bOIYOXiaqxcXI0Dzd146NeH8djed/HonnqsWzYP3//8JeMug24xQ9OvVMewomJjY6PX1QdbW1u9rqh4+PDhons60ysqtrW1eV1Rsb6+3mtPzc3N5ldUzGazXn9Phw4dct73Cntqb283v6JiQ0OD1xUVm5qavD+eGhoaTK+oePDgQa/HiPb2du8rKmazWdMrKh47dsz7ior19fVej+VtbW2mV1Rsb2/3vqJia2ur1xUVGxsbza+oePToUS/np3xPheeBsXqqm12Ou685Hztuuxw3rTgPGRnB0ODAuD3ljzdcUbFIlldUVNVJv3M1xnrM0A/fOVrvmRnarMkM3VnPMERNZmivHs/NfnBFxRLLP9tJS70QrPfMDO3VCyGGnq3nyAzdxdAzM7RXLwTrPVvMkJNqR/Pnz09VvRCs98wM7dULIYaerefIDN3F0DMztFcvBOs9W8yQk2pH+etw0lIvBOs9M0N79UKIoWfrOTJDdzH0zAzt1QvBes8WM+Sk2tGCBQtSVS8E6z0zQ3v1QoihZ+s5MkN3MfTMDO3VC8F6zxYz5KTaUf5dqGmpF4L1npmhvXohxNCz9RyZobsYemaG9uqFYL1nixlyUu1o3rx5qaoXgvWemaG9eiHE0LP1HJmhuxh6Zob26oVgvWeLGXJS7ai1tTVV9UKw3jMztFcvhBh6tp4jM3QXQ8/M0F69EKz3bDFDTqodVVVVpapeCNZ7Zob26oUQQ8/Wc2SG7mLomRnaqxeC9Z4tZshJtaPu7u5U1QvBes/M0F69EGLo2XqOzNBdDD0zQ3v1QrDes8UMTU+qY1imfGhoyOuS3plMxusy5e+//37RPZ3pZcqnT5/udZny/v5+rz0BML9MeVlZmdffU/5g5WuZ8oqKCvPLlA8MDHhdplxVvT+eBgYGTC9T3tXV5fUYUVFR4X2Z8rKyMtPLlI+MjHhfpry/v9/rsXz69OmmlymvqKjwvkx5JpPxukz50NCQ+WXK+/r6vC5TXnge8HGMyB9vuEx5kSwvU97V1YVZs2alph4z9MN3jtZ7ZoY2azJDd9YzDFGTGdqrx3OzH1ymvMR8rztvvV4I1ntmhvbqhRBDz9ZzZIbuYuiZGdqrF4L1ni1myEm1o6lTp6aqXgjWe2aG9uqFEEPP1nNkhu5i6JkZ2qsXgvWeLWYYxeUfItIKoN5DqWoAWQ91Cn0EQGeK6jFDP3znaL1nZmizJjN0Zz3DEDWZob16PDf7kc/xfFWdW/RPq2pq/gPw2wA1H0xZPWZoMEfrPTNDmzWZ4dmfYQy/F2ZoL8NIejZ3XuHlH+7+PWX1QrDeMzO0Vy+EGHq2niMzdBdDz8zQXr0QrPdsLsMoLv/wRUR+q5N4Nyd9gBn6wRzdMUN3zNAdM3THDN0xQz9cc0zbK9UPlnoAZwFm6AdzdMcM3TFDd8zQHTN0xwz9cMoxVa9UExERERGFkLZXqomIiIiIvEvNpFpE1onIARE5KCIbSz2eGIjIeSKyW0T2i8ibInJ7sn22iOwQkXeSf6tKPVbrRGSqiLwiIv+R3GaGRRCRc0XkCRF5K9kfVzDD4ojI15LH8Rsi8lMRmc4MT09EtohIi4i8UbBt3NxEZFNynjkgImtLM2pbxsnwH5PH8+si8pSInFvwPWY4ylgZFnzv6yKiIlJdsI0ZjjJehiJya5LTmyLy7YLtRWeYikm1iEwF8AMAnwJwEYDPi8hFpR1VFIYB3KGqHwdwOYBbktw2AtipqksA7Exu06ndDmB/wW1mWJzvAfhvVf0YgIuRy5IZTpCI1AK4DcAfqeonAEwFcAOY4URsBbBu1LYxc0uOjzcAWJb8zA+T80/abcWHM9wB4BOquhzA2wA2AczwFLbiwxlCRM4DcA2AhoJtzHBsWzEqQxG5GsB1AJar6jIA9yXbJ5VhKibVAC4DcFBVD6vqIIDHkAuRTkFVm1T15eTrbuQmMrXIZfdIcrdHAHy2JAOMhIgsBPBpAA8VbGaGEyQiswBcCeBhAFDVQVXtADMsVgZAhYhkAMwAcAzM8LRU9VcA2kZtHi+36wA8pqoDqnoEwEHkzj+pNlaGqrpdVYeTm3sALEy+ZoZjGGc/BID7AdwJoPANcsxwDONk+DcANqvqQHKflmT7pDJMy6S6FsC7Bbcbk200QSKyCMAlAF4A8Huq2gTkJt4Aako4tBh8F7mD3kjBNmY4cRcAaAXwL8klNA+JSCWY4YSp6nvIvQLTAKAJQKeqbgcznKzxcuO5ZnK+AuCXydfMcIJEZD2A91T1tVHfYoYTtxTAKhF5QUSeFZE/TrZPKsO0TKpljG382JMJEpGZAH4B4G9VtavU44mJiHwGQIuqvlTqsUQsA+BSAD9S1UsA9ICXKRQlueb3OgB1ABYAqBSRL5Z2VGclnmuKJCJ3I3ep4bb8pjHuxgxHEZEZAO4GcM9Y3x5jGzMcWwZAFXKXuH4DwOMiIphkhmmZVDcCOK/g9kLk/vRJpyEiZchNqLep6pPJ5uMiMj/5/nwALeP9PGElgPUichS5y45Wi8hPwAyL0QigUVVfSG4/gdwkmxlO3J8DOKKqrao6BOBJAH8KZjhZ4+XGc00RRGQDgM8A+IJ+8Pm+zHBiLkTuSfJryfllIYCXRWQemGExGgE8qTl7kfuLcjUmmWFaJtUvAlgiInUiMg25i8+fKfGYzEuerT0MYL+q/lPBt54BsCH5egOAp8/02GKhqptUdaGqLkJuv9ulql8EM5wwVW0G8K6IfDTZtAbA78AMi9EA4HIRmZE8rtcg9x4JZjg54+X2DIAbRKRcROoALAGwtwTjM09E1gG4C8B6Ve0t+BYznABV3aeqNaq6KDm/NAK4NDleMsOJ+zcAqwFARJYCmAYgi0lmmAk3TjtUdVhEvgrgf5B71/sWVX2zxMOKwUoAXwKwT0ReTbZ9E8Bm5P5EciNyJ+vrSzO8qDHD4twKYFvypPgwgL9C7kUBZjgBqvqCiDwB4GXk/tT+CnIrh80EMzwlEfkpgKsAVItII4BvYZzHr6q+KSKPI/ekbxjALap6siQDN2ScDDcBKAewI/c8D3tU9WZmOLaxMlTVh8e6LzMc2zj74RYAW5KP2RsEsCH5q8mkMuSKikREREREjtJy+QcRERERUTCcVBMREREROeKkmoiIiIjIESfVRERERESOOKkmIiIiInLESTURUWRE5DYR2S8i205/71PWuVlEvuxrXEREacaP1CMiioyIvAXgU6p6pNRjISKiHL5STUQUERF5AMAFAJ4RkU4ReVREdonIOyLy18l9rhKRZ0XkcRF5W0Q2i8gXRGSviOwTkQuT+90rIl8vZT9ERGcLTqqJiCKiqjcDOAbgagD3A1gO4NMAVgC4R0QWJHe9GMDtAP4AuZVRl6rqZQAeQm6FSiIi8oiTaiKiuD2tqn2qmgWwG8BlyfYXVbVJVQcAHAKwPdm+D8CiMz9MIqKzGyfVRERxG/3GmPztgYJtIwW3RwBkQg+KiChtOKkmIorbdSIyXUTmALgKwIslHg8RUSpxUk1EFLe9AP4TwB4Af6eqx0o8HiKiVOJH6hERRUpE7gXwvqreV+qxEBGlHV+pJiIiIiJyxFeqiYiIiIgc8ZVqIiIiIiJHnFQTERERETnipJqIiIiIyBEn1UREREREjjipJiIiIiJyxEk1EREREZGj/wPgRl+B/lqy9AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtUAAAGDCAYAAADkjOwcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAC0rklEQVR4nOy9d5gc1Zm3fZ8OE3pyDhplEAIESJaINphgA8bghA3YpNlgrzfZG73s7rfBftde7e674V17E+swJNtgG9tgy5ickwWIKCGURmFyHk3q7unz/VFdo55Wd09316mZU/S5r6svaTo8dX6/OlX19OlT5xFSSgwGg8FgMBgMBkP++Ja6AQaDwWAwGAwGg9cxSbXBYDAYDAaDweAQk1QbDAaDwWAwGAwOMUm1wWAwGAwGg8HgEJNUGwwGg8FgMBgMDjFJtcFgMBgMBoPB4BCTVBsMHkUI8bgQ4jczvH6KEGJ7nrFXCCGOCiH82WxLR4QQB4QQH1ikbX1ECPH9xdiWLggh3hRCXJjmtQuFEIcXt0W5IYToEEL8nYPPf08I8bGEv/9OCDEghOhR0kCPkO+5QghRLITYJYRodL+VBsPiYJJqgyFHhBDvE0I8K4QYFUIMCSGeEUKcudTtSsH/Af5vPh+UUh6UUpZLKWcVt+ldiZTyPmCDEOL0pW6LCoQQq4QQMp4sHY1/Qbkl8T1SylOllI+7tP0tQoifCSGGhRAjQoi3hBBfFULUuLG9XInv5zOAn8b/Xg78MXCKlLLZYex2IcTTzlu5OOR7rpBSzgDfBv7MnZYZDIuPSaoNhhwQQlQCPwO+DtQCy4AvAzNL2a5khBAtwEXAT5a4Ka4jLJbsXCaECMT/+z3gc4u4vcWgWkpZDnwS+CshxAfd3qAQ4jzgceAZYL2Ushq4HIhiJbKpPrOYngD8FnCXPFY9bSUwKKXsW+R2OGKpjx3gu8DNQojiJWyDwaAMk1QbDLmxDkBK+T0p5ayUckpK+aCU8jWYG2V6Rgjx9fhI9i4hxCX2h4UQVUKIbwkhuoUQR+I/GfsTXv91IcTO+AjdL4UQKxNe+2A83qgQ4huAyNDODwIvSymnEz5/QAjxp0KI14QQE/F2NAkhfiGEGBdCPGyPBCaMVKZMVtK1M36R/lchRF+8na8JITakifG4EOLvhRAvxt/7UyFEbcLr58R/ERgRQryaONUg/tmvCiGeASaBNWl82Bhvw6gQ4m4hRElCjM8KIfbEf224TwjRmk67SPhJO2Ef/6sQYgj42/jbHgc+nEbrLUKIHyY99/+EEP8e/3/afpFqe0KIE4QQT8R1DQgh7s6y7Sk/txBSyu3Am8DGhLhz02uEEKXCmk4xLIR4C5j3y40QolUI8SMhRL8QYr8Q4gsZNvePwHeklH8vpeyNb/+glPJv7JHxNJ6sFUI8KoQYjGu7SwhRndCGTUKIl+N9/W6gJHGjQogrhRA74v3tWZH5V4cPAU/EP/cB4CGgVVij+h3x5zP135T7WwhxMvDfwLnxWCOpNu72sSMW4VwBIKU8DAwD52Tw2mDwDlJK8zAP88jyAVQCg8BtWBfWmqTX27FG1P4QCALXAqNAbfz1nwD/A5QBjcCLwG/FX/sYsAc4GQgA/x/wbPy1emAMa8QwGI8fBX4zTTv/CfiPpOcOAM8DTVgj7H3Ay8AmoBh4FPib+HtXARIIxP9+3N7WAu28DHgJqMZK+k8GWtK08XHgCLAh7sePgDvjry2L+3wF1pf/D8b/bkj47EHg1HgbginiH4j724r1q8JO4PPx1y4GBoD3xLV/HXgylfYU+u19/PvxbZfGn6+Nf64yRVtWYiUwlfG//UA3cE4W/eK47WGNiv9l3JsS4H1Ztj3l51K0N3n/nxNv/8eT/P1A/P9bgafiHiwH3gAOx1/zYfWJvwaKsJK4fcBlKbZbBswCFy5wHKby5IR4PykGGoAngX+Lv78I6OTYcflJIAL8Xfz192AdD2fH983NcX3FadooiffF+HMX2nqz7L8L7e+nF9D/OO4fO66eKxK2dR/whcU+l5uHebjxMCPVBkMOSCnHgPdhXUT+F+gX1ihnU8Lb+rAu5hEp5d3A28CH4+/5EPAHUsoJaf1U/K/AdfHP/Rbw91LKnVLKKPA1rJHWlVgXyLeklD+UUkaAfwMy3RBVDYyneP7rUspeKeURrCToBSnlK9Ka3/hjrIvmQmRqZwSoANYDIv6e7gyx7pBSviGlnAD+CrgmPkJ7A7BNSrlNShmTUj4EbI/7YNMhpXxTShmNe5KKf5dSdkkph4D7OTbSej3wbSnly3Htf441OrgqC/0AXVLKr8e3PRV/zva7OvnNUspOrKTkY/GnLgYmpZTPZ9EvUm0vgpWot0opp6WU2c7BzfVzA0KIKeA54D9JP53oGuCrUsohKeUh4N8TXjsTK6H7ipQyLKXch3XsXJciTg1WIjjXt4UQ/xgfcZ0QQvx/Ce+d54mUco+U8iEp5YyUsh/4F+D98feeg5VM28flD4FfJcT6LPA/UsoXpPUL1G1YU7pSjaBWx/9NdXzZpO2/We7vbHD72HH7XGEzTopjxmDwIiapNhhyJH6BaJdStmGNFLViJbk2R6SUMuHvzvh7VmJd2LvjScII1miVfff7SuD/Jbw2hDXauyz++UMJbZCJf6dgGCu5TaY34f9TKf4uzxDTJm07pZSPAt8A/gPoFULcKqx56OlI1NCJ5U99fBufsrcR3877gJY0n01H4hePSY7pa41vDwAp5VGs0bxlWcRMt23b75E0n/ku8On4/z8T/xsW7heptvclLM9fFNYqHL+eZbtz/Vw9lmd/gjUaG0zzvnn9kwRviSfxSfvyL7BGQZMZBmIk7Gcp5ZekNa/6x1ijnTbzPBFCNAohvh+fTjEG3Blvv92+VMdlYhv/OKmNy+OfS2Yk/m+q4ysxXrr+m83+zga3jx1XzxUJ76kg/TFjMHgKk1QbDA6QUu4COrCSa5tlQojE+c4rgC6sC9kMUC+lrI4/KqWUp8bfdwjrJ+DqhEeplPJZrKkCy+2A8fjLSc9rxOd/u0CmdiKl/Hcp5Wasn5fXAX+aIVaihhVYI6kD8W3ckbSNMinl1oT3JyZIudKFdcEHQAhRBtRh/aQ+EX86lPD+5BUdUm37ZOBA/NeMVPwAuFAI0QZ8nGNJ9UL94rjtSSl7pJSflVK2Yo0G/qcQ4oSF2p7hc2mJj9z+MzAN/E6at83rn1j70uYQsD9pX1ZIKa8gifio6wvAJzK1yX570t9/H3/udCllJdaIrX0cdpP6uExs41eT2hiSUn4vTRv3kvn4ytR/F9rf2fbrpTp2ciHjuSLOycCri9Qeg8FVTFJtMOSAEGK9EOKP44mRvZTWp7HmH9o0Al8QQgSFEJ/Cumhsk9Y0iAeBfxZCVAohfMK6ucr+ifq/gT8XQpwaj10V/zzAz4FThRCfiN8Q9AWOT/QSeQh4j0i4MU8hadsphDhTCHG2ECKIleBNY82RTccNwlpPOwR8BfihtJbmuhO4SghxmbBu4CoR1trHbYo0fBf4NSHERmGtPPA1rJ+3D8SnDhyJt80fH81dm0XM9wO/SPdiPO7jwHewksyd8ecX6hfHIYT4VIIXw1hJ0uxCbU/3uSy0gTVv+ktp+tQ9WH2iJh7/9xNeexEYE0L8mbBuaPQLITaI9MtQfgn4dWHd3NkYb3cbsHqB9lUAR4ERIcQy5n+Zew5rDvYXhBABIcQngLMSXv9f4PPxviuEEGVCiA8LIdKNRm/j2NSSVKTtv1ns716gTQhRtIDepTp2ciHTOY34fqpl/vnTYPAsJqk2GHJjHOtmpheEEBNYF4M3sNaotXkBOBFr1OirwCellIPx127CumnqLayk5ofEf5aVUv4Y+Afg+/Gfr9/AmnuJlHIA+BRWYjMYj/9MukZKa9WER4GPOlZ8fOy07cS6kfN/49o6423NtFb2HVgj/T1YN859Ib6NQ/G2/wXQjzXi9acoOmdJKR/Bmof6I6xRzLXMn9P62fj2BrFG3J9NjpGCT2P9jJ+J7wIf4NgotU3afpGGM7H64FGsG72+KKXcn0XbM31uIX4eb9tnU7z2Zaz9vR8rYbzDfiGe6F2FNZ99P9Zx8U2gKtVGpDXP+2LgAmB3fNrAA1hfSL6eoX1fxrrhcDTe1nsTYoaxRr/b4xquTXp9e1zXN+Kv74m/Nx23AtcnjXwnalio/2ba349irbTSI4QYyNCGJTl2cmGBcwVY06Bui8/TNhg8j5g/xcxgMDhBCNGOdef7+zRoyylYq5ScJTU80IUQj2OtWPDNpW6LU4QQVwE3SimvWeq2GBYHIcR3gXuklD9Zgm0/jsePnfgvRK8CF0iPre9tMKRjsRfMNxgMi4SU8rj1gg3uIKW8H2t1EUOBIKX8zFK3wcvER6fXL3U7DAaVmOkfBoPBYDAYDAaDQ8z0D4PBYDAYDAaDwSFmpNpgMBgMBoPBYHCISaoNBoPBYDAYDAaHeOJGxfr6erlq1SrHcaampigtLXXeoALGeKgG46NzjIfOMR46x3joHOOhc4yHarB9fOmllwaklA05B5BSav/YvHmzVMErr7yiJE4ivb29BRXPeKgG1T7qrtl4qGdM46FzdPfQjZjGQ/3imWuzGmwfge0yj3zVTP9wSE1NTUHFcwPdNRsP9YvnBl7QrLuPxkPneEGz8VC/eG6gu2YdPTRJtUPGx8cLKp4b6K7ZeKhfPDfwgmbdfTQeOscLmo2H+sVzA9016+iha0m1EGK5EOIxIcROIcSbQogvxp//JyHELiHEa0KIHwshqt1qw2Kgeg6T7vHcQHfNxkP94rmBFzTr7qPx0Dle0Gw81C+eG+iuWUcP3RypjgJ/LKU8GTgH+N142eSHgA1SytOB3cCfu9gG14lEIgUVzw1012w81C+eG3hBs+4+Gg+d4wXNxkP94rmB7pp19NC1pFpK2S2lfDn+/3FgJ7BMSvmglDIaf9vzQJtbbVgMhBAFFc8NdNdsPNQvnht4QbPuPhoPneMFzcZD/eK5ge6adfRwUSoqCiFWAU9ijVCPJTx/P3C3lPLOFJ/5HPA5gJaWls3btm1z3I7BwUHq6uocx0kkGo0SCKhbmVD3eMZDNaj2UXfNxkM9YxoPnaO7h27ENB7qF89cm9Vg+7hp06aXpJRbcg6Qz5IhuTyAcuAl4BNJz/8l8GPiiX2mh85L6g0PDxdUPOOhGlT7qLtm46GeMY2HztHdQzdiGg/1i2euzWpwuqSeq8VfhBBB4EfAXVLKexOevxm4Ergk3njPEgqFCiqeG+iu2XioXzw38IJm3X00HjrHC5qNh/rFcwPdNevooZurfwjgW8BOKeW/JDx/OfBnwEeklJNubX+xGBsbW/hN76J4bqC7ZuOhfvHcwAuadffReOgcL2g2HuoXzw1016yjh26OVL8XuBF4XQixI/7cXwD/DhQDD8UnmT8vpfy8i+1wldra2oKK5wa6ay50Dzs6OgBob29XEk9XvNBvdPfReOgcL2g2HuoXzw1016yjh26u/vG0lFJIKU+XUm6MP7ZJKU+QUi5PeM6zCTVAX19fQcVzA901Gw/1i+cGXtCsu4/GQ+d4QbPxUL94bqC7Zh09dHVOdSHQ3NxcUPHcQHfNheqhPULd2dkJOBuxLlQPVaO7j8ZD53hBs/FQv3huoLtmHT00Zcod0tXVVVDx3EB3zcZD/eK5gRc06+6j8dA5XtBsPNQvnhvorllHD81ItUNaW1sLKp4b6K65UD20R6RVzKkuVA9Vo7uPxkPneEGz8VC/eG6gu2YdPTQj1Q7R/ZuXjt/kktFds/FQv3hu4AXNuvtoPHSOFzQbD/WL5wa6a9bRQzNS7RDdv3np+E0uGd01F7qHTkaoU8XTFS/0G919NB46xwuajYf6xXMD3TXr6KHWI9VCiKuEELcODQ0xOTnJ+Pg4Y2NjTE1NMTQ0RCQSoa+vDykl3d3dwLFvLt3d3Ugp6evrIxKJMDQ0RDQaZWxsjPHxcSYnJxkZGSEcDjMwMEAsFqOnp2deDPvf3t5eotEog4ODTE9PMzo6ysTEBBMTE+zbt4/p6WkGBweJRqP09vamjNHT00MsFmNgYIBwOMzIyEhKTUeOHMlJ09TUVEZNu3btylnT6OioUk0L7aeenp6cNC20n/bs2aNU08GDBx33vWRNMzMzjvteoqauri6l+2nnzp2O+16ipt7eXuV9T0rpuO8latqzZ4/jvpeoqbOzU/nxtGfPHsd9L1GTlNJx30vUlNxvnJ4jent7Hfe9ZE1dXV1Kz3szMzNKrk+2pgMHDii7Ptma9uzZo/Rc3tPTo+T6ZGuanJx03PcSNfX29iq7Ptmajhw5ouT6ZGvat2+f0mtuOBxWdn2yNe3evVvJ9cnWlHgdUHGOsM83Ks8RU1NTRKNR8kV4oaDhli1b5Pbt2x3H2bFjBxs3bnTeoAR0r2WvOp7xUA2qfdRds/FQz5jGQ+fo7qEbMY2H+sUz12Y12D4KIV6SUm7J9fNaj1R7gdHR0YKK5wa6azYe6hfPDbygWXcfjYfO8YJm46F+8dxAd806emiSaoeUlZUVVDw30F2z8VC/eG7gBc26+2g8dI4XNBsP9YvnBrpr1tFDk1Q7ZGZmpqDiuYHumo2H+sVzAy9o1t1H46FzvKDZeKhfPDfQXbOOHpqk2iGq5/PoHs8NdNdsPNQvnht4QbPuPhoPneMFzcZD/eK5ge6adfTQJNUGg8FgMBgMBoNDTFLtECdLr3gxnhvortl4qF88N/CCZt19NB46xwuajYf6xXMD3TXr6KFJqh1SXFxcUPHcQHfNxkP94rmBFzTr7qPx0Dle0Gw81C+eG+iuWUcPTVLtkImJiYKK5wa6azYe6hfPDbygWXcfjYfO8YJm46F+8dxAd806eqh1Uu2FioqA0uqDoVBIaUXF6enpnDUtdkXFyspKpRUVZ2dnlWoKBoPaV1QsKytTup+mpqYc971ETVVVVdpXVIzFYkorKgYCAeXHUywW07qiYnJlPKfniKqqKuUVFcvKyrSuqOj3+5VXVJydnVV6Lq+srNS6omJVVZXyioqhUEhpRUVA+4qK0WhUaUXFxOuAinOE3W90qqiIlFL7x+bNm6UKXnnlFSVxEunp6SmoeMZDNaj2UXfNxkM9YxoPnaO7h27ENB7qF89cm9Vg+whsl3nkq1qPVHuBpqamgornBrprNh7qF88NvKBZdx+Nh87xgmbjoX7x3EB3zTp6aJJqh9g/GRRKPDfQXbPxUL94buAFzbr7aDx0jhc0Gw/1i+cGumvW0UOTVDuktbW1oOK5ge6ajYf6xXMDL2jW3UfjoXO8oNl4qF88N9Bds44emqTaIbp/89Lxm1wyums2HuoXzw28oFl3H42HzvGCZuOhfvHcQHfNOnpokmqH6P7NS8dvcsnortl4qF88N/CCZt19NB46xwuajYf6xXMD3TXr6KFJqh1iL8tSKPHcQHfNxkP94rmBFzTr7qPx0Dle0Gw81C+eG+iuWUcPTVLtkMbGxoKK5wa6azYe6hfPDbygWXcfjYfO8YJm46F+8dxAd806emiSaocMDQ0VVDw30F2z8VC/eG7gBc26+2g8dI4XNBsP9YvnBrpr1tFDrZPqQqyoWFpaWnAVFSsqKkxFRYcVq0KhkNYVFSsrKwuuoqLf7zcVFR2eI+zKfU76XrKmUCikdUVFn8+nfUXFiooKrSsqVlZWKq+oWFpaWnAVFe3zoqpzROJ14N1aUVFYhWP0ZsuWLXL79u2O4+zYsYONGzc6b1ACIyMjVFdXF0w846EaVPuou2bjoZ4xjYfO0d1DN2IaD/WLZ67NarB9FEK8JKXckuvntR6p9gJFRUUFFc8NdNdsPNQvnht4QbPuPhoPneMFzcZD/eK5ge6adfTQJNUOmZ2dLah4bqC7ZuOhfvHcwAuadffReOgcL2g2HuoXzw1016yjhyapdojq6TO6x3MD3TUbD/WL5wZe0Ky7j8ZD53hBs/FQv3huoLtmHT00SbVDgsFgQcVzA901Gw/1i+cGXtCsu4/GQ+d4QbPxUL94bqC7Zh09dC2pFkIsF0I8JoTYKYR4UwjxxfjztUKIh4QQ78T/rXGrDYuBvUpCocRzA901Gw/1i+cGXtCsu4/GQ+d4QbPxUL94bqC7Zh09dHOkOgr8sZTyZOAc4HeFEKcAtwCPSClPBB6J/+1ZKioqCiqeG+iu2XioXzw38IJm3X00HjrHC5qNh/rFcwPdNevooWtJtZSyW0r5cvz/48BOYBnwUeC2+NtuAz7mVhsWg+Hh4YKK5wa6azYe6hfPDbygWXcfjYfO8YJm46F+8dxAd806ergoc6qFEKuATcALQJOUshusxBvQr85kDjQ0NBRUPDfQXbPxUL94buAFzbr7aDx0jhc0Gw/1i+cGumvW0UPXi78IIcqBJ4CvSinvFUKMSCmrE14fllIeN69aCPE54HMALS0tm7dt2+a4LYODg9TV1TmOk8jk5CShUKhg4hkP1aDaR901Gw/1jGk8dI7uHroR03ioXzxzbVaD7eOmTZvyKv4SUNqaJIQQQeBHwF1SynvjT/cKIVqklN1CiBagL9VnpZS3AreCVVFRRaUgNyoOFRrGQzUYH51jPHSO8dA5xkPnGA+dYzxUg1Mf3Vz9QwDfAnZKKf8l4aX7gJvj/78Z+KlbbVgM7HrxhRLPDXTXbDzUL54beEGz7j4aD53jBc3GQ/3iuYHumnX00M2R6vcCNwKvCyF2xJ/7C2ArcI8Q4jeAg8CnXGyD67S2thZUPDfQXbPxUL94buAFzbr7aDx0jhc0Gw/1i+cGumvW0UM3V/94WkoppJSnSyk3xh/bpJSDUspLpJQnxv8dcqsNi0F3d3dBxXMD3TUbD/WL5wZe0Ky7j8ZD53hBs/FQv3huoLtmHT00FRUd0tzcXFDx3EB3zcZD/eK5gRc06+6j8dA5XtBsPNQvnhvorllHD01S7ZD+/v6CiucGums2HuoXzw28oFl3H42HzvGCZuOhfvHcQHfNOnpokmqH1NSorbKuezw30F2z8VC/eG7gBc26+2g8dI4XNBsP9YvnBrpr1tFDk1Q7ZHx8vKDiuYHumo2H+sVzAy9o1t1H46FzvKDZeKhfPDfQXbOOHpqk2iGlpaUFFc8NdNdsPNQvnht4QbPuPhoPneMFzcZD/eK5ge6adfRQ66RaCHGVEOLWoaEhJicnGR8fZ2xsjKmpKYaGhohEIvT19SGlnLsL1F63sLu7GyklfX19RCIRhoaGiEajjI2NMT4+zuTkJCMjI4TDYQYGBojFYvT09MyLYf/b29tLNBplcHCQ6elpRkdHmZiYYGJigqGhIaanpxkcHCQajdLb25syRk9PD7FYjIGBAcLhMCMjIyk1TU1N5aRpamoqo6bkGNloGh0dVappof0UDodz0rTQfurv71eqaXx83HHfS9Y0MzPjuO8lapqenla6n5Jj5NP3EjVFIhHlfU9K6bjvJWoaGBhw3PcSNY2NjSk/ngYGBhz3vURNUkrHfc/Nc0QkEnHc95I1JR4zKjTNzMwouT7ZmkZHR5Vdn2xN/f39SvdTOBxWcn2yNU1OTirte5FIRNn1ydaUeI1WcY4YGhpSejyFw2Fl1ydbU19fn5Lrk60p8TqgOo9QdY6YmpoiGo2SL66XKVfBli1b5Pbt2x3HcaPi0Pj4OBUVFQUTz3ioBtU+6q7ZeKhnTOOhc3T30I2YxkP94plrsxpsH4UQeZUp13qk2gv4/f6CiucGums2HuoXzw28oFl3H42HzvGCZuOhfvHcQHfNOnpokmqHhMPhgornBrprNh7qF88NvKBZdx+Nh87xgmbjoX7x3EB3zTp6aJJqh4RCoYKK5wa6azYe6hfPDbygWXcfjYfO8YJm46F+8dxAd806emiSaoeMjY0VVDw30F2z8VC/eG7gBc26+2g8dI4XNBsP9YvnBrpr1tFDk1Q7pLa2tqDiuYHumo2H+sVzAy9o1t1H46FzvKDZeKhfPDfQXbOOHpqk2iF9fX0FFc8NdNdsPNQvnht4QbPuPhoPneMFzcZD/eK5ge6adfTQJNUOaW5uLqh4bqC7ZuOhfvHcwAuadffReOgcL2g2HuoXzw1016yjhyapdoi9YHihxHMD3TUbD/WL5wZe0Ky7j8ZD53hBs/FQv3huoLtmHT3UOqn2QkXFsrIypZXFGhoalFYN8vl8OWta7IqKLS0tSisqFhcXK9VUXV2tfUXFxsZGpftJCOG47yVqam1t1b6iYklJidKKilVVVcqPp5KSEq0rKtqoOke0trYqr6jY2NiodUXFiooK5RUVi4uLlZ7LW1patK6o2NraqrxSX0NDg9KKimVlZdpXVCwqKlJaUTHxOqDiHGGjU0VFpJTaPzZv3ixV8MorryiJk8iRI0cKKp7xUA2qfdRds/FQz5jGQ+fo7qEbMY2H+sUz12Y12D4C22Ue+arWI9VeoLW1taDiuYHumo2H+sVzAy9o1t1H46FzvKDZeKhfPDfQXbOOHpqk2iHJP3u+2+O5ge6ajYf6xXMDL2jW3UfjoXO8oNl4qF88N9Bds44emqTaIXV1dQUVzw1012w81C+eG3hBs+4+Gg+d4wXNxkP94rmB7pp19NAk1Q4ZHR0tqHhuoLtm46F+8dzAC5p199F46BwvaDYe6hfPDXTXrKOHJql2SFlZWUHFcwPdNRsP9YvnBl7QrLuPxkPneEGz8VC/eG6gu2YdPTRJtUNmZmYKKp4b6K7ZeKhfPDfwgmbdfTQeOscLmo2H+sVzA9016+ihSaodEggECiqeG+iu2XioXzw38IJm3X00HjrHC5qNh/rFcwPdNevooUmqDQaDwWAwGAwGh2idVHuhouLw8LDS6oPT09NKKyqqrJbmVkVF+3VdNR09elT7ioozMzOu7ycnfS8ajWpfUVF13xsfH1+S4ykXTVJxRcXk9jjVFI1Gle+nmZkZrSsqjo2NaXHey6QpEoloXVExGo0qP56mp6eVniOGh4e1r6jY39+vtO8lXgdUnCMS/1V1jnBaUVFYhWP0ZsuWLXL79u2O4+zYsYONGzc6b1AC09PTlJSUFEw846EaVPuou2bjoZ4xjYfO0d1DN2IaD/WLZ67NarB9FEK8JKXckuvntR6p9gITExMFFc8NdNdsPNQvnht4QbPuPhoPneMFzcZD/eK5ge6adfTQJNUOqaqqKqh4bqC7ZuOhfvHcwAuadffReOgcL2g2HuoXzw1016yjhyapdsjg4GBBxXMD3TUbD/WL5wZe0Ky7j8ZD53hBs/FQv3huoLtmHT00SbVDmpqaCiqeG+iu2XioXzw38IJm3X00HjrHC5qNh/rFcwPdNevooUmqHWLfMVoo8dxAd83GQ/3iuYEXNOvuo/HQOV7QbDzUL54b6K5ZRw9dS6qFEN8WQvQJId5IeG6jEOJ5IcQOIcR2IcRZbm1/sWhtbS2oeG6gu2bjoX7x3MALmnX30XjoHC9oNh7qF88NdNeso4dujlR3AJcnPfePwJellBuBv47/7Wl0/+al4ze5ZHTXbDzUL54beEGz7j4aD53jBc3GQ/3iuYHumnX00LWkWkr5JDCU/DRQGf9/FaCfIzmi+zcvHb/JJaO7ZuOhfvHcwAuadffReOgcL2g2HuoXzw1016yjh64WfxFCrAJ+JqXcEP/7ZOCXgMBK6M+TUnam+ezngM8BtLS0bN62bZvj9gwODlJXV+c4TiJTU1OUlpYWTDzjoRpU+6i7ZuOhnjGNh87R3UM3YhoP9Ytnrs1qsH3ctGlTXsVfAkpbszC/DfyhlPJHQohrgG8BH0j1RinlrcCtYFVUVFEpyI2KQ7FYDJ9P3YC/7vGMh2pQ7aPumo2HesY0HjpHdw/diGk81C+euTarwamPi736x83AvfH//wDw/I2KQ0PJM1ze3fHcQHfNxkP94rmBFzTr7qPx0Dle0Gw81C+eG+iuWUcPFzup7gLeH///xcA7i7x95VRWVi78pndRPDfQXbPxUL94buAFzbr7aDx0jhc0Gw/1i+cGumvW0UM3l9T7HvAccJIQ4rAQ4jeAzwL/LIR4Ffga8TnTXmZycrKg4rmB7pqNh/rFcwMvaNbdR+Ohc7yg2XioXzw30F2zjh66NqdaSvnpNC9tdmubS0FRUVFBxXMD3TUbD/WL5wZe0Ky7j8ZD53hBs/FQv3huoLtmHT00FRUdMjs7W1Dx3EB3zcZD/eK5gRc06+6j8dA5XtBsPNQvnhvorllHD01S7RDVSxLqHs8NdNdsPNQvnht4QbPuPhoPneMFzcZD/eK5ge6adfTQJNUOCQaDBRXPDXTXbDzUL54beEGz7j4aD53jBc3GQ/3iuYHumnX00CTVDpmamiqoeG6gu2bjoX7x3MALmnX30XjoHC9oNh7qF88NdNeso4cmqXZIRUVFQcVzA901Gw/1i+cGXtCsu4/GQ+d4QbPxUL94bqC7Zh091DqpFkJcJYS4dWhoiMnJScbHxxkbG2NqaoqhoSEikQh9fX1IKenu7gagq6sLgO7ubqSU9PX1EYlEGBoaIhqNMjY2xvj4OJOTk4yMjBAOhxkYGCAWi9HT0zMvhv1vb28v0WiUwcFBpqenGR0dZWJigomJCQ4fPsz09DSDg4NEo1F6e3tTxujp6SEWizEwMEA4HGZkZCSlpv7+/pw0TU1NZdS0b9++nDWNjo4q1bTQfhoaGspJ00L7qbOzU6mmnp4ex30vWdPMzIzjvpeoaWBgQOl+2rt3r+O+l6hpeHhYed+TUjrue4maDh486LjvJWrq7u5WfjwdPHjQcd9L1CSldNz3EjXt2bNH6TlieHjYcd9L1jQwMKD0vDczM6Pk+mRr6urqUnZ9sjV1dnYqPZcPDQ0puT7Zmuyl0VSdI4aHh5Vdn2xN/f39Sq5PtqbDhw8rveaGw2Fl1ydb04EDB5Rcn2xNidcBFecI+3yj8hwxNTVFNBolX4SOE72T2bJli9y+fbvjOG6U8ZRSIoQomHjGQzWo9lF3zcZDPWMaD52ju4duxDQe6hfPXJvVYPsohHhJSrkl189rPVLtBexvO4USzw1012w81C+eG3hBs+4+Gg+d4wXNxkP94rmB7pp19NAk1Q5paWkpqHhuoLtm46F+8dzAC5p199F46BwvaDYe6hfPDXTXrKOHJql2iD0Pp1DiuYHumo2H+sVzAy9o1t1H46FzvKDZeKhfPDfQXbOOHpqk2iGtra0FFc8NdNdsPNQvnht4QbPuPhoPneMFzcZD/eK5ge6adfTQJNUOse9CLZR4bqC7ZuOhfvHcwAuadffReOgcL2g2HuoXzw1016yjhyapdkhzc3NBxXMD3TUbD/WL5wZe0Ky7j8ZD53hBs/FQv3huoLtmHT00SbVD+vv7CyqeG+iu2XioXzw38IJm3X00HjrHC5qNh/rFcwPdNevooUmqHVJTU1NQ8dxAd83GQ/3iuYEXNOvuo/HQOV7QbDzUL54b6K5ZRw+1Tqq9UFGxu7tbafXB4eFhpRUVDxw4kLOmxa6oODY2prSiol3lUpWm/v5+7SsqjoyMKN1P+/fvd9z3EjWNj49rX1HxyJEjSisq9vX1KT+ejhw5onVFxeR+4/QcMT4+rryi4sjIiNYVFXt7e5VXVDx8+LDSc/nY2JjWFRXHx8eVV1QcHh5WWlHRrriqc0XFQ4cOKa2omHgdUHGOsM83pqJijuhcUXFqaorS0tKCiWc8VINqH3XXbDzUM6bx0Dm6e+hGTOOhfvHMtVkNpqLiEhOJRAoqnhvorjkxXkdHBx0dHUrjq8BLHuqKFzTr7qPx0Dle0Gw81C+eG+iuWUcPTVLtENV153WP5wa6azYe6hfPDbygWXcfjYfO8YJm46F+8dxAd806ehhY6gZ4Hb/fX1Dx3EB3zX6/f250urOzE2Du7/b2dqXbyhcveKg7XtCsu4/GQ+d4QbPxUL94bqC7Zh09NCPVDgmHwwUVzw1012w81C+eG3hBs+4+Gg+d4wXNxkP94rmB7pp19NCMVDskFAoVVDw30F1zKBSaG5HWbYTaxgse6o4XNOvuo/HQOV7QbDzUL54b6K5ZRw/NSLVDxsbGCiqeG+iu2XioXzw38IJm3X00HjrHC5qNh/rFcwPdNevooRmpdkhtbW1BxXMD3TUnxtNthNrGSx7qihc06+6j8dA5XtBsPNQvnhvorllHD81ItUP6+voKKp4b6K7ZeKhfPDfwgmbdfTQeOscLmo2H+sVzA9016+ih1km1FyoqlpaWKq0+WFdXp7Sioo3OFRWbmpqUVlQMBoNKNVVWVmpfUbG+vl7pfrKLQqmqqNjc3Kx9RcWioiKlFRUrKiqUH09FRUVaV1S0zzmqzhHNzc3KKyrW19drXVGxrKxMeUXFYDCo9Fze1NSkdUXF5uZm5RUV6+rqlFZULC0t1b6iYiAQUFpRMfE6oOIcYZ9vdKqoOHcB1fmxefNmqYJXXnlFSZxEjhw5UlDxjIdqUO2j7pqNh3rGNB46R3cP3YhpPNQvnrk2q8H2Edgu88hXtR6p9gKtra0FFc8NdNdsPNQvnht4QbPuPhoPneMFzcZD/eK5ge6adfTQJNUOsX8yKJR4bqC7ZuOhfvHcwAuadffReOgcL2g2HuoXzw1016yjhyapdoju37x0/CaXTGIbOzo65taCVhFPBV7zsBDiuYEXNOvuo/HQOV7QbDzUL54b6K5ZRw9NUu0Q+4aCQonnBrprLjQPOzo6uPPOO5XFg8Lz0I14bsVUifHQOV7QbDzUL54b6K5ZRw/NOtUOqaurK6h4blBXVzc3Ot3Z2Qk4q1zodQ/z0a66jY7ufk6BV/qhzvHciqkS46FzvKDZeKhfPDfQXbOOHro2Ui2E+LYQok8I8UbS878vhHhbCPGmEOIf3dr+YjE6OlpQ8XIlm+kcumteag+zQUUb7X3V2dnJwMCAkqk4NoXioZvx3IqpEuOhc7yg2XioXzw30F2zjh66OVLdAXwDuN1+QghxEfBR4HQp5YwQotHF7S8KZWVlBRXPDcrKyuZGZZ2MUCfGU8lieehktF51G2dmZpTG80o/1DmeWzFVYjx0jhc0Gw/1i+cGumvW0UPXkmop5ZNCiFVJT/82sFVKORN/j37lcHJkZmaGkpIST8ZTkcCmI5cE0cse6oKKNiZ+sfH7/dx4440KWmZRKB66Gc+tmCoxHjrHC5qNh/rFcwPdNevooZDxymmuBLeS6p9JKTfE/94B/BS4HJgG/kRK+as0n/0c8DmAlpaWzdu2bXPcnsHBQVfmngYC6r6bLGa83bt3A7Bu3bqs42XroR17fHwcgIqKirTb8rKH+ZLJx3z2Sy5tXCh+PttfiMX2MB+80G9UxzQeOkd3D92IaTzUL57Jb9Rg+7hp06aXpJRbcv38Yt+oGABqgHOAM4F7hBBrZIrMXkp5K3ArwJYtW+TGjRsdb3zHjh2oiJPIxMSE0p8gFiNe8iiyXSI2mxHrbD2032Nv65prrkn5vo6ODnw+HzfddNOCMbNF930CmX3csWMHQE59NZc2LhR/48aNnvcwH7ygWXVM46FzdPfQjZjGQ/3imfxGDU59XOyk+jBwbzyJflEIEQPqgf5FbocyVK+SoHs8NxBCKI3ndQ8X+nKTaipNNm3MZUqO1z3MBy9o1t1H46FzvKDZeKhfPDfQXbOOHi52Uv0T4GLgcSHEOqAIGFjkNiiluLjYc/FU3hS4EOliJyZ4gUBAaVt03ydukNhGFV4Wuoc6xnMrpkqMh87xgmbjoX7x3EB3zTp66FpSLYT4HnAhUC+EOAz8DfBt4NvxZfbCwM2ppn54iYmJCaUT5XWP5waqD4xMmvNJOHPxcKlu/symjbl8mSrEfugFzbr7aDx0jhc0Gw/1i+cGumvW0UM3V//4dJqXbnBrm0tBVVWVZ+O5OUK9EG6OlufiYTbbV71P3KCqqkppAR3d+7UbeEGz7j4aD53jBc3GQ/3iuYHumnX00FRUdMjg4CBNTU0FE88N3Lh719acXLwkOeHMNV46VCa06cj0RWRwcDDnOJkoxH7oBc26+2g8dI4XNBsP9YvnBrpr1tFDk1Q7RPUO1T1eriyUXLoxWp6N5p6eHuBYkZNM7VxqD7OhqalJ6ej/u60fZoMXNOvuo/HQOV7QbDzUL54b6K5ZRw9dK1NeKHR1dRVUPDdwQ3NiyW179Bhg5cqVrFy5kubmZpqbm5W1r729nfb29rn49t+p6OjomFsLOh9Sxc7Fw2zKj5t+qF88t2KqxHjoHC9oNh7qF88NdNeso4dmpNohra2tBRUvW3KZDrEUmnMZ1U2MtxgrpuRDYhtVtO3d0g9zwQuadffReOgcL2g2HuoXzw1016yjh1qPVAshrhJC3Do0NMTk5CTj4+OMjY0xNTXF0NAQkUiEvr4+pJR0d3cDx765dHd3I6Wkr6+PSCTC0NAQ0WiUsbExxsfHmZycZGRkhHA4zMDAALFYbG5KgB3D/re3t5doNMrg4CDT09OMjo4yMTHBxMQEe/bsYXp6msHBQaLRKL29vSlj9PT0EIvFGBgYIBwOMzIyklLTwYMHc9I0NTWVUdNbb72Vs6bR0VHHmnw+H0IIQqEQPp9vbt50Kk1HjhzJSdNC++ntt9/muuuu4+Mf/zirV69m9erVfPzjH+e6667jqquu4oYbbpjTFAwGF9S0f//+uf0khMDv96fte+3t7Vx22WUp99Ptt9/O7bffTldXF5OTk9x2223ceeedefe9xP106NChBffTnXfeyW233UZfXx9dXV1z7Ul1PL355puO+16iJvuhsu9JKRc8nnI5R+zevdtx30vUtG/fPmXHk61p9+7dOZ/3MmmSUjrue4ma3njjjZw1ZdpPXV1djvtesqZDhw4pPe/NzMwouT7Zmvbu3avs+mRrevvtt5Vcn2xNR44cUXJ9sjXZBchUnSO6uroc971kTQcPHlRyfbI17dmzR+k1NxwOO+57yZp27dql5Ppka0q8Dqg4R9jnG5XniKmpKUfrX7taplwVW7Zskdu3b3ccx42KQ4VGrh4u9ciuqu0nj7yvXLky57iJMdra2vD7/Urals/2IT8NOmGOZ+cYD51jPHSO8dA5xkM12D4KIfIqU671SLUXsL/tFEo8N0hsYzbzfXOJl2lucz7xnJA477qiokJJ22yyaWMu874LvR/qGM+tmCoxHjrHC5qNh/rFcwPdNevooZlT7ZDGxsaCipcr2SSNKtvoxsh4Y2PjolahzAfd+81S98Ns8IJm3X00HjrHC5qNh/rFcwPdNevooRmpdsjQ0FBBxXODoaGh41brcDJirXrd60weJrczm3a3t7ezbt06Ra2zyGU/ZzNCXqj9MF9S7Xc3NOvuoxf6TaF56EZM46F+8dxAd806emhGqh1SWVlZUPFU09HRgRBCSRyw5gv7/X6lI8qJHqqI19HRQSgUmpv/pqKtuvcb3fsheEOz7j4aD53jBc3GQ/3iuYHumnX00CTVDpmcnKSoqKhg4rmBz+fjxhtvBNQkmKr1pvIw+aa/rVu3AtkVk3GDxew3+WjzQj/Mp42Zlo50Q7PuPnrh/FVoHroR03ioXzw30F2zjh6apNohqneo7vFUkZiMBIPBub/zvfEgcc6zz+fjpptuUtBKC1UeJq/+kS4Rt8kladW93ziNtxhfUnTTvFgxVWI8dI4XNBsP9YvnBrpr1tFDk1Q7ZHZ2tqDiuYHPd2xqf7ZVDheTVB6mu3FxqW5kTGyjijak0pxLQZ9s4ulGPm3MtN/d0Ky7j144fxWah27ENB7qF88NdNeso4cmqc6SdAmE6nW+dY+niuSR5VgsBiycsC2UyLW3tzM2Nqa0rao8TNQcCoX4jd/4jbm/E8knadW93+Qbz0kinyu6aF7smCoxHjrHC5qNh/rFcwPdNevoodarf+hUURHA7/cfVzVoampKaUVFQGlFxZGRkbSaFqqEdMcdd9DR0aGsClcqTcFgECnl3IodoVCIYDCIz+fD5/Mdp8n+TDpNHR0d3HfffUqrREaj0bSabr75Zi677LK5GMkVFTs6Orjjjjvm7Se72mQqTfa/VVVVgLWSSTYVq4QQ3HnnnXR0dDAyMkJnZyd33XUXHR0dee2n4eHh4/rezTffzBVXXMHKlStZs2YN1157LZ/4xCeyOp6CwWBeVbjsfmH7YfvjRkVF+3jO5xzxoQ99iBtuuGGeJjumyoqKExMTWldUtM9hqs4RwWBQeUVFIYTWFRXD4bDyiopHjx5VWlExEAhoXVExGAwqr6ho929VFRXt41nniorj4+NKKyomXgdUnCPs842pqJgjS1lRcaEqdENDQ9TW1jpum41O8VKNCrpRtSmxjQuNUC9UDbCjowO/3z9346Pq9uVKOj2ZfMxnNHZoaIj77rsPUFMxMZPmfNvnpF8vRl/U6dhbrJjGQ+fo7qEbMY2H+sVz+9pcCPHAeUVFM/3DIRUVFe+6eIv5kzuo0ZzYZp/Pp7TNubRPxVSOfLArNKraVibN+cRV3a/dQIdjbyliqsR46BwvaDYe6hfPDXTXrKOHJqlegIUSleHhYaVVfXSP5waJbcw0VxqySxhDoZDC1i2+h/kkrbm0MRsPdeuHi3Hjp26aFyumSoyHzvGCZuOhfvHcQHfNOnpokmqHNDQ0vOviubmSRaqYKjTb8bZu3UokElHa5mzal256SnFx8bz25UM2+yGxjSq069APFxsvaNbdR+Ohc7yg2XioXzw30F2zjh5mfaOiEOI8IcRnhBA32Q83G6Yb6Uo757uucjp0j5cr2ZTtztTG5M9nU2K7vLw8hxYuTD4e9vT00NPTw8zMDDMzM1n5kC2pYmXTRvtz2ZSCf7f1w2zwgmbdfTQeOscLmo2H+sVzA9016+hhViPVQog7gLXADsBeGFACt7vTLO/Q0tLyro3nxgh1qjnGmdp48ODBnOInJrF2fKckti9d3OTRfRtbbyayvTnT/jvViUSnfrMY8dzAC5p199F46BwvaDYe6hfPDXTXrKOH2U7/2AKcIr2wVMgi09XVRWtra8HEy5bkhNCeBpGKVG20P293uVySZHv5tVw/l4qOjg6CwSDXX389kP03Yzem0NjbTlUKPZv9nEub3i39MBe8oFl3H42HzvGCZuOhfvHcQHfNOnqYbVL9BtAMdLvYFk+ieofqHi9fkislJiZ0qdqYPEK90Ih1uoQxeeQ4nyQ3EonMGwnPN04y6UaibRLniaciMcFP9FBF296t/TATXtCsu4/GQ+d4QbPxUL94bqC7Zh09zJhUCyHux5rmUQG8JYR4EZixX5dSfsTd5ulPd3e30p8gEuOpSI5Uty+RTO1Ll+SmShBTtbGoqAg4lsTaf2dDMBhcMGFdiMTPV1VVHVelcSnmctlfTGxNiV9UctnP2fQnL/VDVbh5LOscUyXGQ+d4QbPxUL94bqC7Zh09XOhGxf8L/DPwt8DHgK/F/7YfrqJTRcV0VYNKS0uVVlSsq6ub05RcOTBZ0x133MFtt92WUZONimppd911F7t3755XDRHIqMnv9wPHqkQuX76c5ubmeZqampqOq4T0O7/zO/zu7/4uRUVFhEIh/uiP/ojf/M3fXHA/3XDDDVx22WUIIfD7/RQVFVFUVMTw8DD9/f0MDAxw6NChueqD6fZTIBBACEFpaSmTk5OUl5dTUVFBMBgkFArR3NxMW1vbXN/r6OjgrrvuorOzk5GRETo6OrjzzjsBqxJncnWnmZkZhBBz26msrKSnp4eJiYm5GFu3buXrX/86kUiEQCBAV1cXfX19x2kaHBykvr4+64qKd9xxB7fffnvG48medpNc+TKbilV2OxL3U+I+d1otzd5PqisqFhcXK6uWNjo6SkVFhfKKisXFxVpXVLTPOaoqKjY3NyuvqFhfX691RcXy8nLlFRWDwaDSiopNTU1aV1Rsbm5WXlGxrq5OaUXF0tJS7SsqBgIBpRUVE68DKs4R9vnGkxUVhRDNwFlYI9e/klIu2lDdUlZUXIi+vj6l6wP39fWxbds2YOHKePao7y233KKkfQvR0dFBKBSaOwFmU7kv3Y17iZ/J1MZsNCaTGC+b7acicaS6vLycuro64NgIdXJ70s0ht0faE7e3devWeaPM6T6T/HcyQggA/vqv/zqnfqO6HyaTKr7Kfmij+nhW3UY3NKuOaTx0ju4euhHTeKhfvKXOb94N8WCRKioKIX4T+GvgUUAAXxdCfEVK+e1cN/huo6amZtHiJSeI2czvVdG+xISxra2N/v5+xzETydTGXJLpTPGc3Dg4OTk5l1Qnzw1PF98m0+ofC02RsbWni7lixYqUn891NRFV/SZTfNXHiRss5rGsU0yVGA+d4wXNxkP94rmB7pp19DDbGxX/FNgkpRwEEELUAc8CBZ9Uj4+PL1h7PpdkZnx8fMGb7pLn89p/p4qbTfvcIFmzPcqZarQzlzZmkxQ70ZzKc7/fz4033phTe1Ltw61bt7J161ZmZmaYnZ09bn55upshk0fHv/KVr6Rso0oy9cN84y1FP8wF1W10Q7PuPhoPneMFzcZD/eK5ge6adfQw26T6MDCe8Pc4cEh9c7xHaWmpa/GSk2U7QbV/9s81Xr4kJlehUGgugctmDeZkUt3gl6mN+SR0qTy0yTUx7OnpIRDIvvBoPolnutHvdK8nj1B3dnbOuzkzXRtySZLz6TeZ4qs+TtzAzWNZ55gqMR46xwuajYf6xXMD3TXr6GG22cIR4AUhxE/jf38EeFEI8UcAUsp/caNxXiASiSy4Y3NJZhLjpUu2kufB2yObqUbCM7VvofbkMgqbTLZL3EF2HuYy2h+JRLj77ruB7JfASxe/ubkZn+/4+3mzbU/i3/ZI89atW/H7/cet5pE8mm+TbhuJXqoeqU7cJ05GqFPFcwMVo+mq2+iGZrd9dIrx0Dle0Gw81C+eG+iuWUcPs02q98Yfdjb3U44ttVfQZBo1zudCL4RYcOpEchEQuw2pbjpNbJ/TxKO9vZ0dO3bk9dlMSWgqD9Pd+JcNQoi0U2SyJdHj4uJiJUmbahLnYAeDwazbls37cvk1JJv4TuItFqrb6IZm3X00HjrHC5qNh/rFcwPdNevoYbZJ9TbgL4BVCZ+RUsrT031ACPFt4EqgT0q5Iem1PwH+CWiQUg7k2midyGWEMJtVGLKJlzy31p4OkGo6Rqp4C42y5jMKm+59mUaoM7UxmUzFY1LFy7Smcyoy3WiYuDRh8vvtedG5JNu33HLLvDu1k+dIJ5PNjYip2ugE1SPfquPZ5PILxkJ4QbNbPqrCeOgcL2g2HuoXzw1016yjh9km1XcCf4JVWTHbq3cH8A3g9sQnhRDLgQ8CmUvkaUa6i3U4HCYUCqV8b64X+oVuOEv+vF0QJdOobDgc5p577pnXnlxGfVWRKSFM9DDdyhfZJOeJ8Zwkvcnby3Sj4mKQbpQ98cZGn8+ndDQ9Vb/WKZ4beEGz7j4aD53jBc3GQ/3iuYHumnX0MNukul9KeX8ugaWUTwohVqV46V+BL2FNIfE8+ezQdEk35DfimG5UtqOjI+XPI7mM+maD09HCXDzMJmZivIVGqBeK39PTk3G0P5+y5fY61Q888ABwbNpOujW5E/cnpP5yFA6HF9xuLqg+Ubl14svlfoWF8IJm3S4gyRgPneMFzcZD/eK5ge6adfQwq+IvQohLgE8DjzC/TPm9C3xuFfAze/qHEOIjwCVSyi8KIQ4AW9JN/xBCfA74HEBLS8tmuxCFEwYHB+fWG86W3bt3A9bSLQAVFdY08nXr1gEwPT1NSUlJxs/a700X007aZmdnCQaDx8WzP58cz57fbE8jSPV3IBBgw4YNKT+frn12nNnZ2Xnt27hxY0oPF/JoIaanp9m1a1fabeZKpn2SK7t370YIwYknnjj3dyL5aN6xY8e8IjrpNGfqJ4nbBOa1MRtNC7VVpYduxIP5x3M2mhbCC5pVx8znnJgJ46FzvKDZeKhfPNUegv6a3byubNq0yb3iL8CvAeuBIMemf0ggY1KdiBAiBPwlcGk275dS3grcClZFRRWVgvKpOGQnmIcPHwaO3Sxox4nFYilXh0j8bPI27b+TpzIcPnwYIcTcHOnk99vx7BFOe5Q0eXqA/b7Ozk6EEHMlN+33XXPNNSnblfz5ZM12MnjJJZfMa3/yaKEdP1tisRiPP/74PE32KGw++z3TPsmWxFFhIQQTExPzXs9Hsz0SPTMzk7KITvIIdbr9YCfX9jbtNmTrVbp+mYgKD92MB/OPZxXnBy9oVh1TdRU246FzvKDZeKhfPDcqKuqu2e3rSj5km1SfIaU8Le+tWKwFVgOvxqcktAEvCyHOWsyS59my0Nxem76+vgWr7C1EYoIWDAa5/vrr572e/LN/ujte7XYkJtkVFRVZr3yRrDF5PvJC85lzXWHDpq+vb95yc7Cw7wvFy3XaRyYSPUye7uEm2e6H9vb2ed6n8yyXaTpOPEwVNzGejiupgPp+ozqeWzFVYjx0jhc0Gw/1i+cGumvW0cNsk+rnhRCnSCnfyndDUsrXgbki7QtN//AKTnZoujWWF8IeybYTqeQ51YlzbcfGxub+znX+b6q5vG1tbfNGXBNfz8aLhVayUDE3WPVBluhhMrmu+gHw5S9/ed7f6chl3rZqzbrHcwMvaNbdR+Ohc7yg2XioXzw30F2zjh5mm1S/D7hZCLEfa061YOEl9b4HXAjUCyEOA38jpfyWw/a6TnLCmO7mMUg/spyOhZLZ9vZ2urq6Uj6f6vPJZa5tEhPTqqoqRkdH572eXKnRJtWNk9mQbhQ324QzGAzO/T9VtcBcY3Z1ddHa2prVtpNJpb2qqorq6up5z+Uzypq8vzL1rVzp6uriwQcfBNJ7lu1Nfbn268TPpdv+Qu3TYfTaSb9ZjHhuxVSJ8dA5XtBsPNQvnhvorllHD7NNqi/PNbCU8tMLvL4q15g6kjiyrCIxyNRBkqdXJCdj9vYTk9zR0dHjisMkTxPJZQ3nfMuUJydc6b68JM+pThcnk8dODjLbEydL+jllodH8VKg+sWTzi0ku6HbiS4XqNrqhWXcfjYfO8YJm46F+8dxAd806ephVUi2lzD578jjZFA1JTBCrqqoWTLQyLaEH85OlTN+8sv2pI7E4TFVVFV/84heB40dK093ouNjzh6uqqpienp73XLpl/7Lx2skoayrNiSPpTr4wJe4XIUTeI9SpRri7urqyTsIzjVDD8f063dzs5OfTbd/eJ6le7+jooKOjQ0nxFqd4YRRFx5GZRIyHzvGCZuOhfvHcQHfNOnqY7Ui1IQ2jo6NzCWGu0x9S3diXqoNkm5Qnb09KycjIyNzfqW5kTGy3Tbp5ze3xMuXzSpVLyez0UUqYoZwwxczgP9BJMTPwsh8iUxCZoH3lFEQm2TX4MoFYBB9RfHKWGTmOf2SWspIgPjlLWE4jkLSFW0DGGBwcREjJ4Nf+EYngg+EIEkHf3/8rEkFTSxv4g+AvBn+QC/oPMysC8LPtEAxBsDT+CFmPojIorkh6VNLXfYSYOLYedfKI9WKQ75QXNxLR0dHR46a8OEH1yLcbeGEURbcLSDLGQ+d4QbPxUL94bqC7Zh09NEl1EnZi8p/fuo3RiJ9Nl1xJNBbjhX2DzMYk0Zhk5TlXEI1Jdo4/gvD5GZ+NEZMwMDGARDA0UoxEUPqrg8QkbB8uQQJD0QYA3um0ktZotBKA3/nX7yOAc849l6NjY1RWVSIQPPfcswhAUIwQMBStBWB8rBiBxCesye2P7urF7/MR8An8PsGDD/wCn4DBWCnlZSH+6X/uwC8kfuHDLyTTMT9+IZmVAh8Sn2/+9JDVbS2Uzo4x2vUO5Uxw7altcLQXfvZHrOzaS+PQEUpmJwjIMUJMEWA2tZn3/SzhDwHBECtnBbMiyKwIEhN+ppgFfxHh6Vlm8RGjCIlgT88YACeccBoIwcGDBxHEmGYSgUSIYgQxkDGYHmOwvwefjFIVmSYoJFMvv0VARgjKMNbqj5n5EhARRUzKYqYoQVLFjC8E9x1hQpZQ1rASyhqgrA5C9fH/N9Bx53fn9ZtkUs0bllIipcw5GU43Zaa5uZlA4NihnO3IcjKJI8mBQIAbbrghZZxsy9cnvr+ioiLl+3OZ4uI2vb29NDU1aRvPrZgqMR46xwuajYf6xXMD3TXr6KFJqtOw+2gRP+mu5H/+45kM76pK+ttKkokPBN/3o9fjz1fM/zd50K7X+ufnP3kj6YWKpL/j8ZPuZfx+x/ak99Uc+3cGGDr2iiBGE4IVoo9WMUWrGGSZGKBVDNIiBmkRQ1QdnL8mMz+/j5gUTPormBYVjMVKOSIaGYm1cZRSZEktYV8pQ5NRZiji/Zd+GH9pFUWhKopDlZSWlxMqKSdUEqDUP39NyZ/Gk6mDB62q9XZiL7AS/b/+zF8DYK/cnS75uj8hgfP5fCxfvpx4QPwyyo3XXW2NmocnIDwOM9bjqUd+QTA2zTlnrCc4NULnr56kVE5zYmMDTA3D7l8SmhyEWJRUXOcrY8pfAbf/GMqbrEdlK1S0QOUyQtER6/UsyDR9IhX2Lwq25uQ59elG2bNJYO21zTNtPxcmJiaora11HMdNVBdOUB3PrZiqcOOLUaF5CN7QbDzUL54b6K5ZRw9NUp2GP735Y1xxZJSAX+D3+QjGR4EDfoFPCAI+Hz4fjI+NUVdTjc8n+MmPf4xA8qlPfhIhwCes9woBQsDdd9+NAPr6+hFIZuJJUVGRdVPe7/3+7zE0NMxDDz2ElHD4yGGkFLQuW4bEGm+VUhADpIQj3d3WFIjmFmISBoeGiElBTU0VVbNDBAZ30xoYpS42QD3D1MtBGhgmKOaPLI/JEP3U0Cer2R1bSR/VDMoq+mUV/VQzQA0DVFJR1cLYxBQT4QhRCeEYSHyQNFvk//1MAiPxx3yK/D5Ki/yUFwcoK/Yz3F9KiR/KijdQ7JOEJ0YJilkaayop9kl+uuMI5cUBKkqCVJQEGIn4KPFJYjFrhD35Qr5161ZKS0vnJaSzIgih1AndMz99E4Bz3v8lAF7useKdmJAYDA0MUFcWgMlBmOiHiQGeefg+SmfHmR05QnlsgsiRA4Sir1E6O4afYwnpNUAMwcT/+TIf9lfTcOJmXq8YJRzpYfP5H4Oq5TBzFIrLU7YvkcQ52XBspZTOzk5KS0uPe3+6keWF1hNvb29ncHAw5fOJcXIZ+fb7/dx4440LvncpGR0dVXqSVh0v15hLMfpv38SsiqX2cCnwgmbjoX7x3EB3zTp6qHVSLYS4Crhq9erVTE5OMjs7i5SSYDDI1NQUFRUVDA8P09DQQE9PDy0tLXMT17u7u2lubqa/v5+amhrGx8eJRqOMjY0hhMDv9xMOhwmFQoyNjVFbWzu3kHhXVxcPPfjg3A1vvb291NXVMTo6SllZiJmZmbmf2ycCxVRWBpmYmOCLv/5pBgcHaaoNzbXD/renp4eKgCQQCFCxrAGfz8ehQ4fw+Xy0tjYipSQQmWRZbTmRsQGOHj1Ka3Ulo6Oj+KaGGR0d5bOf/ew8Tf/9jX+jMtzLNZsa8A3t5sDAg9TJYeqGRhGxCPiAGIRFCUeLGuiZqaGr+CTC5cuYKm7k7d4pIiX1/Nbv/xH1MzM889OfAvCpj36U4uJivvGNb1A9Pc0/fvajNDU10dXVRV9fH42NjbS2tnLXXXcxHY5wyaWXEywp43+/czvT0RhXfuwTTIVnCcdg9Og00h9kYHQcX1EpfUOj+IIl9I+ME/MVsXPEz/SsJFhczVhUMhgLEpY+ZL81Uv3z7+9I6hXWAfQPf7mNsqAfIlWEApIHbn2OEl+Mnsk2yqKCV//5HkIBmBqZpFjM0n3rdykRs5QFBQEZpSgYIBqNUlJSwujoKHfddReRSITLL7+cxsZGBgYGqKysZHJyEp/fz3jUjww2EGxoZap8incqBggEAuwd3Tu35F4wGCQSDlPmD1M0PUClHGeyZw81gSkaiyOUzQ4TO/Iyp4wdxj8Whe9+d07VbGkd/ro1TJY0sWk4zGRxI7/47z1MljRz6OAQpaEQt912Gz6fb+7GyY9//ONz+ykSiTA+Ps7ExMScJvtRWVnJ+Pg4Y2NjzMzM4PP5iEaj3H777db+/tSnjjuejh49yv33308wGJx346Ld7/1+P1NTU0QikQWPp2AwSDQanTsW5h9PZfOOp2g0SnFxMRMTE1RVVVnHU7zvJR9PUsp5+6moqMjROSISiWStKbk9qTTZlThz0dTY2MjQ0FBaTZFIhEgkklLTg/Fz1mc+85m5ap0L7ScpJT09PVlrSrWf7r//fgKBAJ2dndTW1s67WTgbTZn2U21tbcpzeWlpad77qaysjMHBQUd9L1HTzMyMkuuTrQlgcnLSUd9L1hQOh4lGo476XqKmiooKuru7s9a00H6anJwEUHaOqK2tddz3kjWVlpYyNDTkqO8lapqdnZ2r1KviHBEOh5mamnLU95I1zczMEIvFHPW9RE1VVVWO+16ipqNHj1JXV6f0HDE1NTXvl9pcEfbP7TqzZcsWuX178hSH3Mml/GS2awiPjo5SVZU8DSQ7UlUP9Pv9HDlyBEhYXq6oiArG+d2Pvxd63uDAi9uojnRTGenDF58vPIuPIaoZpIZhfwNDoo4hXy1Hi5v57T/6SxDiuJ/x7RFMu/x1Msmv2zcqpiuznur96XxMnB9cWlo6d7OnNd8YWlesZCbm40jvADPSzyeu/Qzj01HGpyOMTUV56oXtTMcEg2OThGWAqAgyI/1Mx3yE8RMl/YiZQFIsZikRUYqIUkyUUCBGiZjlQxefT22oiJqyImrjj8DsNG2NtYgMHiYX2En2dN5oYSzGGy8+xoZllTB6EIY7YfjA3CM2cggfsbm3hwkwRDUjvjqGRS19sxUMUMugqGNalCClpLS0lKmpqXnbtNuUfINq8rKFqfr46OgoP/7xj+dpTNyvueLkOEmH6rK8qtvohuZMMbM5HpNR4WHiLyKlpaU0Njam3V6uLLaH+aB7P3QjpvFQv3hulCnXXbOb1xUhxEtSyi25fl7rkeqlIN3SaukuEIk3iOVK8rJxPT09BAMBbvncNdC1g2d++J8008da3zhMDcH3/wMQ1ATqGSlq4dXIKvqop496hqieW71CSAESVrStoMzns+aeKKAjvk61feAmTrlI1pEL9jdSGyGg57A1x7pUSkqBvc/8fN42B5+9B4CZopn4Z47dbFlUVERDcwvTs4JDvUPMSD+l1fVMzQq6BkaZkX4ivmKmpZ+pWR8TsojRWDETsz5e/cWulG0M+gW1ZUWImWpCfklZIEaZP0Yk0kypiFDhE4REBL+MUULmb7kdt99OKBRiwzmXwPIzjz3f0QHVcGhkH5WMc3JTMZWRfvyjB6iRwzTKPk6MvYPfTrglHJUhBqhheLqBPqoZoJY+WccY5WnXI8+0XKRNIBBQehOhk+NksVDdRjc0p4qZPM0n3RrvbpHYT3w+HzfddJOy2IvloU54QbPxUL94bqC7Zh091K9FS0y6NZvdoL29HaaGefC//oyGmU4+Mb2LNnrg3/8PAOfgo180wslXQvPp0LIRmk6hqqiMKuCx+MW0LP6wL6pFRUUQ/7uoqCjtEnx2MrzQDXIL3TCXKlk7ePAgW7duTblSBRwbHd26dSvBYJCWlpZ5MZJZaD/Ympubm/H5fMRiMcoDklB0jBBQfHSSKqAmkDiSHJt3U5+UkqnILINHwwxPhhmasB7dw0d59qXXmZydZCAyw3g4wFCglImoj4hssxqQdPNp9cEgDeXFNFRYj8M/e4uGimIaK4vZNxGkQQhGJyNUlga47bbb5n02JvyMUE1X6Uq6StfTM3ninDYhZxnrfJ06hjmxRlIV6aV04jAnyd1skpNzMWYoYqyrheGiZkZLmxkuauXSq9uhvImt//APgB7zmA3qSbfGu8FgMBjcxSTVSeQymgfkNvdGShjphIPPQ+ezcPA5GNjNpVg3IfZTxx7/iXSJVrp9Lfzal/6R5kDRgmHtlTNsEtedTrxxKLk8ebpqhsnJc+JIWFtb23HJtv3vl7/85bm/05VQT4XP5zvuOTtJttuUbeEbODZqnUg2xWSEEISKAoRqAyyvDc09Pzo6Stmh5wHoDM8fDTw6HWFaBqhqXs5E1MfRWR8TUR9tJ5xC//gMA0dn2HFohL6xGaYi9g2i1QD881ceJCAk5YFaKgIxTj9xBU0VJRweLKUiEOPAZIyKwCwT02ECwhrJl8LPREkzEzTzmS8e+2JSXFzMH37uRuh/m+fu+w7VkR6qIz0sn3yLdbEXrM3+838x7Svj5qIWhoOt8FIHNJ0GjSdD0TG9ML9fq0jKnMxRWyxUt9ENzTr72N7ezujoqNKYheYheEOz8VC/eG6gu2YdPTRJdRLpRnHTkemn1o7vfIfKaB+f2FhnJdGdz8F4fD284ipYcTacfg2/fHOIgeIV7DnUR8AXYNmyZdaCclkk1Kmwk8oVK1YghJibWpGugqJTUiXhzc3NtLe3z61Ukfxlxf7MLbfcwvT0NN///vfnxUieupC8HzJ9+YnFYguOxttkU1glVZJuExQxgiLM8tLogvH+51u3MR71sedIP6W1TfSMTDEpA4xHfUzOBHlu5yHGo34iMnklkDqKiVK9HyoCs1QGyqkMxrhn+yFaq0r51G/8HrXFAsrKoKyetyvfmffpvgO7aGSA9bUxasJdnFQdpaXvZbj/ScsvBGPBRqrXvReaT4Pm0yiuOQl7yUgV0z8We0pCPqhuoxuaE2MutNThUoxQe81DHfGCZuOhfvHcQHfNOnpokuo0ZDsyaq+2MMfIQdj/JOx/kk8dfoCy2VE4AlS0si/WTG/teZx7zR9C4ykQH6Ht3tcx9/F8Okni0mqJf4M1Cmzf+GiTXDEx+e/kObiJCarf7z/uYu10yszExETWSXA2JI58J2vLJ9Hw+XzMzs5fhjCfn9h/6zduBiyNzdURzqi2Dr/Ozv2ANSVFSrj609fTNzZNz+gMPWPTbHvsWcaiPqpbVtIzNk3nyDSDo2Ee/+Fr8+JXh4K0VpXSWr2BZdUltFaX0lpdyo7DY4z56rnp9/742DKELTHaP3oR9L7Jaw/cQW34CNVHtsOb9wJQAlDeDC1nsHEYhoraYOQQVLXREZ+ukouXxx0nSehQ/GWhNi51vHQxdSqg41UPdcILmo2H+sVzA9016+ihSarTkO2Fqao0AG8/AHseth7DVoI05StnX2wZBziT8LJzGQ/Uzd0weG7zhrTxkldwSEXyjUnJI6mJSa0Q4rhR3WSSV4BJLCoC86eHzM7OZpXohsNhOjo6joudaiUCe7k2exuJGrPdD4krW/h8vrk229vPNV6ix4nFZOwvPU6S/nA4TCwW49d//dfTtq2yJMgJjVbRmKOvW3Ol228+dlPjdGSW3rFpukam6Rmb4vDQJD1jM3SPTnN4eJIX9g8yPm3/NLYWgHv+6gFaqkvwTVVRFZzl8W//iurgLDPDZ1Euwpzc2EJJxSSfueR0Zo/sYP+zP6HuwGucHumxVpn5t28x7Svjg0XLGSheAbsaoHWTVehmgZthF7pD2817F7JF9V3kquPZMdOtP64DXvFQZ7yg2XioXzw30F2zjh6apDpXpIT+XfDOQ7DnYfydz0IsAsEQrDofzv48P3ltiJFgC53xuc7Fg1GgN23CmJigJZaHzjYRTDf/2C4PbX/enoqR/P7ElTNSve42qQqNLES6pLazs5OysjKOHj067/nk+eS5jOaVlZUdtxxdPnHszySXKV+IVNsoCfpZWVfGyroyIHW51v/+1m2MRn28c2SQo7KIaV+I8bEgY9EAPZNFTGEXjLEqdfrellQFY/z84QD1JWdy1NdAdUWM2OABThSHWRPop0X20DTdxWnTb8P3H7Q+Xt5kJdfLNscf74HSmnltsdddTeeJE19Vka6NusRLXCc8Fao9y2dfJGpWsS9Ve+hWTJV4QbPxUL94bqC7Zh09NEl1NsxGoPMZePsX1mMkPuLbeArinM/DCR+AFedCwBrF/Ng51svp1o1NR7bTKNL93GuPziZ+bnx8/LibBpNHrhdKohPnNyfe+JhupNyO2d7entWFtampKe+fsJNLctuft0tiZ3vDaTKZkvZ8Sbd/F1oLPZlUHqU6sZT4JSX+Wab91s1jyWtpty5fyWjUz0jEx0jYz/KTN3J4eIpDQ5O83TPJwFF7bvfpwOkU+WLUBGMUR8ap941zXtUQ68V+Vs92smzfK1TvfuDYxmvXQtsWK8lu20JT02k5ebIUqD45u3Gyj0ajWk33SMYLHup2EU7GC5qNh/rFcwPdNevoodZJ9VJWVGytCTH8qx9Q0/ccsd0P4guPI/3FxFZdwMzmz8OJH0RWWNtpa21jYvQoVVX+eZWQgHmVxR544AECgQDXXHMNk5OTx2latmwZPp+PO++8M2W1P7ui2hVXXEFNTQ0DAwOEw+E5Ta2trQgh5oowhMNhmpqa6OnpoaqqipmZGaqqqujp6aGsrAyfz0dpaSkNDVaFR3ukWghBLBajv7+fqakpAgGr+mBFRcWcpkgkMlepr7q6mpmZGaSURKNRWltbAWsqi9/vZ3Z2lr6+vpT76a677gLggx/8IDU1Nfj9fmKxWNb7ya7YB9ZobW9vL7W1tdx4443MzMzwzW9+E2Aurq3J9vjSSy/NWN3J7/fj9/u56qqrkFLy4x//GJ/Px3XXXcfw8DBbt26lvLyc3/u931uwYpXty+HDh/H7/bS0tOD3++lIqECXTcUqe8746OjoXMUquwpVYhUuW5vdf6688koqKyu5++67kVLy8Y9/PEFTjOsuWcvw8DDbtm2jpK6E0clpJmQxb3b2EimuZiZQxkg0wKCs4LVINS8PrgA2AuBDsq46xoUVRziDdziFfTS+/Qilr90NgPQXEak/laI172WkYh3l6y9kVJbT0tKCz+fj8OHDACxbtoxYLDZXfcutiorJ1QdramrYv38/y5cvV1ZR0W6702ppP/zhDwGr2lxNTc28EWu77+db1S5VRUW7vwwNDTExMcEdd9xBLBbjYx/72IJV7d544w22b98+V4mzsrJyrr32eS+X/WSfj1RWVLTfq2tFxf7+flpaWpRWVOzs7GTt2rXKKipGIhF8Pp+2FRXBuhdGZUXF6elpysvLlVVUPHz48NxSsrpWVNy3bx/r1q1TVlHRvjdJVUXFN954gw0bNpiKirmyFBUVeakD7v8ilDXAusvhpCtgzYXHLT2WC+lGltLNkbb3TXJlvOSR6UzVClORHH+hioqJI5xtbW1zo9XJI62p2rPQaFq+o23JnqWrYJhupDldlblc25tt5c1Etm7dOrc6SjbbTN52rhUOF1p/PN37bVJ5HJMwHvUxFPazp2eEMVnMbGkNQ2E/47KEibB18mxhkPf493JB6X7e43+H1eE9BKQ1Zz9a3op/5TmI5WfT8ehO+kQjX/rzv8yoJREnFcTy2W9LRb77PRtSeeh0e262V0fcqGRXaBgPnWM8VIOpqOgWJ3/EWqFj2WbwpS95bX+7yYZsLipVVVWMjY3Ney75xkF7brSdFGdKEBLj2e9PXB0kVbuSp4ukWx0keR5sLlMsEi+8iTdfJbcp24QzsU2J8XJNmlORuI+Tk+nktb6zSdKam5sJhUJpbzjLJ/nI1A+T4y2UTNv7pLq6Gsj8BaQqGMMXGLDet8w6ndx8880MToTpHJxg/8AkBwbO5peHBrhtIsaRqVFWRvax2beb94y+w+Y3nqD1zXtpxypY0/f1x4i1nU3FuvMpW3sulKi9ESXTHO5cjuVsUBUv8Viwf9FwEyfTS7q6upROT1G9T9yKqRIvaDYe6hfPDXTXrKOHJqlOR6gWQmct+DbVF01gLpnJds5zJuwpApm2l0zynOvEJDwUCs2NVCfPL068eOaSMI6Ojs5pznZObaaR6MR42ZKpvaoP2vb2dnbs2MGOHTty/lxy22xUtzEfD22EENSXF1NfXszmlbXxZ08CrC92/eMz7BuYYP/ABN/pP8pIz37K+15hxeTrvKd/N6cO/CeBV79BDMGhwCq6qzYy1XIWJWvey/LVJ9JaVYrPl3m1kXRkmsOt2kPV8XRYIWUhdPfQrZgq8YJm46F+8dxAd806emiSaofY8xFVkTgSlTz6mZxM2SPWyaOj9t9f+cpXqKio4A//8A/nfd4m3SjuQqgYiUoefYtErDrfC1V5TLetxBHk8vJypT81p9rHmaa8qCYbn1X0w3Qjotn2i0zY7RNC0FhZQmNlCeesqYu/egrwYSKzMQ4NTfJkdz8T+56nuOtFGkde4bTBX1A2+GN4Aw7FGriPkzlYcQaHS07i6cEQJzRVcmJTOStrQwT8x1fnTCRT0SDVx7LqeIn3DywG+RxDiZpVHIOqPXQrpkq8oNl4qF88N9Bds44emqTaAarvvm9vbycWi839raKzJC4t57Sd9ghrtu+F7DyKRCLHjcIlTznJdjszMzNza2QvtN1s29vY2JhVjMUilSbVbbS/5GTTjmyqj2bTvqDfx5qGctY0lNPx8hMQOoNLf+dfkbMRhg/sYHTXE/gOPscHB7dTNvEkTED/k1W8GDuJ22In8zKnMlt/EmubKjmxsYITm8pZ11TBqrpjyXamNqv2UFW8xF9RhBBarvpho6uHbsdUiRc0Gw/1i+cGumvW0UOTVDsk07qx+TA0NER9fT2Qfi6sfVFNV9gk8fWysrKsb0xLvrEoudBJMiou6u3t7QwMDPCzn/1sXhsWmvedibKysuOeczJ/OXGfJONkhDpdIp/uRsFMbc7UxnzaNTAwoHTOt5P2CX+QmrVnUrM2XvxGShjcw8Gnv09rpJMPdj7Lh4++CMDR8QpePnoKT7x5Iv8RO4WdcgUBf4A1DWWsa6pgXTzRLqptpToYm7cdlR6qiJfqF4JUfXuhzy9m8q2bh4sVUyVe0Gw81C+eG+iuWUcPTVKdB4nJhr0kGqi5eFVWVjqOkUg2FRrTke1ocSay8aSysvK4KS0LzftOt52tW7cSi8Xy3hepPqd6n7iB6jZmEy/TTX/5xEuMkTGRFwLqT2Ro1VWssO92H+6EzmcoP/AMF3Q+zQWzLwAQDlZyoGwj28Wp/HL/ifzzq41IfEAdoSI/P/2PZ1jfVMG65grW1pVwWskMdeXz70HIF1X7JPFYEEJw8803p3xfsldLMQd7KfqhDjFV4gXNxkP94rmB7pp19NAk1Q6xbyJMRT7Jtr1GYyYWmlqR+Lrf7+fGG2/MKZ5NviW+cyVRc7L2bLeZmOCVlpYe12Yn88Cz2SdOSG5brr8YuNHGyclJJXPnE+O56SE1K63Hxs8AcM83/43m6Xe4YLlg3YGnWTf8JJ8BZHUNo01nsbfsPTwvN/D0iI+HdvZy9/ZDc6EaKopZ31zByS2VrG+uYH1zJSc0llMUyDxfO5l8Naf7YgHMrVGezeeXokqlG/0wl3jZaHW9LzrEjfYt9X5ZbIyHatBds44emqQ6DxKTDZ/Px0033aQstuoOks865Itd5a6oqCjvRCDVSLaThdtTsVQHbS6l0VW3UWW8XI4Tp4n8XEJ6ZJSdNLKvfCVUbaH95kug8xnE/qeoPvAkmzt/yWbgd8sa4eTzGW85l9f8p7Az3Myu3qPs6hmj49kDhKPWFJGgX7C2oZxTWio5ee5RkXFUW/U+aW9vnyuSkVJzmgqnizlirXM/dDOmSryg2XioXzw30F2zjh5qnVQvaUXFLKoG+Xw+fD4f09PT86oG/eIXv5irKGavmRwMBjl06BChUIjPf/7zaasGCSE4evQoDQ0NfPe73yUSicxVxkvW9JGPfITS0tK0mm666aa5C202mj71qU8BcO+9986rPtjW1kY0Gp2rVKWiElLifiorK5ur2hgKheaqdYH1TTTTfurp6aGiomIuhs/no6ysDCEEPp+PiYkJ4Fh1p6uuuoqqqip6e3uzrlgVDoeVVUuz95N9Q2Wipvb4Wsl2tb9IJEIgEGD//v2Ulpam1TQxMYHf72d8fFxJtTRb05o1a+bWHe7u7raWw0vQJIRACEFxcTGxWGyuauXAwMC8/RQMBpmdnc2pCtfo6CjT09Nz+8mu8mcfC+kqKtr9JhgMzq2UEQgEkFVt9DS+n5YzrrPaURpmZMfPqBp+ldjeJ6h440e8Fzi3chnR5ecxe9b7iK48n3eOltI5GuW1g4PsH4nw1O4+7n3lyNw5qr4syOnLa1hZ6ec9axpZXi5Y11pLJBJmenp6rsroT37yE3w+H5/+9KcXrJaWrvLl1NQUQ0NDBIPBefvJ1gvWuvTT09OEQiFGR0cpKSmhsbERIQTj4+NZVVR0UtWuu7ubtWvXKjtHVFRUZHU8/ehHP5qrxDkxMXFcf0nUVFxczNTUlLYVFe0vTiorKg4ODlJUVKSsomJJSQnd3d3aVlSsqKhQdn2yNQWDQaanp5VVVBwZGZkb9NK1ouLAwABtbW3KKiqGQiFl16eWlpa5842pqJgjS1JRMUvGxsaOm9eT7mf85AqEC8Vz+rNt8ghhrvFSLRen2sN825jscWLVx5KSEpqamrKKkw2p9rFTMvmY7sbFTFqctDFV/Gzipevnqaaz5LpPsvEg0cN8PJsjfuPj1M5fUtr1Ahx4CqaGrdfqT4I174fV74dV74PSaoYmwuzsHuOtrjHr3+4x3uk7ymzMOpeWFweo9U3RWhrlk5ecw6mtlTz7wL34RW79MdWSmplG/JM1Z7Pco+rjOVO/yed8lm2/Xqgv5hMzWxbTQ11iGg/1i7dY+c27OR6Yioquke0FINW6sckX9uSf8TNd7ILBYMY5ldm0KREnX5oWa/1HFVNUbFauXJnxZq58WMy1gSG/LwKJbcw1eUnlZTaac5kmNDs7m1Vbkvt+tuuVO5riIAQdP3sGISq4+eY7IBaD3tdh3xOw/wl45U548VYQPmh9D7VrLuS9a97Pe887GwJrAJiOzPJO71He6h7lza4xHtuxh5eGS3j+B68C4KeOGjHF/Vt/SEtJlN/65IdY11xOcSB9tdZUx1/isbLQfl6K9VtVHyvZxsvly9RiH8+54kb7lmq/LBXGQzXorllHD01S7ZCpqSlKS0vz+myqC4CT1TqS43Z2dhIKhXIupGLj5o1NyW3MNRHMVMQjm5u5csHJPlZBNp7k08ZM89iziZdpH9hx7LjZ3DCbDypvypvrNz4ftJxhPd77BYiG4ch22Pe49Xj6X+Gp/wuBUlh5Lqy5iJK1F3Fa66m89PCPWQP46aSkJsRQJMDAbAm94SIGYiHeHCvlpZFSfvaNpwn6BSc1V7ChtYrT2qo4fVk1JzVX8N07bwdSf7FIPFaSSXfD8mKSqt+kGyRwq18vRUyVeEGz8VC/eG6gu2YdPTRJdRK5XgAqKirSxkr+TPIItf13crx0q3Hkc1Ganp7O+tvcYq4SkMj09HTOn0n+iTuxzdkULsmWhTxZCs9SbbOioiLnvptupDnXL13ZFH/JdqQ63YhjtiPUuWpI9Mzn86X+XKAIVp5nPS76C5geg85nrAR772Pw0F/BQ0BZAxewnK6SkxiS5UzM+Dh5+fKErc1w883XcWhoitePjPL6kVHeODLKL97o4fu/slYfKfL7qA9W01oSpThaT71vgiYZw67KPj09ndMNrItNpvPhYsTLxoNMMXXwUrWHbsR0o40qMR6qQXfNOnpokmqHDA8P51zVJ9PoWj7xkklMdkKhEF/4wheO244bpIqfbpvJbcy2TcnxUv3ErcLDRFQX+HFKciLZ0dGhvI25xFtomkF7ezt9fX1Om5Rx2+lGy9ORarQ3FAplt9GSSjjpQ9YDYPSINU1k72Os2fc4awZf5n3AiK+Z6qaPw9qLuPPpA0R9xQghWFEX4tH776EZuOU325FScnjYSrRfPTzC64ethHs8Yo3AlMR8nNpaRWDsCMvLJC1FM9QGZzl4sDO79iZpdjNhTHXs5TXPPUM8p7gRUyVe0Gw81C+eG+iuWUcP9coWNCDXC0BDQ0PWsdONUCcmSYnxkredz0Up1RJcyTj5eVYF2bQxHanamMs+ScdCniyFZ+m+jIF1p3WufTc5IbXJVVM2mnPdJwtNZejo6Jj3ZSz5mMpWQ74J37z3Vy2z1sfe+BnrpsfeN/nV3f9I69TbVL/0HXjhv7jBF4TlZ8OTA7D2YpAxa4421hJ4y2tDLK8NccVpLQDEYpJ//eadHJkKUL3mDF47PMJLI6W8MCyAMipLAtT7qlhWGuG9Z72fM5ZXZ9XuXMinT6s49tyMly7mUp8DE1kszTrFU43xUA26a9bRQ9eSaiHEt4ErgT4p5Yb4c/8EXAWEgb3Ar0kpR9xqw2JgL+2SC5lG1/KJl0xi8mUv6Qfuj1AnXpDsZboWSkqzbWMuFz0VHiZSVVWlLJYTkkeoDx48CFg3ryV6mC22d3YVy8R+qVqz6n1i969cSdePQNFNL0JA8wbO/OLtdHd3Q30NHHwO9j5qTRV59P/Ao/+HayhhLyt5+usv0FV6Etf85h/MC+PzCf74c/PnoEdnYzz35n6OTAd59fAoj726l6cHQzx1u7Uy0rLqUjYur2bTimo2Lq9mw7IqSoL+RU0YM+3nXLfXEV+K9Prrr1fQsmOo7ouqcaN9bhx/xkO94rmB7pp19NDNkeoO4BvA7QnPPQT8uZQyKoT4B+DPgT9zsQ15k+0FIJ8dmmkuamK85ItfPhfB0dFRqqur82rPYo3WZNPGXFBxkC3kwWJ7BMd/GbMXvp+ZmZnnYa5tseO4qWmhfZLrHOiZmRlmZ2fn/ra9yXRsZSLXEepsEtQ5zWsvsh7A97/177RO7aZqYDtr6aR88G0Ahr/6XxwpXc+Gj3zBmrsdPP7mm4Dfx/mnrwXgurOAT5zGZDjKm11j7Dg4wo7DI+w4OMLPX++23u8TnNJaScnRcpaVRvDFiqkQM0o1ptWsCJX3R9ikauNSHM/pcCNJUB1Tt0QmGeOhGnTXrKOHriXVUsonhRCrkp57MOHP54FPurX9xcJeMDwfUo20OYlnk3iBcGOkJ9P2Ev9O91zi31u3bp13c+ZC28gmWVLhYSK6LNuT7EHi+sX57OdM00ly0ZxNIqJqn2QarU9sSzoy9VXV/SZVvOt+49j9Da9ISfuHzoS9jzL11B2cPPYU3Pk4BEqsxHrtJXDCJdCw3hoBTxEzVBTgzFW1nLmqdu65vvFpdhwc4ZVDVpL96mQ5L47MAqcR8sc4TzSzaUUNz+0dRMQrRrqpOVcSk3o3fmlTvZ9V4tY5ezH6tk640b5C8xD016yjh64Wf4kn1T+zp38kvXY/cLeU8s40n/0c8DmAlpaWzdu2bXPcnsHBQerq6hzHcZvdu3cDMD4+Dhy7w3XdunV5xVnoc8nb8/uttXPtFRsSt5/Jw1TbS34u+e8dO3YAZL1ofa7v1xUnfXEhT3ON43Y/y/R6rm1IfH9ZWdncyjF2X83Ud3Np80Ko+rzN+Pg4/liYNb4umifeZEVkDyXj1khxuLSB8cazGGs8k6MNW5gtyu2O99mY5NBYlIdf2cuhqSD9spyucatimE/Aquog6+uL5h7Dh/chhPN+kS+q+uViofK64rRfeRWvXJt1xnioBtvHTZs2eaf4ixDiL4EocFe690gpbwVuBauioookyo2KQ3apVpXx7MTx8OHDwLHqYLm2fePGjVm1L3l7idUJk7efycNUzyc/Z2/L/tcejbL/znZOtU2q97uxT1T/zOSkLyZ/Ltv9nC6O7e0111wz91o28ZL3iX3DafI+2bFjB8FgMKXeXPu6/fzWrVvx+/3HjTzbLBQvVfxcPMzmy12meMne2+1l5Vr2Va5lXXs7jByCvY9StPcR6vY+Tl3nz5HCh1i2xRrBPuED0LoJfOkLyNhsBkYOvMmWmmna269meCLMjkMjbHtxF0dmini8c4Rt70wAUBEoYXlphPLpMI2+o2xa5ccvsjv/qDhWEr0JBoPz+qUKVB/PKq4ryaPz6Y6lfNH9nKj62uzGObvQPAT9Net2bYYlSKqFEDdj3cB4ifRCjfQFUF21rLm5Wen8vmzal257Kn92TU7A7MQd1M+pdmOfpEOHOZiwuJqzJZu5uar7mpN4uWjOJm4ux17KaU3Vy2HzzdZjNgpHXoI9D1s3PT6+FR7/eyitgTUXWUn22kug8vgLTKb9UDPdxcaNG4nOxtjVM87LB4d5qXOY7QeGeStSAsAj+/xsXF7N4INvs3llDe9ZWUNlSerpQar7oRtzqpei0mQuqD4fgp7nBzdxo32F5iHor1lHDxc1qRZCXI51Y+L7pZT5r6OmEf39/crWSeyIrzd8ww03KIkHatunksSDIRvNuSRLqjXr6mEiS6E5l3nu5eXlGWPlWma8ubl53rrSKr7UaN1v/AFYcTb9JatpvPgvYXII9j0Gex6xEu0377Xe13jqsVHsFedAoDhz3DgBv48Ny6rYsKyKm85dBcD/97X/S0+0jLaNF7C9c4j/eGwPMWlN717fXMlZq2rYsqqWs1bX0lRZovz81e7S+uY6Hs+J57dcPMz2y6PWfdsF3GhfoXkI+mvW0UM3l9T7HnAhUC+EOAz8DdZqH8XAQ8K68eZ5KeXn3WrDYlBTU6M0XjQanfu/ikQhl/alu5lQBZlGwxM1q0D1PkkVbzGXKcuGxdCcK7l8Ecq1aEtnZydtbW0L3gibC0vhYbqbRVO1f95roVrYcLX1iK+NzZ6Hrcfz/wXP/jsEy2D1+bSf8gE44RI67nsybexU2wlGJljOBCuHfsWqCvjU397AjkMj/OrAEL86MMQ92w9z23NW/19eW0pttIKVoQjvHZhgVV2I+DneEar3iVsxVaL6fAh6nh/cxAv9RncPQX/NOnro5uofn07x9Lfc2t5SMT4+Tm1t7cJvzEBiohAKhZQmaCra5ybt7e0MDQ3l9P6FUK1Zdw8hvzZm+mKQTbxcEkL7BsJc2pALKo4ZN/uNqmM6pY/xtbFp3gDv+wOYOQoHnjqWZO9+AIBPBOo5UnoyvN0Mq8+HorKctv2D71n3lP9BXENkNsZbXWP85w9+SefkDG8f9fPqWAn3/d/HKffP8v5T2jhrtTWSfVJTBT5f7km2G8eeG/tFFdmeD3M9bgrtnOh2v9ExnhvorllHD01FRYeUlh6/nqwTVM8hVN0+p6Q66Se2UcVFTrXmVPHcmHfuhFw0L7TsXK7xFqK9vZ2pqSllseBYRUX7JrZsNC2EE82p+kE28bLpR4kJVDAYXLjPFZfPL6M+uBf2PEzlnkeoPPAUfO9a8BfBinNpCJ0CLUXQePLcsn0L3WNhE/T7OGN5NefWTnFu7RQHDnQy6S9nsmIZnZNBXj44PLdmdlVpkDNX1XLOmlrOXl3HKa2V+LNIst04f+l2TkzGC5qNh/rFcwPdNevooUmqHRKJRBzv2MSLls/n46abblLQMgsV7XMb1W3UPZ4b5NPGTAldNvFy+WKRLp7TLycqp+Hk4mG2mu+++25l7YP0I/4ZqVtrPc7+LYhMWxUe9zzM8PYfsizyBLz5X1DRemwu9pr3WzdAxlnI4+PPX9cB8J3vdDBS52PF5ot5Yf8gL+wf4uGdvQBUFAfYsqqGc9bUcc6aOk5trSTg9x3XdDeOPTf2i0pUH3vZxswF3c+JbvWbQvIQ9Neso4cmqXaIinmDbqJ7+8Bqo8rkSLXmTPF0uAhDdprTeZxvvGxx48tie3s7O3bsmFvaTgX5aM7Ub3OJl6kfqfrSPe+YWnsRP+0+kbrgNFedHLKmibx1H7xyBwgftJ1J+wnxudgPvmo9lyNCQE1RjKs3t3H15jYAekaneWH/IM/vG+KF/YM89nY/YCXZZ662RrKtJLsKv0+4cv7S6ZyY6jznBc06eZgK46EadNeso4cmqXZIXiNHaWhvb59bn1QVKtvnFqrbqHs8N3DSxlzmQGf7eRVtyOVzKkYaEzWni5ecRCcuDZkqnk7ThOwVVhI1zLa10fFaDLiY9i99G45sPzYX+7GvwWNfpT1UB2su4qm6YrpK1nNtGg32+SvTF43mqhI+unEZH924DIC+sWme3z/E8/sGeX7vII/uslb7qCgJcPbqWrYsr+SC9S2sb85vTnYqdNsvybhx7BXaOdGN9hWah6C/Zh09zH34YRERQlwlhLh1aGiIyclJxsfHGRsbY2pqiqGhISKRCH19fUgp6e625u51dXUB1qLgUkr6+vqIRCIMDQ0RjUYZGxtjfHycyclJRkZGCIfDDAwMEIvF5i46dgz7397eXqLRKIODg0xPTzM6OsrExAQTExMMDQ0xPT3N4OAg0WiU3t7elDF6enqIxWIMDAwQDocZGRlJqWlycjInTVNTUxk1JcfIRtPo6KhSTQvtp5mZGa644gquv/561qxZw6pVq/jEJz7B1Vdfndd+6u/vV6rJ9tdJ30veTzMzM477XqKmqampBTVdeeWVfOYzn2HNmjWsXr2aq6++mk984hMpNSXHyKfv3XXXXXR0dDAyMkJPT8/c33feeScdHR2O+56Ucm4/+f1+fD6fo/00MDAwp8nn8+Hz+Y7TZJdvr6qqAmD58uU0Nzezdu1aVq5cyVVXXcV1113H6OjonK7R0VGEEPj9fkfH07XXXsuFF16Yc9+77bbbuP322wGIxWKMjIzQ398/t8yhramrtw9WnEPX+l+Hzz1OX/tzzH7sf5hZfgFy3+OcP3AX1x7+K2b/8zymf/7nhN9+hMG+7nmajhw5Mi9mZWUlYC2bmUpTRVDyvuUlfPnK9Xz/plN4/s8v5m8vW8WVp7ews2uErQ/u4Yp/f4rNf/cQv/6tZ+l4ei8vv3OEycnJvM7ld955Jz/60Y/m+p7db5ycI2ZmZnI+79nHwuDgIIcOHeKOO+7gtttuY2xsbM4jFdcnW1N/f3/efe/222/ntttum6dpZmZGyfXJ1mQPJqm6PoXDYWXXJ1vT5ORkTpoW2k9DQ0NKr7nhcFjZ9cnW1NfXp+T6ZGsKh8NK8wj7fOOk7yW3Z2pqytEKPK6WKVfFli1b5Pbt2x3HcaPiUDgcpqioqGDiue2hipEj3T0E9T7m0sZsPFahOXHE0u/309bWNu/1xO3ns9/d8PC73/0ucGyU1a7ImG7EOtOIp+p9kmtMG3sdcXuVlsTR9cRiUxmJxbjvf7/GsqmdbK4ahkMvQCwKReWw+gJYezGc8AHC5cuUHssH+kbZfmic5/YO8tzeAbpGrbL0zZUlnLe2jvNOqOe8tXW0Vmc/F14Iwc0335x3m5LJpx8mj+Yn9jM3zjdOYjrt29mwlOfDpYqpu4egv2Y3r81CCO+UKX83MTY2Rn19fcHEc4PENqr4GbbQPUwmn+RGhebEhDMQCMx9+9fx5jCwNKuOp7rf5BPTXgPc9t3+O9uCO3MJYM8sr7CO16tXEmz7CNeft/zYVJG3twHgr1oJ6y6FEy4hEJsh6suu+Ew6yn0RPrm5jU9ubkNKSefgJM/sHeDZvYM8vrufe1+xRqpW15fx3hPqeN8J9Zy7pp6q0PyKj4lJbHl5+ZL3vUxfxnTpN5mm8eh+TtTFw8WM5wa6a9bRQ5NUO0T1Gom6x8tEvhcq3TXrtg5mKnTXnO7ntJ6eHjo6OrRItGtra7Oea5tN+7LxMNcbdPPZL3Yse8TaZmZmhtnZ2QXnj6ci4iuB9R+2HlJay/btfQTfnodhx13wq//lBl/Qqur41JC1skjTaeDLbcZhol4hBKvqy1hVX8b1Z68kFpPs6hnn2XiSfe/LR7jz+YP4BJy2rIr3nlDP+06oZ/Oq+QUiJiYmqKury6kdi4kb5xvdzw+qMR6qQXfNOnpokmqH9PX1Ka0/r3s8N3DSxlQJgfHQIjlhS54GkCmBU6m5vb2dnp6euXiJ282UuC02+WjOlBS70W+cxMz3cwt+0RAC6k+A+hPoXflRmutr4ODzsPcR2PMoPPJl61HWAGsusqaKrL0YKpoW3HYmvT6f4JTWSk5preQ3z19DOBrj1cMjPP3OAM/sGeB/ntzHfz6+l5Kgj7NWn8L5J9RTPP0MbeU+brjh+ry8UI3bx56TmOn2e0dHB8FgkOuv18PDVOji4WLGcwPdNevooUmqHaJ6h+oeLxVOl8PTXbNuB20qFlNzPqPJXvPQ6Uh5th7lugpFLj4mx0ze1kKfy2bpxbTtW/N+6/HBr8B4D+x9DPY+aj1ev8d6T9MGWBtPslecC8Hj50Wn+6KYyqeigI8zV9Vy5qpa/vCD6xifjvDCviGe3jPAU+/089VtO4FayvwxXrp7B+efWM/7TqynsaIka32LgRvHiuqYqouUqcYLHnrtnFgI8VRgkmqHdHV10draWjDx3CCfNmZK5I2HFplGmhL/zjaeqvbpMoc6mXw0LzSap5ql7IvZ7LeU7atoho2fth6xGPS+DnsesRLs5/8bnv06BEpg5XnHRrEbT6HjttscjYhWlAT5wClNfOAUa0S8a2SKp/cM8NBrh3hidz8/js/HPrmlkgtOrOf8ExvYsqqGkuDSLtPlxj52EjO5j3d2dlJVVbXk89IzoZuHixHPDXTXrKOHJql2iOodqnu8VDhd81V3zbodtKlYDM1OfpFI1z6d1gtObGM+X0QS35erR9nqzmY/L9SGRE2Jpd6T27JQ21O9vmD7fD5oOcN6nP9HMHMUOp+FvY8y8vK9VO991HpfeRObjtaxT6yE8Uvo+NEDGTVlQ2t1KddsWc41W5YTi0ne6h7jyXf6eWr3AN9+Zj//8+Q+SoI+zllTx/vXNXDBugbW1JcteoEJN843qmOOjo5SXV2tNKZKvOChua7oF08FJql2iO7fvHT8JpeMyhHCfONlwuseJiceeY84OsDrHi5EqqkV9lrWKtHJx1Srh+TcvuJya7WQdZfyk971hKLDtE69Tev025zATs6Qb8E//4IrRAP9FacSlDV00rZw3AzYbdywrIoNy6r4nQtPYGImygv7B3ly9wBP7u7ny/e/BUBbTelcgn3e2joqStT/+pCufbrF9NKcal09dDOeG+iuWUcPzTrVhpzQzUMdRjjzQTcfc0EXz93wMHmU117T2b65M9261eniLKVH2bRB9RrL+ZAcbw4paaaPteIga2Qna/y9MDvDLH78K8+FNRdac7JbNoJf7fjQoaFJntjdzxO7+3l2zwAT4VkCPsGWVTVceFIj71/XwPrmCoQQnj6W88GNvl1oHrqB8VANTtepNhUVHVas2rdvn9Lqg0eOHFFaUXHXrl05a1rsioo9PT15V0Jqb2/n0ksvnadpz549SjUdPHhQ+4qKXV1dSvfTzp0702oCqzxsLvupt7dXed9LrKjotFpaJBJhz549CCHw+XwUFxcTDAYpKSnB7/dTXl6OEOJY9cEF9pPf7ycYDGatqaOjg7vuumvB/bRnz56sNWWzn6SUOfe9wcFBhoeHCQQClJWV0dvby/j4OMBx/SabvmeXGrYrPNoj/FXV1UxUnsAbVR/gTt+n6Pv1X/HLpt9mZ/VFxKZH4bG/g29egvzH1YTvuIbos//J8O7nic3OZtTU1dW1YN9rqSzig6tL+N+btrDtsxv43mfP4bpNDYxMRtj6i1186P89xdlffYg/uecVntw3Ru9QdlVX7UqKmc4RBw4cUF5Rcc+ePcrO5VdccQWXX3651hUVe3t7lVdUPHLkiNKKivv27dO+ouLu3buVVlRMvA6oyCPs842pqJgjOo9UR6NRAgF1oyS6x9PNw1SjJrp7COp91F2z1zzMd061Ta7zkVO9fzH6di4eJq8CkmqkOpf2pfMgMb7P52P58uXz3jfHxADsfxL2PQb7HoeRg9bzFS2wOr76yOr3Q9WyeR9z6mHP6DRP7O7j8bf7efqdAcZnonOj2Bevb+Sikxo5obE85VzsbPqR6n3sxsiy7tcVN843up8Tdbs2ezEemIqKS87o6KjSQgK6x3MD3TUbD3Mj1UX83eZhNomKPQKbTZxsb8BbSh/tkZ1bbrkFOLbuuer9bMf7yle+QmlpaXqPy+phwyesB8DQftj/BOx7AvY8BK9933q+7gSrlPrqC2DV+YxOC0dtbK4q4dozV3DtmSuIzMa455FfcWi2isff7uNr23bxtW27WFZdykXrG7h4fSPnra3n+3fdAWS3n93Yx9n0xVxYzH6Yz5cCN9qn0zl2sdBds44emqTaIWVlZQUVzw0ytTHdCTVTMmI8fPfHc4PENi50c2e6Et+J/TIQCKQdjU2es50cuyNNlcnF9DF55Di5aFCqNWKzaV+2XyRWrFiR28obtautx+Z2a+m+vjetBHv/k/DaPbD92wDUNJwCay+0kuyV50FJ/jeUBv0+Tm0s5vqN67nlQ+vpHp3i8bf7eXRX31yFx+KAjxXFlawrDxOKFVHuC2eMqWofL9QXnaD78exG+wr9nFgI8VRgkmqHzMzMUFKirniA7vHcQHfNxsPsyJQsvVs8tDVlU5Uym3WqkxPT9gxVJjs6OvD7/dx4440LxlVJ8heI5BHrRFTu5/b2dkZHR/P7sM8HzadZj/N+D2Yj0LUD9j9B7J1H8f3qW/D8f4KIL/G36nwryV5xDhRX5N3mlqpSPn3WCj591gpmorO8sG+IR3f18eiuPn7eOwmcTmNxlE82n8QlJzcyG5P4ffO/OLhxrKheM30xjmcnS3i60T4dzrGLje6adfTQJNUOUT2fR/d4bpCqjbmstZv4d7p4qtunG7prfrd4mC7BtEnslz6fj5tuuint66n+Xug9i3EPzEKj6ZmqmGXjYS7z1JX1G38Qlp8Jy89kZvNvEyjyw+FfwYGnYP9T8Px/wbP/DsIPrZtg1fusRHvF2Xkn2cUBPxfEl+P7m6tOYW//BP94x8/ZPVE0V0K9tqyIC09q4AMnN3H+ifVUlASVaV6oLzpB9+PZjfaZc+K7P54K9GuRwWDwJPne1OcGbrXBTijthHMxyuQmJrlFRUWL7q+t0f4CsVjbdSMZnCNYAqvPtx4XAeFJOPSClWQfeAae+w945t/iSfZGWPleK9FecU5e00WEEJzQWM6tf3wtAKNTEZ7Y3c+jO3t5ZKc1VSToF5yzpo7z11TzoTOWs7w2pFRytuhw/CZuX5f2GAzZYJJqhzhZesWL8dwgVRuzPaGmet54+O6P5wbZtNHub6lu0ksm03zgbBKEVKPYudxwls0KJKFQ6LgVA7IZTU9HLvs5Gw+cVjNMt4LKcRSFrDWv115k/R2ehMMvwoGnrSTbHslGWFNKVr7Xmo+98ry82lVVGuQjZ7TykTNaic7GePngCA/v7OXhnb187ZcDfO2Xe1jfXMEHTrbKrJ++rAqfLz8vHE2jSYPux7Mb7TPnxHd/PBWYpNohqW40ejfHcwPdNRsPcyNVsrRYHjqZh5lLG7MZoY7FYgu+J5v2Jia1QghuvvnmrNupEtUepsPNG+wgyzYWhaziMmsutP6OTMHh7VZJ9c6n4aUOeOG/AFhfvgIOXmQl2CvOgeqVkMOXgYDfx1mrazlrdS1/ccXJ7Dw8xNP7RnhoZy//+fgevvHYHhorirnk5CYuPaWJc9fWURLMbTWPbDTncuws5jkxn/3uRvt0OscuFrpr1tFDk1Q7ZGJiQulEed3juUGmNuZzQjUevvvjuUEubcw0+gtWYlJWVqY8IfT5Fq7XtVBylPh6W1tb2jbqcOzle9HM5EFebQyWHpsuwp9BNAzdO+DA08y88SAlb/0EXr7Nem9Fq5VcrzjXmpPdtAF82SfBjaWSz16whs9esIbhiTCPvd3Hwzt7uW/HEb734kFCRX7ev66BD57SxMXrG6kOFS0Ys9COZzfaV2gegv6adfTQVFR0WLEKUFp9MBQKKa2oOD09nbOmxa6oWFlZqaQSkq1pdnZWqaZgMKh9RUW7sp2q/TQ1NeW47yVqqqqqWpSKildffTWf+MQnWLVqFWvWrOH666/niiuuyGo/xWIxx33P7/cjhKC0tJTZ2Vl8Ph9+vz+tpvZ4RdCVK1dywgkncNNNN3HllVem3E/XXnstl19++YJ9D6wbeHw+H6FQaK5KpK3JbqNdwTDbKpHZ7Kfkynj59L3LLruM9vZ26uvrmZ2d5bLLLuPmm2/Oqe/ZmuzqjPbfvb29lJWVOT/v+QIMlK4hfPbvses9X2by999i4qYHmbr474i2nUXswLPwiz+F/7kAuXUFM//7IXjs7xl88QcwM57xePL7/XOayoJwwYoSvvHpTWz73Ol859fO5NJ11bzUOcwf3fMqm//uYT75H0/y7af28sb+rrSaZmdnF9Rk9z372Lnmmmu4+uqrU+6nyspKrSsqVlVVKa+oGAqFlFZUBLSvqBiNRpVWVEy8DqjII+x+Yyoq5ojOFRV7e3tpamoqmHjGQzWo9lF3zYvtYT4jxLm0MZv5yoFAgBtuuEFJPLfaGAqFuOaaa7KKlw0q9nPiKHNFRQW1tbVAfiPnqTxQ6SGk6YdSwughOPgCHHre+rfvTZAxQEDTqdB2Jiw/C9rOgrq1c1NGsmlfLCZ57cgoD73Vw4Nv9vJO31EANiyr5LJTmrn01GbWNR2r6qhas+7XFTfON7qfE821WQ2mouISo3qH6h7PDXTXbDzUL95C5JOAqW6j6pv2QP++qLp94+Pjc0m1KhbFQyGgeoX1OP1T1nPTY3Bku5VgH34R3rgXXvqO9VpprZVkt22hadlmqCyG0uq04X0+wcbl1WxcXs2fXraeff1HefCtXh58s4d/eXg3//zQblbXl3HpqU1cfmozZ7Q1Zt30bPpiofVDN2Lq7iHor1lHD01S7ZCuri5aW1sLJp4b6K7ZeKhfPDfIpo3Z3szV3t4+93OiSnLxMblNqdZ637Fjh7rGoWY/J879DgaDXH/99Y5jJaJyP+dESSWsvdh6gFX1ceBtOPSilWQf+hW888tj7687Edq2wLLN1qNpAwRSz59e01DO599fzuffv5a+sWke2tnLA2/08K2n9vM/T+yjvizIh05r5fINzZy9upaA39nMT92PZzfaZ86J7/54KjBJtUNU71Dd47mB7pqNh/rFcwMvaNbdR9Xti0QiSuOBRh76fNB4svXYbK3octe3/4v6mYNcdmotHH4J9jwMr37Per+/yEqsl70HWt9j/Vu/7ribIBsrS7j+7JVcf/ZKRqciPLarjwfe6OGHLx3mjuc7qQ4F+eDJTXzotGbee0I9xYHcVhIBjTxMgxeOPd09BP016+ihSaodovs3Lx2/ySWju2bjoX7x3CCbNuZSkEKX0TJXRl3ToFLzUo72L3bhkbl9dKiP/qomuvdVA5fT/iffg5GD0PUyHIk/Xv0+/Oqb1geDZda62a0boWWj9W9Col1VGuRjm5ZxVpOg5tqNPPlOPw+80cMDb/bwg5cOU14c4OL1jXxoQzMXntRIaVF2Cbbux7Mux95ixnODJdccmbYKNamKtwiYpNohun/z0q3DpUJ3zcZD/eK5gRc0J8bUsdKc1zzUkdHRUaqrq60/hICaldbj1I9bz8VmYeAdK9Hu2mEt7ffy7RD5b+v1YMi6EbL5dGg5HZpPo7XxVAj6uezUZi47tZlwNMazewd44I0eHnyrl/te7aI06OfCkxr40GktXLy+kfLi9OmB7h56od/o7iEsgeajffGCS/GHvwh+++lFa58KXEuqhRDfBq4E+qSUG+LP1QJ3A6uAA8A1Uspht9qwGPT09CgtVax7PDfQXbPxUL94bpBLG7NJZN3QnE/MxRx19UK/Ub2fVZDTPHKfHxrXW4+Nn7GesxPt7h1Wot3zGrz+A9j+LQCk8CMaTrKmjzRvoKjpVC5s3cCF607j7z62gRcPDPHAGz38Iv4oCvi44MQGrjitmQ+c0kRlSXBeE3Q/nhe73+RzbOnuIbh8PEsJo4fh0AvQ+YxVuXTgbeu1onJrrfdV51vvS1NMSUcP3Ryp7gC+Adye8NwtwCNSyq1CiFvif/+Zi21wncbG7O+qfjfEcwPdNRsP9YvnBl7Q3NjYuKjTOXLFKx7qTF7zyBMT7TOus56LxWCk00qwu16F3tet5OX1e459LlRPoOlUzms6lfOWn8zfbDqZHTNN/GzXOA+80cPDO3sp8vs4/8R6rjithQ+c0kRVaVB7D73Qb3T3EBS3MRqmMXIInrvXSqQPvQjj8eldReVWsaSNn7ES6ZYzwL9weqqjh64l1VLKJ4UQq5Ke/ihwYfz/twGP4/GkemhoiPr6+oKJ5wa6azYe6hfPDbygeWhoKO/P5pp055Ose8VDXftie3s7AwMDaoL5fFC7GmpXM9j43mOaJ4eg98344w3rsf07EJ3CD2wGNlet4K+Xr6f3xNW8eLSB+46U87e76rnFX8b5JzZwwapyPn72CVSVBjO1YMlwu99s3boVYG6UNJ8vuDr3Q5u82zhvitIr1r0APa/jm52xXq9aASvPg+VnW2u1N23IKolW1j4XWew51U1Sym4AKWW3EEK/rxk5UllZWVDx3EB3zU7iLdYook6aFyOeG3hBc2Vl5aLfRJcLXvFQZ1zXHKpNKLkeJxaDkQPQtwv63oK+nYj+XTTvf5yPzIb5CEAJjAfr2XWwlTf3NPPvj7RS1rqeU09/D+dtOoOKkD7lor3Qb3Tvh5BlGyPT0L8Lel63vqD1vA7dr0LYKkhEsMy6gfaszxJp3khw1XlQtWzx2rfIuFpRMT5S/bOEOdUjUsrqhNeHpZQ1aT77OeBzAC0tLZu3bdvmuD2Dg4PU1dU5jpNIOBymqCj12qHvxnjGw9zYvXs3AOvWrZv3vGofddK8GPGg8DxMjpmub+VCKg/tuOPj4wBUVFRkvR2veagC3fuho5ixKMWT3RSPd1ISfxSPd1I03klwdmrubTMySF+gmZnyFZTWtRGrbGOmbBnhUCvhUCOIzKuKeMXDt956C4DZ2VkA/H5LVygUAnI7FnXvh5DUxnl94QAlYwcoHdtDyfhBhLT8mPWXMl25msnqk5isWc9U9UlMV6yY2/9eOD/YPm7atMkTFRV7hRAt8VHqFqAv3RullLcCt4JVplxF+U03ynhOTk7OHVCFEM94mB3J814nJyeBY6OKqn3UQfNixoPC8zA5plvnRLsgzOHDhwFYuXJlVtvr6OjA5/Nx0003OW6Xjdse5kqqXwd074duxJycmCAYO0ps4B0O7nmdrj2vEe17h9bh/TSMvECRSKgm6gtaq5dUx1cxqV5h/b86/v+yena8+qonPHz00UcBmJmxpjEUFxcDx6aB5KJB22vz5BAM7oWhvUSGdxEc64T+t2HwHZgNH3tfZRs0b4Azrrb+bT4df81qynw+ytKF9sA51qmPi51U3wfcDGyN//vTRd6+cuxvrIUSzw1012w81C+eG3hB82L4qNP0kqX2cCk8WGrNWcWLxaCiCV9FE6tWv49VH4RYTLK9c5g7Xj3E9tffpHLqMOsC/ZxfO85ppUM0TPbi63oZppIW/AqUsL64Hl5dC1VtULnMmh5Q2QYVzVDRYk1ZSbMCxGLotWPecsstwLE51fbf+cZbEiJTMHLIWv989KD178hBGD5gJdPTI3NvDQgfVC2HhvVwwiXWvw3rof5Eq0JojnjhHOsUN5fU+x7WTYn1QojDwN9gJdP3CCF+AzgIfMqt7S8WqqfP6B7PDXTXnE+8xU5MdNC8mPHcwAuadfQx8VeZkpISpX1eFw8Xc8UVXTTnGs/nE5y1upazVtcSveo0Xtg/xM9e6+JP3uhhpCtCZUmAD21o4WOnVHBWzVH8o4es1UlGDzPV+QYlkQnY+xiMdwNJ8f1FUN4cT7KboKwByhqhvOHY/8sarOS7pMqzHjpBzM5YS9Qd7YOJAcvH8W4Y64r/222ttjE5OP+DvqD1ZaZmJWy4GmrXQN1aqF3LuL+GytoGZW3U3UMVuLn6x6fTvHSJW9tcCoJBtXc/6x7PDXTXbDzUL54beEHzYvqYT8KoeuRoqTxMTqLtn/kXAy/0m4XiBfw+3ntCPe89oZ6vfHQDT78zwP2vdvGz17q4e/ss9eXFXHn6Sq464xzec3YNna++So39k/tsJCEJ7Ibxnvn/DrwDnc9a0xSSk28ABBUl1VaCHaqFUivRth6Vx/5fXAnFFVBUFn+UW4VzisogWAq+wLzR8UTNTkaoU3oopTW1IjJl3eA3czT+7ziEj/LUI7+gKDbJ2aedZI30T49Y/06NwOQATAxwxsxY6g2VNVhfRipboW2z9QtA9Ypjj4rm40rdz7Vxairl80o0axhPBaaiokOmpqYoLS0tmHhuoLtmJ/EW62djnTQvRjw38IJmHX1M/FXG7/dz4403KomrOp5NPh4mF5hw87j2Qr/JJV7Q7+Oi9Y1ctL6R6cgsj+7q4/5Xu/juiwfpePYAy6pLOafFT2nzOCc1V4A/eCzhy8Rs1Bp1neiDiX5rdHZyCKaGmBk6QklsEqaG4on42zA9CtNjILP84id8ECiBQDEESigSQSgqsZJtnz/+b/whfECK6SkyBrFo/BGxlpqLRWE2QnF4EmJha/WM6DSpvyBYzK3T8gRQXAWl1dajpBpaN0FZA11jUVpPOD0+ct9gjeiXN0Mg/xv5dD8n6ng+NEm1Q+w74wslnhvortl4qF88N/CCZt199MKcyWw8TDd9y/7bTbzQb/KNVxL0c8VpLVxxWgvj0xEefLOX/9r2K368M8iPdj7JSU0VfGRjKx85o5XltQvcgOYPWIljRdPxL0UikGoUU0oIT8DMmJVkhyesEeHwBIQn4/8/aiW50Zl5/4rwpJWQx6LHkuO5Ryx1G31+Kym3k29/QiLuK4LisnjSXgrBEiuJLyqH4nIoqmDbo08RFcUc6B5kimKaV65DCl/KL3V9O3bQqngRAV36zWLFU4FJqh0yPDystKqP7vHcQHfNxkP94rmBFzTr7GN7ezt9fWkXdMqaxKkX5eXlyucvO/FwMX558kK/URGvoiTI1ZvbGH/9YWLBEIE1Z/HTHV380y/f5p9++TabV9bwsY2tfPj0VmrLchttTds+IayEtbjcmg6RAwN9fUo9zCZe37NWxcFhYX25lMKnbPvZoGO/cTOeCkxS7ZCGBnWT+L0Qzw1012w81C+eG3hBs+4+qm7f0aNHla+9m0sbl2LlE6cepvoSomPfTvzy1NbWRuztx7mqFP7tS9dw36td/HTHEf7qp2/y5fvf4v3rGvjopmV88OQmSosyr3mtqn1ux8wm3lKvxKNjv3EzngoW92vPu5Cenp6CiucGums2HuoXzw28oFl3H1W0r729nfb2dlauXMkJJ5ww97cqCsFDt2O66eHy2hC/e9EJ/PIPLmDbF87nN963mre6x/jC915hy989xB/ds4On3ulnNpZ+DnKhe6gK3TXr6KHWSbUQ4iohxK1DQ0NMTk4yPj7O2NgYU1NTDA0NEYlE6OvrQ0pJd3c3AF1d1s8l3d3dSCnp6+sjEokwNDRENBplbGyM8fFxJicnGRkZIRwOMzAwQCwWm9tBdgz7397eXqLRKIODg0xPTzM6OsrExAQTExOEQiGmp6cZHBwkGo3S29ubMkZPTw+xWIyBgQHC4TAjIyMpNdXX1+ekaWpqKqMmEb97ORdNo6OjSjUttJ+am5tz0rTQfioqKlKqqaqqynHfS9Y0MzPjuO8lampoaFC6n2yc9L1ETS0tLcr7npTScd9L1FRcXOy47yVqqqysVH48FRcXO+57iZqklI77XqImu++oOEcEg0EikYjjvpesqaGhQel5b2ZmRsn1ydZUXl6eV9+74447uO222+jr66O7u5vbb7+dO+64g+npaYqKipSey5ubmx33vZtuuonLL7+clStXUlVVRXt7O5deeumcptnZWZqKI/zhxavZ9tub+c6NZ3D5qY089GYPN37rRc7+6kN85f43eOr1/Ugp52lqaWlRdn2yNdXX1yu5Ptl9LxQKZd33Lr30Utrb2zNqCofDyq5PtqZgMKjk+mRrSrwOqDhH2OcbleeIqakpotGE4kU54mqZclVs2bJFbt++3XEcN6oBdnV10dqa29wsL8czHqpBtY+6azYe6hnTeOgcXTxMXgbQroTZ3t6u9X7p6OggFApxzTXXZPX+6cgsj+3q495XjvD4231EZiXrmsr52KZlfGzjMlqrSz3Rb3Tvh6C/ZjevK0KIvMqUm6TakBPGQzUYH51jPHSO8dA5unmoQyXMXMnXw+GJMD9/vZsfv3KElzqHEQLOXVPHJ97TxuUbmikvLpzbxnTrh17FaVKt9fQPL2D/DFEo8dxAd83GQ/3iuYEXNOvuo/HQOV7QrIuHNWVF3HDOSn702+fxxJ9eyBcvOZHDw1P8yQ9eZcvfPcQffP8Vntidef51trxbPcyE7pp19LBwvsa5RHJRgHd7PDfQXbPxUL94buAFzbr7aDx0jtP2pRqh9sJ+ccrKujL+4APr+OIlJ7L9wBA/3tHFz17t4ic7umisKObjm5Zx9eY21jXlt7ZxIXiYjO6adfTQjFQ7pL+/v6DiuYHumo2H+sVzAy9o1t1H46FzvKBZZw+FEKwsm+VrHz+NF//yA/zn9e/h9LYqvvn0fi791ye56utP0/HMfoYmwjnFLSQPbXTXrKOHZqTaITU1NQUVzw1012w81C+eG3hBs+4+Gg+d4wXNXvEwsYLjwNEZfrqji3tfPszf3v8WX922k4vXN/LJzcu58KQGgv7MY4yF5iHor1lHD81ItUPGx8cLKp4b6K7ZeKhfPDfwgmbdfTQeOscLmr3oYX15Mb/xvtX8/Avn88AfnE/7eat4qXOYz96+nXO+9gj/52dvsbN7LKeYqtuoG7pr1tFDM1LtkNLS0oKK5wa6azYe6hfPDbygWXcfjYfO8YJmr3u4vrmSv/zwKXzp8vU8ubufH750mNufO8C3nt7Pqa2VfHJzGx/buIyahPLoheYh6K9ZRw/NSLVDIpFIQcVzA901Gw/1i+cGXtCsu4/GQ+d4QfO7xcOg38clJzfxXzds5sW/+ABf/sipCAFfvv8tzvraw/zOXS/x2K4+orOxgvMQ9O83OnqodVLthYqKR48eVVp9cHZ2VmlFxcHBwZw1LXZFRUBpRUW7/ao0TU9Pa19RMRaLKd1PAwMDjvteoiYhhPYVFe3PqTpHTE1NKT+exsbGtK6oaN84pOocIYRQXlHRPi/qWlFxcnJS2fUp8Vyo8lxua1B1jpicnHTc9xI1CSFy1lQdCnLp6mJ+9vvnc/tn1nPjOat4ds8Av9bxK8752sP8yyP7ePmdI8rOEUePHlV6zXWjouLIyIjSioqJ1wEV5wj7fGMqKuaIzsVfJicnCYVCBRPPeKgG1T7qrtl4qGdM46FzdPfQjZiF4mE4GuPRXb38YPthHn+7n1kp2bKyhmvOXM6HT2uhzEFxGd09BP37jZvXFVP8ZYkIh3Nblsfr8dxAd83GQ/3iuYEXNOvuo/HQOV7QXCgeFgV8XL6hhW+1n8kDv7uFWz60nqGJMF/64Wuc9dWH+bMfvsZLncPkMzipu4egf7/R0UNzo6JDVH9L0j2eG+iu2XioXzw38IJm3X00HjrHC5oL0cOVjdV8vq2R37pgDS91DnPP9kPc/1oXd28/xNqGMq47cwUff88y6suLl6yNqtG93+jooRmpdsjYWPoleN6N8dxAd83GQ/3iuYEXNOvuo/HQOV7QXMgeCiHYsqqWf/zkGbz4lx/gH64+jepQEV/dtpNz//4RfvvOl3j87b4FS6Pr7iHo32909NCMVDuktra2oOK5ge6ajYf6xXMDL2jW3UfjoXO8oNl4aFFeHODaM1dw7ZkreKd3nLt/dYh7XznCL97oobWqhE9uWc41W9poqzl+RFV3D0H/fqOjh2ak2iH2ndCFEs8NdNdsPNQvnht4QbPuPhoPnbPUmjs6Oujo6FAWbylYCg9PbKrg/7vyFJ7784v5j8+8h7WN5Xz90Xc4/x8f4+Zvv8gDb3QTmY252kbVLOXx7NV+aEaqHdLc3FxQ8dxAd83GQ/3iuYEXNOvuo/HQOV7QbDxMT3HAz4dPb+HDp7dwaGiSH2w/xD3bD/P5O1+mvryYT25u49ozl7Nacw9B/36jYz80I9UOsdc2LJR4bqC7ZuOhfvHcwAuadffReOicpdJsjwx2dnbS2dmZcaTQeJgdy2tD/NGlJ/H0n13Et27ewsbl1fzvU/u46P8+ztXfeIL7X+1iJjqrvK2qWIrj2ev90IxUO6S1tbWg4rmB7pqNh/rFcwMvaNbdR+Ohc7yg2XiYG4F45cZLTm6id2yaH2w/xPdePMTvf+8VasuK+OTmNq47czlrGsoVttg5uvcbHfuh1iPVXqiouGfPHqXVBw8ePKi0ouJbb72Vs6bFrqh45MgRpRUV3377baWa9u/fr31FxUOHDindT2+++abjvpeoyX6o7HuqKyru3r1baUXFffv2KT+edu/erXVFxTfeeEPpOaKrq0t5RcVDhw5pXVFx7969yisqvv322wtquummm7jyyitZtWoVa9as4ZprruHqq69OqenIkSNaV1Ts6upSdn2yNR08eFDJ9SkQmeA3z1vOd65ezv985nTes7ySbz21j4v/+Qmu/o+n+MnLhzh0pDtljMWuqLhr1y6lFRUTrwPpNH3sYx/jmmuuYfXq1axevZprr72Wj3zkIyk12ecbU1ExR3SuqFhoGA/VYHx0jvHQOcZD57zbPLR/am9vb1+0bb7bPMyVvrFpfvDSYb734kEOD09RW1bEp7a08ZmzVrCyriyrGO82D5eiH4KpqLjk2N+SCyWeG+iu2XioXzw38IJm3X00HjpnqTW3t7cvmMgYD9XGa6ws4XcvOoEn//Qibvv1s9iysoZvPrWf9//T49zwzRf4xevzVw5ZLJbyePZqPzRzqh1SV1dXUPHcQHfNxkP94rmBFzTr7qPx0Dle0Gw8dCeezyd4/7oG3r+ugZ7Rae7Zfojvv3iQ377rZRorirnuzOVcd9YKWqtLlbYllza+m+OpwIxUO2R0dLSg4rmB7pqNh/rFcwMvaNbdR+Ohc7yg2XjofrzmqhK+cMmJPPVnF/PNm7ZwamslX39sD+/7h0f5zdu289jbfcQWqNrodhvfbfFUYEaqHVJWlt18p3dLPDfQXbPxUL94buAFzbr7aDx0jhc0Gw8XL57fJ/jAKU184JQmDg1N8r0XD3LP9kM8vLOX5bWlfOaslVyzpU1p23Jt47slngrMSLVDZmZmCiqeG+iu2XioXzw38IJm3X00HjrHC5qNh0sTb3ltiC9dvp5nb7mEr396E61VpfzDA7s49+8f5V+fG+KlzmFULj6hg+bFjKeCJRmpFkL8IfCbgAReB35NSjm9FG1xSiCg1kLd47mB7pqNh/rFcwMvaNbdR+Ohc7yg2Xi4tPGKAj6uOqOVq85o5Z3ece58vpN7fnWQq//rWU5uqeTGc1by0Y2tlBU7a7NOmhcjngoWfaRaCLEM+AKwRUq5AfAD1y12OwwGg8FgMBi8zIlNFXz5oxv49keb+erHNyCl5C9+/DrnfO0R/va+N9nbf3Spm1hQLFWaHwBKhRARIAToV2syS5wsEu7FeG6gu2bjoX7x3MALmnX30XjoHC9oNh7qF6806OP6jSv5zFkreKlzmDue7+SuFzrpePYA7zuhnhvPXckl6xsJ+LMfS9Vds479cEmKvwghvgh8FZgCHpRSXp/iPZ8DPgfQ0tKyedu2bY63Ozg4qHwJltnZWfx+f8HEMx6qQbWPums2HuoZ03joHN09dCOm8VC/eKk8HJme5aG9kzywZ4LBqVnqQ34uW1vGpWtDVJUsvG3dNbt5Xdm0aVNexV8WPakWQtQAPwKuBUaAHwA/lFLeme4zOldUVH0y0D2e8VANqn3UXbPxUM+YxkPn6O6hGzGNh/rFy+RhdDbGwzv7uOP5AzyzZ5Aiv48rz2jh5nNXccby6kVro+7xwHlFxaWY/vEBYL+Ush9ACHEvcB6QNqnWmaqqqoKK5wa6azYe6hfPDbygWXcfjYfO8YJm46F+8TIR8Pu4fEMzl29oZk/fOLc/18mPXjrMvS8f4Yzl1bSft5IrTmuhODB/1Fd3zTr2w6VYUu8gcI4QIiSEEMAlwM4laIcSBgcHCyqeG+iu2XioXzw38IJm3X00HjrHC5qNh/rFy5YTGiv4ykc38PxfXMKXP3Iq49MR/vDuV3nv1kf55wffpmf02EJsumvWsR8u+ki1lPIFIcQPgZeBKPAKcOtit0MVTU1NBRXPDXTXbDzUL54beEGz7j4aD53jBc3GQ/3i5UpFSZCb///27j3IyvK+A/j3x+6yEZCwsLvlGha5aJVqNI3hIlawBpwYyeTSmomWNKEzdkywF4wSOyYz7UxpajSZ2sRxkJCkjNYQWmybpjpIsHZAvGBAS8AF9gZ7O+y1u8te2F//OO/RM+su7NnnfTi/h/f7mWHY8+7hx/P7nnff9zln33OeZRW4Z8lcvFKZwk/2VeGJPZX44a+OY83i6fjysgp8bG55rP/npZbhcPKy+IuqfktVr1LVxap6j6ra+wTvUTp9Ot4PLrFezwfrPTNDe/V8CKFn6zkyQ3ch9MwM7dUbq3HjBDcvKsOWdR/H3o0r8eVlFdh7rBmff3IfVj+2Bz97vRZn+8/F8n9dqhlm44qKjmbOnJmoej5Y75kZ2qvnQwg9W8+RGboLoWdmaK9eHD4ybQL+6o6rsX/TrfibzyyGSgEe2HHovUtDGjvc1uhLQoacVDuy/szL4jO5oaz3zAzt1fMhhJ6t58gM3YXQMzO0Vy9OE4sLcfeSudj2hwuwff0ncP1HpuCJPZVYvvkl3P/sQbxV2zamuknI0N4aj4Gx/szL4jO5oaz3zAzt1fMhhJ6t58gM3YXQMzO0V8+HWbNmYRaA5QtKUZXqwk/2VeNnr9di11un8dE5U/CVm+bh9sXTUTTKBWWSkCFfqXbU0NCQqHo+WO+ZGdqr50MIPVvPkRm6C6FnZmivng/ZY6wonYhHPn019kWfGtLe048NzxzEir/bgx/8qhKtXX051Yt7fFaYnlSLyKdF5KmWlhZ0d3ejs7MTHR0d6OnpQUtLC/r7+9HU1ARVRX19PYD3fx1QX18PVUVTUxP6+/vR0tKCgYEBdHR0oLOzE93d3Whra0NfXx9SqRQGBwffe4AyNTJ/NzY2YmBgAGfOnMHZs2fR3t6Orq4udHV1obi4GGfPnsWZM2cwMDCAxsbGYWs0NDRgcHAQqVQKfX19aGtrG7ankpKSnHrq6ek5b0+ZxX1y6am9vT3Wni70OJWVleXU04Uep8LCwlh7mjRpkvO+N7Sn3t5e530vu6epU6fG+jidO3fOed/L7qm8vDz2fU9Vnfe97J6Kioqc973sniZOnBj7z1NRUZHzvpfdk6o673vZPQ3db1yPEeXl5c773tCepk6dGutxr7e3N5bzU6anCRMmxHZ+yvRUWFgY67G8rKwslvNTpqfu7m7nfS+7p/Ly8tjOT5meSkpKYjk/ZXoqLi6O9Zzb19cX2/kp09O4ceM+0NOk4kLcVjEeu//i9/DdtQswv2wivvPLo1j6t7ux8Z/fwKGqphF7yj4PxHGMyBxv4jxG9PT0OC1/npdlynNleUXFVCqF0tLSxNRjhvGIO0frPTNDmzWZoTvrGfqoyQzt1cvnufloQyd+9D8nsfPgKfQNDOLmRWX46k3zcPPCUqSXI8mtXtzjy4XrioqmX6kOweTJkxNVzwfrPTNDe/V8CKFn6zkyQ3ch9MwM7dXzYbRjvHL65dj8uWux76FV2PjJRThS34F1Ww/gk4+/jGcO1Lz3kXxJyJCTakeZX1slpZ4P1ntmhvbq+RBCz9ZzZIbuQuiZGdqr50OuY5w2qRhfW7UQrzy4Et/9wnUoKhiHTTsPY1n0kXw1TW15Hd/FwE//cDR+/PhE1fPBes/M0F49H0Lo2XqOzNBdCD0zQ3v1fBjrGIsLC/C5j83GZ2+Yhf0nWvD0KyfxxJ5KPLlXsPajs7B+xTxcNd39VWaLGXJS7ShzoXxS6vlgvWdmaK+eDyH0bD1HZuguhJ6Zob16PriOUUSwdP40LJ0/DVWpLjy55xh2HarHjjfqsGJhKdavuOID111fzPH5wMs/HMX9Rk/r9Xyw3jMztFfPhxB6tp4jM3QXQs/M0F49H+IcY0XpRHxz9Xzs27QKD6y+EkcbOrFu6wGs/t7LeO61WvQO5D5BtpghJ9WOioqKElXPB+s9M0N79XwIoWfrOTJDdyH0zAzt1fPBR89TJozHfSsX4JUHV+GxP7gOBePG4Rs/P4Tlm/fgiZfeHdXnXfsaXxw4qXbU09OTqHo+WO+ZGdqr50MIPVvPkRm6C6FnZmivng8+ex5fOA6fvWE2frHhJmxf/wlcM3MyHn3hGJZu3o1Hdr2N6jNdF318ceA11Y4uv/zyRNXzwXrPzNBePR9C6Nl6jszQXQg9M0N79Xy4GD2LCJYvKMXyBaU42tCJLf99As8eqMVP91djzTXT8Q9fvB6FIyyDbjFD069Uh7CiYl1dXayrDzY3N8e6ouKJEydy7ulir6jY0tIS64qK1dXVsfbU0NBgfkXFVCoV6+N0/Phx530vu6fW1lbzKyrW1NTEuqJifX197D9PNTU1pldUrKysjPUY0draGvuKiqlUyvSKiqdPn459RcXq6upYj+UtLS2mV1RsbW2NfUXF5ubmWFdUrKurM7+iYlVVVSznp0xP2eeB4XqaN7UYD982Fy9uWIL1S+egUAbR39c7Yk+Z4w1XVMyR5RUVVXXM71wNsR4zjEfcOVrvmRnarMkM3VnP0EdNZmivHs/N8eCKinmWebaTlHo+WO+ZGdqr50MIPVvPkRm6C6FnZmivng/We7aYISfVjmbMmJGoej5Y75kZ2qvnQwg9W8+RGboLoWdmaK+eD9Z7tpghJ9WOMtfhJKWeD9Z7Zob26vkQQs/Wc2SG7kLomRnaq+eD9Z4tZshJtaOZM2cmqp4P1ntmhvbq+RBCz9ZzZIbuQuiZGdqr54P1ni1myEm1o8y7UJNSzwfrPTNDe/V8CKFn6zkyQ3ch9MwM7dXzwXrPFjPkpNrR9OnTE1XPB+s9M0N79XwIoWfrOTJDdyH0zAzt1fPBes8WM+Sk2lFzc3Oi6vlgvWdmaK+eDyH0bD1HZuguhJ6Zob16Pljv2WKGnFQ7KikpSVQ9H6z3zAzt1fMhhJ6t58gM3YXQMzO0V88H6z1bzND0pDqEFRXr6+tjXX2wtbU11hUVq6qqcu7pYq+o2NHREeuKiplVLuPqqbm52fyKim1tbbE+TidPnnTe97J76uzsNL+i4qlTp2JdUbGpqSn2n6dTp06ZXlFx6H7jeozo7OyMfUXFtrY20ysqNjY2xr6iYl1dXazH8o6ODtMrKnZ2dsa+omJra2usKypmVly1vKJibW1trCsqZp8H4jhGZI43XFExR5ZXVOzp6cFll12WmHrMMB5x52i9Z2ZosyYzdGc9Qx81maG9ejw3x4MrKuZZf39/our5YL1nZmivng8h9Gw9R2boLoSemaG9ej5Y79lihpxUO4p73Xnr9Xyw3jMztFfPhxB6tp4jM3QXQs/M0F49H6z3bDFDTqodFRQUJKqeD9Z7Zob26vkQQs/Wc2SG7kLomRnaq+eD9Z4tZhjENdUi0gygOoZSpQBSMdTJ9mEA7QmqxwzjEXeO1ntmhjZrMkN31jP0UZMZ2qvHc3M8MjnOVdWynP+1qibmD4DXPdR8KmH1mKHBHK33zAxt1mSGl36GITwuzNBehoH0bO68wss/3P1bwur5YL1nZmivng8h9Gw9R2boLoSemaG9ej5Y79lchkFc/hEXEXldx/ARKfQ+ZhgP5uiOGbpjhu6YoTtm6I4ZxsM1x6S9Uv1UvgdwCWCG8WCO7pihO2bojhm6Y4bumGE8nHJM1CvVREREREQ+JO2VaiIiIiKi2CVmUi0ia0TkqIhUishD+R5PCERkjojsEZEjIvKOiNwfbZ8qIi+KyLvR3yX5Hqt1IlIgIgdF5N+j28wwByIyRUR2iMhvov1xKTPMjYj8efRz/LaIPCMiH2KGFyYiW0WkSUTezto2Ym4isik6zxwVkdX5GbUtI2T499HP8yER+RcRmZL1PWY4xHAZZn1vo4ioiJRmbWOGQ4yUoYh8PcrpHRH5Ttb2nDNMxKRaRAoA/COA2wFcDeCLInJ1fkcVhAEAf6mqvw1gCYD7otweArBbVRcC2B3dpvO7H8CRrNvMMDffB/BLVb0KwHVIZ8kMR0lEZgHYAOB3VXUxgAIAd4EZjsY2AGuGbBs2t+j4eBeAa6J/84Po/JN02/DBDF8EsFhVrwVwDMAmgBmexzZ8MEOIyBwAtwGoydrGDIe3DUMyFJGVANYCuFZVrwHwaLR9TBkmYlIN4EYAlap6QlX7ADyLdIh0Hqpar6pvRl93Ij2RmYV0dj+O7vZjAJ/JywADISKzAXwKwJaszcxwlERkMoCbATwNAKrap6ptYIa5KgRwmYgUApgA4DSY4QWp6ssAWoZsHim3tQCeVdVeVT0JoBLp80+iDZehqr6gqgPRzf0AZkdfM8NhjLAfAsDjAL4BIPsNcsxwGCNk+KcANqtqb3Sfpmj7mDJMyqR6FoDarNt10TYaJRGpAHA9gFcB/Jaq1gPpiTeA8jwOLQTfQ/qgN5i1jRmO3hUAmgH8KLqEZouITAQzHDVVPYX0KzA1AOoBtKvqC2CGYzVSbjzXjM1XAPxn9DUzHCURuRPAKVX99ZBvMcPRWwRghYi8KiJ7ReTj0fYxZZiUSbUMs40fezJKIjIJwM8B/JmqduR7PCERkTsANKnqG/keS8AKAdwA4Ieqej2ALvAyhZxE1/yuBTAPwEwAE0Xk7vyO6pLEc02ORORhpC813J7ZNMzdmOEQIjIBwMMAHhnu28NsY4bDKwRQgvQlrg8AeE5EBGPMMCmT6joAc7Juz0b6V590ASJShPSEeruq7ow2N4rIjOj7MwA0jfTvCcsB3CkiVUhfdrRKRP4JzDAXdQDqVPXV6PYOpCfZzHD0fh/ASVVtVtV+ADsBLAMzHKuRcuO5Jgcisg7AHQC+pO9/vi8zHJ35SD9J/nV0fpkN4E0RmQ5mmIs6ADs17QDSv1EuxRgzTMqk+jUAC0VknoiMR/ri8+fzPCbzomdrTwM4oqqPZX3reQDroq/XAdh1sccWClXdpKqzVbUC6f3uJVW9G8xw1FS1AUCtiFwZbboVwP+CGeaiBsASEZkQ/VzfivR7JJjh2IyU2/MA7hKRYhGZB2AhgAN5GJ95IrIGwIMA7lTV7qxvMcNRUNXDqlquqhXR+aUOwA3R8ZIZjt6/AlgFACKyCMB4ACmMMcNCf+O0Q1UHRORrAP4L6Xe9b1XVd/I8rBAsB3APgMMi8la07ZsANiP9K5KvIn2y/kJ+hhc0ZpibrwPYHj0pPgHgj5F+UYAZjoKqvioiOwC8ifSv2g8ivXLYJDDD8xKRZwDcAqBUROoAfAsj/Pyq6jsi8hzST/oGANynqufyMnBDRshwE4BiAC+mn+dhv6reywyHN1yGqvr0cPdlhsMbYT/cCmBr9DF7fQDWRb81GVOGXFGRiIiIiMhRUi7/ICIiIiLyhpNqIiIiIiJHnFQTERERETnipJqIiIiIyBEn1UREREREjjipJiIKjIhsEJEjIrL9wvc+b517ReSP4hoXEVGS8SP1iIgCIyK/AXC7qp7M91iIiCiNr1QTEQVERJ4EcAWA50WkXUR+KiIvici7IvIn0X1uEZG9IvKciBwTkc0i8iUROSAih0VkfnS/b4vIxnz2Q0R0qeCkmogoIKp6L4DTAFYCeBzAtQA+BWApgEdEZGZ01+sA3A/gd5BeGXWRqt4IYAvSK1QSEVGMOKkmIgrbLlXtUdUUgD0Aboy2v6aq9araC+A4gBei7YcBVFz8YRIRXdo4qSYiCtvQN8ZkbvdmbRvMuj0IoND3oIiIkoaTaiKisK0VkQ+JyDQAtwB4Lc/jISJKJE6qiYjCdgDAfwDYD+CvVfV0nsdDRJRI/Eg9IqJAici3Afyfqj6a77EQESUdX6kmIiIiInLEV6qJiIiIiBzxlWoiIiIiIkecVBMREREROeKkmoiIiIjIESfVRERERESOOKkmIiIiInLESTURERERkaP/B+YKa29mRng9AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -4056,21 +4068,6 @@ " \n", " \n", " \n", - " Tue, 3/30/2021\n", - " 2021\n", - " Everesting 2: Kings + WOLH + OLH\n", - " 3.34\n", - " 35.99\n", - " 4377\n", - " 10.78\n", - " 399.0\n", - " 122.0\n", - " 2.30\n", - " 57.91\n", - " 1334.0\n", - " \n", - " \n", - " \n", " Mon, 3/29/2021\n", " 2021\n", " Everesting 1: Mt Diablo\n", @@ -4086,18 +4083,18 @@ " \n", " \n", " \n", - " Sun, 12/1/2013\n", - " 2013\n", - " Mt. Hamilton\n", - " 3.78\n", - " 37.56\n", - " 4921\n", - " 9.94\n", - " 397.0\n", - " 131.0\n", - " 2.48\n", - " 60.43\n", - " 1500.0\n", + " Tue, 3/30/2021\n", + " 2021\n", + " Everesting 2: Kings + WOLH + OLH\n", + " 3.34\n", + " 35.99\n", + " 4377\n", + " 10.78\n", + " 399.0\n", + " 122.0\n", + " 2.30\n", + " 57.91\n", + " 1334.0\n", " \n", " \n", " \n", @@ -4116,6 +4113,21 @@ " \n", " \n", " \n", + " Sun, 12/1/2013\n", + " 2013\n", + " Mt. Hamilton\n", + " 3.78\n", + " 37.56\n", + " 4921\n", + " 9.94\n", + " 397.0\n", + " 131.0\n", + " 2.48\n", + " 60.43\n", + " 1500.0\n", + " \n", + " \n", + " \n", " Fri, 10/30/2015\n", " 2015\n", " OLH / West Alpine\n", @@ -4332,10 +4344,10 @@ " date year title hours \\\n", " Sun, 11/29/2015 2015 Mt. Hamilton 3.68 \n", " Fri, 4/2/2021 2021 Everesting 5: climb 2×(OLH + WOLH) 3.27 \n", - " Tue, 3/30/2021 2021 Everesting 2: Kings + WOLH + OLH 3.34 \n", " Mon, 3/29/2021 2021 Everesting 1: Mt Diablo 2.60 \n", - " Sun, 12/1/2013 2013 Mt. Hamilton 3.78 \n", + " Tue, 3/30/2021 2021 Everesting 2: Kings + WOLH + OLH 3.34 \n", " Sat, 11/25/2017 2017 Mt. Hamilton 3.69 \n", + " Sun, 12/1/2013 2013 Mt. Hamilton 3.78 \n", " Fri, 10/30/2015 2015 OLH / West Alpine 3.48 \n", " Sat, 4/26/2014 2014 OLH / Tunitas Creek 5.26 \n", " Sat, 4/18/2015 2015 Tunitas + Lobitos Creeks 5.24 \n", @@ -4354,10 +4366,10 @@ " miles feet mph vam fpmi pct kms meters \n", " 37.00 4902 10.05 406.0 132.0 2.51 59.53 1494.0 \n", " 31.48 4344 9.63 405.0 138.0 2.61 50.65 1324.0 \n", - " 35.99 4377 10.78 399.0 122.0 2.30 57.91 1334.0 \n", " 22.22 3406 8.55 399.0 153.0 2.90 35.75 1038.0 \n", - " 37.56 4921 9.94 397.0 131.0 2.48 60.43 1500.0 \n", + " 35.99 4377 10.78 399.0 122.0 2.30 57.91 1334.0 \n", " 36.65 4806 9.93 397.0 131.0 2.48 58.97 1465.0 \n", + " 37.56 4921 9.94 397.0 131.0 2.48 60.43 1500.0 \n", " 39.51 4505 11.35 395.0 114.0 2.16 63.57 1373.0 \n", " 58.69 6742 11.16 391.0 115.0 2.18 94.43 2055.0 \n", " 61.27 6611 11.69 385.0 108.0 2.04 98.58 2015.0 \n", @@ -4434,42 +4446,42 @@ " \n", " \n", " count\n", - " 545.000000\n", - " 545.000000\n", - " 545.000000\n", - " 545.000000\n", - " 545.000000\n", - " 545.000000\n", - " 545.000000\n", - " 545.000000\n", - " 545.000000\n", - " 545.000000\n", + " 547.000000\n", + " 547.000000\n", + " 547.000000\n", + " 547.000000\n", + " 547.000000\n", + " 547.000000\n", + " 547.000000\n", + " 547.000000\n", + " 547.000000\n", + " 547.000000\n", " \n", " \n", " mean\n", - " 2017.036697\n", - " 3.381119\n", - " 43.222330\n", - " 1835.176147\n", - " 12.992881\n", - " 157.930275\n", - " 41.550459\n", - " 0.786679\n", - " 69.544661\n", - " 559.366972\n", + " 2017.062157\n", + " 3.387989\n", + " 43.330457\n", + " 1834.268739\n", + " 12.996033\n", + " 157.694698\n", + " 41.478976\n", + " 0.785320\n", + " 69.718647\n", + " 559.091408\n", " \n", " \n", " std\n", - " 2.611930\n", - " 1.474291\n", - " 17.659635\n", - " 1510.896504\n", - " 1.376471\n", - " 90.220516\n", - " 27.241663\n", - " 0.515809\n", - " 28.414416\n", - " 460.515601\n", + " 2.640862\n", + " 1.476037\n", + " 17.717875\n", + " 1508.345810\n", + " 1.375075\n", + " 90.151399\n", + " 27.219045\n", + " 0.515385\n", + " 28.508142\n", + " 459.737864\n", " \n", " \n", " min\n", @@ -4487,41 +4499,41 @@ " \n", " 25%\n", " 2015.000000\n", - " 2.210000\n", - " 29.180000\n", - " 739.000000\n", + " 2.215000\n", + " 29.195000\n", + " 740.000000\n", " 12.160000\n", - " 81.000000\n", - " 20.000000\n", + " 80.500000\n", + " 19.500000\n", " 0.370000\n", - " 46.950000\n", - " 225.000000\n", + " 46.975000\n", + " 225.500000\n", " \n", " \n", " 50%\n", " 2017.000000\n", - " 2.880000\n", - " 36.880000\n", + " 2.890000\n", + " 37.000000\n", " 1375.000000\n", - " 13.140000\n", + " 13.150000\n", " 152.000000\n", " 36.000000\n", " 0.690000\n", - " 59.340000\n", + " 59.530000\n", " 419.000000\n", " \n", " \n", " 75%\n", " 2018.000000\n", - " 4.430000\n", - " 57.640000\n", - " 2362.000000\n", - " 13.780000\n", - " 219.000000\n", - " 56.000000\n", - " 1.070000\n", - " 92.740000\n", - " 720.000000\n", + " 4.440000\n", + " 58.260000\n", + " 2352.500000\n", + " 13.785000\n", + " 218.500000\n", + " 55.500000\n", + " 1.060000\n", + " 93.740000\n", + " 717.000000\n", " \n", " \n", " max\n", @@ -4542,23 +4554,23 @@ ], "text/plain": [ " year hours miles feet mph \\\n", - "count 545.000000 545.000000 545.000000 545.000000 545.000000 \n", - "mean 2017.036697 3.381119 43.222330 1835.176147 12.992881 \n", - "std 2.611930 1.474291 17.659635 1510.896504 1.376471 \n", + "count 547.000000 547.000000 547.000000 547.000000 547.000000 \n", + "mean 2017.062157 3.387989 43.330457 1834.268739 12.996033 \n", + "std 2.640862 1.476037 17.717875 1508.345810 1.375075 \n", "min 2012.000000 1.540000 20.960000 68.000000 8.550000 \n", - "25% 2015.000000 2.210000 29.180000 739.000000 12.160000 \n", - "50% 2017.000000 2.880000 36.880000 1375.000000 13.140000 \n", - "75% 2018.000000 4.430000 57.640000 2362.000000 13.780000 \n", + "25% 2015.000000 2.215000 29.195000 740.000000 12.160000 \n", + "50% 2017.000000 2.890000 37.000000 1375.000000 13.150000 \n", + "75% 2018.000000 4.440000 58.260000 2352.500000 13.785000 \n", "max 2024.000000 8.140000 102.410000 7644.000000 21.650000 \n", "\n", " vam fpmi pct kms meters \n", - "count 545.000000 545.000000 545.000000 545.000000 545.000000 \n", - "mean 157.930275 41.550459 0.786679 69.544661 559.366972 \n", - "std 90.220516 27.241663 0.515809 28.414416 460.515601 \n", + "count 547.000000 547.000000 547.000000 547.000000 547.000000 \n", + "mean 157.694698 41.478976 0.785320 69.718647 559.091408 \n", + "std 90.151399 27.219045 0.515385 28.508142 459.737864 \n", "min 10.000000 3.000000 0.050000 33.720000 21.000000 \n", - "25% 81.000000 20.000000 0.370000 46.950000 225.000000 \n", - "50% 152.000000 36.000000 0.690000 59.340000 419.000000 \n", - "75% 219.000000 56.000000 1.070000 92.740000 720.000000 \n", + "25% 80.500000 19.500000 0.370000 46.975000 225.500000 \n", + "50% 152.000000 36.000000 0.690000 59.530000 419.000000 \n", + "75% 218.500000 55.500000 1.060000 93.740000 717.000000 \n", "max 406.000000 153.000000 2.900000 164.780000 2330.000000 " ] },