\n",
"\n",
"# Tracking Trump: Electoral Votes Edition\n",
"\n",
- "[538](https://projects.fivethirtyeight.com/trump-approval-ratings/) shows presidential approval ratings (currently about 42% (±4) approval and 52% (±4) disapproval). But do approval ratings predict election results? Surely there is a correlation—popular presidents are more likely to be re-elected. But there are three big caveats:\n",
+ "[538](https://projects.fivethirtyeight.com/trump-approval-ratings/) shows presidential approval ratings (currently about 42% (±4) approval and 53% (±4) disapproval). Do approval ratings predict election results? There are three big caveats:\n",
"\n",
- "1. These are approval polls, not votes. We don't know who will be on the ballot and what their approval levels will be, we don't know if there is systematic bias in the polling data, and we don't know how many people will vote for a candidate they disapprove of or against a candidate they approve of.\n",
+ "1. These are approval polls, not votes. \n",
"\n",
- "2. This is today, not election day 2020. Things can change. Key economic, geopolitical, or legal events might happen.\n",
+ "2. This is today, not election day 2020. \n",
"\n",
"3. These are popular votes, not electoral votes. \n",
"\n",
"We can't be conclusive about the first two points, but this notebook can take the state-by-state, month-by-month approval data from Morning Consult's\n",
- "[Tracking Trump](https://morningconsult.com/tracking-trump/) web page and compute electoral votes, under the assumption that Trump wins the electoral votes of states he has positive net approval (and wins half the electoral votes for states where approval exactly equals disapproval).\n",
+ "[Tracking Trump](https://morningconsult.com/tracking-trump/) web page and compute electoral votes, under the assumption that Trump wins the electoral votes of states he has positive net approval (and for the purposes of computation we'll assign half the electoral votes for states where approval exactly equals disapproval).\n",
"\n",
"\n",
"# TL;DR for policy wonks\n",
"\n",
- "As of 1 April 2019, Trump would expect **180 electoral votes** under these assumptions (recall that you need **270** to win). He's been below 270 every month for the last two years.\n",
- "I have five ways of understanding the fluidity of the situation:\n",
- "\n",
- "- **Undecided**: If many voters are undecided, the net approval could change a lot. So I track the number of states for which at least 5% of voters are undecided. At the inauguration in 2017, all 51 states (including DC) had at least 5% undecided; now there are no such states. Overall 4% of voters are undecided. Most people have made up their mind.\n",
- "\n",
- "- **Variance**: How much are voters changing their minds from month to month in each state? I track the standard deviation, 𝝈, of the net approval for each state over the last 12 months.\n",
- "\n",
- "- **Movement**: What's the most a state's net approval could be expected to move, due to random fluctuations (that is, assuming there is no big event that changes people's minds)? I define the maximum expected **movement** of a state as 1/5 of the undecided voters (i.e. assume the undecided voters broke 60/40 one way or the other) plus 2 standard deviations in the net approval. If all the states had maximum expected movement towards Trump he would take **259** electoral votes, and if the states all swung the other way, he would take **79** electoral votes.\n",
- "\n",
- "- **Swing state**: I define a swing state as one whose maximum expected movement is greater than the absolute value of the net approval. There are 15 such states now.\n",
- "\n",
- "- **Margin**: Suppose a future event swings voters in one direction or another uniformly, across the board in all states. How much of a swing would be necessary to change the election outcome? We call that the **margin**. Today **Trump's margin is 7%:** if he got 7% more votes in all states he would be over 270 electoral votes. (This could come, for example, by convincing undecided voters to break for him at a 2% to 1% ratio, and then convincing 3% of disapproving voters to switch to approving.)\n",
- "\n",
+ "As of 1 May 2019, Trump would expect **193 electoral votes** under these assumptions (recall that you need **270** to win). He's been below 270 every month for the last two years, and that remains true even if you factor in an across-the-board 3% swing in his favor (which was the swing above polls that he experienced in 2016).\n",
"\n",
"\n",
"# The details for data science nerds\n",
"\n",
- "First fetch the Tracking Trump web page and cache it locally: "
+ "We don't know who else will be on the ballot and what their approval levels will be, we don't know if there is systematic bias in the polling data, we don't know how many people will vote for a candidate they disapprove of or against a candidate they approve of, and we don't know who will decline to vote.\n",
+ "I have five ways of understanding the fluidity of the situation:\n",
+ "\n",
+ "- **Undecided**: If many voters are undecided, the net approval could change a lot. So I track the number of states for which at least 5% of voters are undecided. At the inauguration in 2017, all 51 states (including DC) had at least 5% undecided; now there is only one such state (Alaska). Overall 4% of voters are undecided. Most people have made up their mind.\n",
+ "\n",
+ "- **Variance**: How much are voters changing their minds from month to month in each state? I track the standard deviation, 𝝈, of the net approval for each state over the last 12 months.\n",
+ "\n",
+ "- **Movement**: What's the most a state's net approval could be expected to move, due to random fluctuations (that is, assuming there is no big event that changes people's minds)? I define the maximum expected **movement** of a state as 1/5 of the undecided voters (i.e. assume the undecided voters broke 60/40 one way or the other) plus 2 standard deviations in the net approval over the last 12 months. \n",
+ "\n",
+ "- **Swing state**: I define a swing state as one whose maximum expected movement is greater than the absolute value of the net approval. There are 15 such states now. (My definition correlates well with the standard wisdom on swing states, but with a few surprises, such as North Dakota, where Trump is currently only +1% net approval. My model does not count Pennsylvania, Michigan, and Wisconsin as swing states, because Trump is currently -7%, -12% and -13% respectively, and expected movement is low at 3% to 5%.) If Trump won all the swing states he would get **253** electoral votes, and if he lost them all, **76** electoral votes.\n",
+ "\n",
+ "- **Margin**: Suppose a future event swings voters in one direction or another uniformly, across the board in all states. How much of a swing would be necessary to change the election outcome? We call that the **margin**. Today **Trump's margin is 7%:** if he got 7% more votes in all states he would be over 270 electoral votes. (This could come, for example, by convincing undecided voters to break for him at a 2% to 1% ratio, and then convincing 3% of disapproving voters to switch to approving.)\n",
+ "\n",
+ "# Data and Code\n",
+ "\n",
+ "First fetch the [Tracking Trump](https://morningconsult.com/tracking-trump/) web page and cache it locally: "
]
},
{
@@ -53,7 +56,7 @@
"text": [
" % Total % Received % Xferd Average Speed Time Time Time Current\n",
" Dload Upload Total Spent Left Speed\n",
- "100 115k 0 115k 0 0 224k 0 --:--:-- --:--:-- --:--:-- 224k\n"
+ "100 116k 0 116k 0 0 193k 0 --:--:-- --:--:-- --:--:-- 193k\n"
]
}
],
@@ -112,23 +115,22 @@
" '1-Oct-18': -11, '1-Nov-18': -11, '1-Dec-18': -10, '1-Jan-19': -12,\n",
" '1-Feb-19': -16, '1-Mar-19': -11, '1-Apr-19': -11, '1-May-19': -12}\n",
"\n",
- "State = namedtuple('State', 'name, ev, lean, apps, diss')\n",
+ "State = namedtuple('State', 'name, ev, lean, approvals, disapprovals')\n",
"State.__doc__ = '''A State has a name, the number of electoral votes (.ev),\n",
- "the partisan lean (.lean) and two dicts of {date: percent}:\n",
- ".apps (approvals) and .diss (disapprovals)'''\n",
+ "the partisan lean (.lean) and two dicts of {date: percent}: .approvals and .disapprovals'''\n",
"\n",
"def parse_page(filename='evs.html', data=data):\n",
" \"Read data from the file and return (list of dates, list of `State`s, last date).\"\n",
" # File format: Date headers, then [state, approval, disapproval ...]\n",
" # [[\"Demographic\",\"1-Jan-17\",\"\",\"1-Feb-17\",\"\", ... \"1-Apr-19\",\"\"],\n",
" # [\"Alabama\",\"62\",\"26\",\"65\",\"29\", ... \"61\",\"35\"], ... ] =>\n",
- " # State(\"Alabama\", 9, apps={\"1-Jan-17\": 62, ...}, diss={\"1-Jan-17\": 26, ...}), ...\n",
+ " # State(\"Alabama\", 9, approvals={\"1-Jan-17\": 62, ...}, disapprovals={\"1-Jan-17\": 26, ...}), ...\n",
" text = re.findall(r'\\[\\[.*?\\]\\]', open(filename).read())[0]\n",
" table = ast.literal_eval(text)\n",
" dates = table[0][1::2]\n",
" states = [State(name, *data[name],\n",
- " apps=dict(zip(dates, map(int, numbers[0::2]))),\n",
- " diss=dict(zip(dates, map(int, numbers[1::2]))))\n",
+ " approvals=dict(zip(dates, map(int, numbers[0::2]))),\n",
+ " disapprovals=dict(zip(dates, map(int, numbers[1::2]))))\n",
" for (name, *numbers) in table[1:]]\n",
" return dates, states, dates[-1]\n",
"\n",
@@ -145,8 +147,8 @@
" \"What's the least swing that would lead to a majority?\"\n",
" return next(swing for swing in range(-50, 50) if EV(states, date, swing) >= 270)\n",
"\n",
- "def net(state, date=now): return state.apps[date] - state.diss[date]\n",
- "def undecided(state, date=now): return 100 - state.apps[date] - state.diss[date]\n",
+ "def net(state, date=now): return state.approvals[date] - state.disapprovals[date]\n",
+ "def undecided(state, date=now): return 100 - state.approvals[date] - state.disapprovals[date]\n",
"def movement(state, date=now): return undecided(state, date) / 5 + 2 * 𝝈(state)\n",
"def 𝝈(state, recent=dates[-12:]): return stdev(net(state, d) for d in recent)\n",
"def is_swing(state): return abs(net(state)) < movement(state)\n",
@@ -169,7 +171,7 @@
{
"data": {
"text/plain": [
- "180"
+ "193.0"
]
},
"execution_count": 3,
@@ -209,16 +211,16 @@
{
"data": {
"text/plain": [
- "{0: 180,\n",
- " 1: 180,\n",
- " 2: 202.0,\n",
- " 3: 224,\n",
- " 4: 233.0,\n",
+ "{0: 193.0,\n",
+ " 1: 209,\n",
+ " 2: 209,\n",
+ " 3: 209,\n",
+ " 4: 225.5,\n",
" 5: 242,\n",
- " 6: 251.5,\n",
- " 7: 271.0,\n",
- " 8: 289.5,\n",
- " 9: 298}"
+ " 6: 254.0,\n",
+ " 7: 276.0,\n",
+ " 8: 286,\n",
+ " 9: 288.0}"
]
},
"execution_count": 5,
@@ -236,9 +238,9 @@
"metadata": {},
"source": [
"We see that:\n",
- "- Trump is currently leading in states with only 180 electoral votes; \n",
- "- The margin is 7% (if he got 7% more popular in every state, he would win a narrow 271 vote victory).\n",
- "- Swings from 0 to 9% produce electoral vote totals from 180 ro 298."
+ "- Trump is currently leading in states with only 193 electoral votes; \n",
+ "- The margin is 7% (if he got 7% more popular in every state, he would win a narrow 276 to 262 vote victory).\n",
+ "- Swings from 0 to 9% produce electoral vote totals from 193 to 288."
]
},
{
@@ -257,7 +259,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAGVCAYAAABzbLxIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdUVNfaBvDnMDB0AZFiARRBVMQuBEkUG8aLXRNNvDHBTkyuJRpDYrn6GY1dc2PUqNeYeBMLEjVqbFGsCBprLEhsKCodZOgzc74/iINDHXCGoTy/tVjLs09754jyss/e7xbS0tJEEBEREVGNZ6DvAIiIiIhIO5jYEREREdUSTOyIiIiIagkmdkRERES1BBM7IiIiolqCiR0RERFRLcHEjoiIiKiWYGJHREREVEsYlrYjMjKyUhf08fGpdDBEREREVHlCaStP2NjYQBAEjS8kiiIEQUBKSorWgqupYmJi4O7uru8w6iQ+e/3hs9cfPnv94HPXHz770pXaY7dnz56qjIOIiIiIXlGpiV337t2rMg4iIiIiekWcPEFERERUS5TaY1eSvLw8HDx4EFeuXEF6ejqUSqXafkEQsHr1aq0GSERERESa0Tixe/r0KQYNGoSYmBhYWlpCJpOhXr16eP78OURRhI2NDczMzHQZKxEREdVQcrkcmZmZWrmWiYkJ0tPTtXKt6sjc3ByGhhXqe1PR+Kx58+bh2bNn2L9/P1q2bAk3Nzds3boVXbp0wTfffIP//e9/2Lt3b6WCICIiotpLLpcjIyMD1tbWFaq4URpjY2OYmJhoIbLqRxRFpKWlwdLSslLJncZj7I4fP44xY8bAz89P7S/FzMwMn376KXx8fPD5559XOAAiIiKq3TIzM7WW1NV2giDA2tq60r2bGid2MpkMrq6uAAoyZQDIyMhQ7ff19cXZs2crFQQRERHVbkzqNPcqz0rjxM7R0RFPnjwBUPDu18bGBjdu3FDtj4uLg0QiqXQgRERERPRqNH556+vrixMnTuCzzz4DAPTv3x9ff/01pFIplEol1q9fj969e+ssUCIiIiIqm8Y9dh9++CH+8Y9/ICcnBwAwf/58dOrUCQsWLMDChQvh5eWFr776qtKBrFixAtbW1pg5c6aqLTg4GNbW1mpfRZPH3NxczJw5E66urmjUqBFGjhyJuLi4SsdBREREVFNp3GPn5eUFLy8v1baNjQ327duHlJQUGBgYwNrautJBXLhwAVu3boWnp2exff7+/tiwYYNqWyqVqu0PCQnBwYMHsXnzZtjY2OCLL77AiBEjcPLkSb4aJiIiojpF4x67R48eldhev379V0rq0tPTMX78ePznP/8p8TrGxsZwcHBQfdnY2Kid++OPP2LBggXo0aMH2rdvjw0bNuDGjRsIDw+vdExEREREK1euRI8ePeDk5ITmzZtjxIgRuHnzptoxRd8svviaMWOG6hhRFLF48WK0bNkSjo6OCAwMxK1bt3QSs8Y9dm3btoWPjw+GDh2KwYMHw97eXisBTJ06FYMGDUL37t2xdOnSYvsjIiLg5uYGKysr+Pn5Yc6cObCzswMAXLlyBfn5+ejZs6fq+CZNmsDDwwORkZHo1auXVmIsSUREBCIjIyt8no+PD3x9fXUQEREREWnTmTNnMHbsWHTs2BGiKGLRokUYPHgwIiMjVR1N0dHRaudcvnwZI0eOxODBg1Vta9aswdq1a7F27Vq4u7tj6dKlGDJkCC5cuABLS0utxiykpaWJmhy4atUqhIWF4c8//4REIkHXrl0xfPhwDBgwQK0XrSK2bt2K//73vzh69CikUikCAwPRunVrLFu2DACwe/dumJqawsXFBbGxsVi4cCGUSiXCw8NhbGyMXbt2YdKkSUhKSlKbGjxgwAA0b9681OXNYmJiKhVveQ4cOKC2HRgYqJP7EBER1SQmJiaqTpmXOWxzrNI44v/57JXOz8zMhLu7O77//nsEBASUeMwnn3yC8+fPq0rAiaKIdu3aYcyYMZg6dSoAIDs7G23atMG8efMwevToEq+TmJiomtfwMnd39zJj1LjHbtq0aZg2bRr++usvhIaGYs+ePZgyZQpmzJgBf39/DB06FIGBgRpnnjExMViwYAF+++23YuPmXhg2bJjqz56enmjfvj28vLxw+PBhDBw4sNRri6JYZg2Y8h7Kq1BAwJ9GTrhj2BBT3NxYt6eKxcTE6PTvl0rHZ68/fPb6weeuufT09GqxUsSrxpCWlgalUgk7O7sSryWTybB3717MmjVLtf/BgwdISEhAQECAqs3ExAR+fn64dOkSJkyYUOK96tWrBycnpwrHqPEYuxfc3Nzw2Wef4fz58zh16hQmT56MmJgYfPjhh/Dw8ND4OlFRUUhOToavry9sbW1ha2uLs2fPYtOmTbC1tUVubm6xcxo2bIhGjRrh3r17AAB7e3soFAokJyerHZeUlFTibwa6Fil1wxrLf+AXMx/ckDrjWFzxz0BEREQ102effQYvLy94e3uXuD80NBS5ubl45513VG3x8fEAUCwvsbOzQ0JCgtZjrNwKs3/z8vKCRCKBgYEBNm7cCJlMpvG5gYGB6NChg1rb5MmT0bx5c0yfPr3EXrzk5GQ8ffoUDg4OAID27dvDyMgIJ06cwFtvvQWgoFBydHQ0fHx8XuGTVc5DSQM8NzBTba++noE+TfT/GwoRERG9ms8//xznz5/HoUOHSq26sXXrVgQGBqJBgwbF9hV9g1fe28XKqlRid+/ePezevRthYWGIjo6GoaEhevToofbqtDwvZo28zMzMDDY2NmjdujVkMhm++uorDBw4EA4ODoiNjcWCBQtgZ2eH/v37AwCsrKzw3nvvYe7cubCzs1OVO/H09IS/v39lPtoreT33Nm5KC7tNzz7Lw8XEPHS2K/lVMxERUV2WPi6tUufl5ORU6avdkJAQhIWF4ddff0XTpk1LPObatWu4fPky5s6dq9b+ojMqISEBTZo0UbXr6u2ixondo0eP8Msvv2D37t24fv06BEGAn58fJk2ahEGDBr1SyZOSSCQS3Lx5E9u3b0d6ejocHBzwxhtvYMuWLWrj+BYtWgSJRIKgoCDk5OSgW7duWL9+vV5q2DVSpqGZPB73DR1UbauvZWBbL9sqj4WIiIhe3axZsxAWFob9+/ejRYsWpR63detWODs7F+tYcnFxgYODA06cOIGOHTsCKEhMIyIisGDBAq3HW6FyJwDQpUsXLFq0CEOGDFFlodry8qxSU1NThIWFlXuOiYkJli1bpppJq2+v595WS+wOxOYgJj0f7lZGeoyKiIiIKmrGjBnYsWMHtm3bBmtra9V4OXNzc1hYWKiOy8rKwq5du/Cvf/2r2OtVQRAQHByMFStWwN3dHW5ubli+fDnMzc0xfPhwrcescWI3b948DB06FM7OzloPojZxlSfAUZGKZ5KCEjAigK+vy/Cf1ytXEoaIiIj0Y9OmTQCAQYMGqbXPmjULISEhqu2wsDBkZmZi1KhRJV5nypQpyM7OxsyZM5GWloZOnTohLCxM6zXsgArUsaPyvaibd93ICbvNXlO1Sw2Aq285oqEZlzjTNZYf0B8+e/3hs9cPPnfNpaenw8rKSmvXq+oxdvpQ2WdWoXInMpkMS5YsQa9eveDu7g53d3f06tULS5cuRUZGRoVvXlu1zn8Ma2XhDOE8JbDuhuYzhomIiIgqQ+PELj4+Ht26dcNXX32F1NRUdOrUCR07dkRaWhoWL14Mf39/ndRjqYkkENE1945a25boTKTnKfUUEREREdUFGid28+fPx5MnT7B161ZcunQJ27dvx44dO/DHH3/ghx9+QFxcHObPn6/LWGuUDnn30cCk8PFm5IvYcjtTjxERERFRbadxYnf06FFMmDChxKW8BgwYgPHjx+PIkSNaDa4mM4ISE1uZq7WtuylDjpxDGomIiEg3NE7sMjIyylyzzNnZmePsihjXygLmhoXTnuOzldhxN0uPEREREVFtpnFi5+rqiv3790MUi/c4iaKI/fv3w9XVVavB1XQ2xgZ438NMre3rPzOgULLXjoiIiLRP48RuwoQJOHXqFIYNG4bff/8dDx8+xMOHD3Hs2DEMHz4cp0+fxqRJk3QZa430YWsLvNRph7vPFdgfm6O/gIiIiKjW0rhA8QcffIDExEQsX74c4eHhavuMjIzw+eefY/To0dqOr8ZrYmGI4a6m2H43W9W25noGBrqY6GTxXyIiotogIiICkZGRFT7Px8cHvr6+OoioZtA4sQOAmTNnIigoCMePH0dsbCyAgrF1PXv2RIMGDXQSYG0wxctSLbG7lJSP08/y0K2hMQB+8xIRERXl6+tb7Gfci4UAXpg6dWpVhlQjaJTY5eTkYO3atejUqRP8/f3x9ttv6zquWqWVjRH6Opng8KPCV7BrrmeoEjttfvMySSQiIqq7NErsTExMsGzZMixdulTX8dRaU70s1BK73+NycT0lH171jbR6H/6GQ0REpB3BwcH4+eefi7W3bdsWcXFxmDRpEmbOnFls/6ZNmzBnzhzcvn1bq0upaULjyROenp548OCBDkOp3XwdjOFjL1Vr+/o6y8MQERFVZ/7+/oiOjlb72rt3L95++23873//K7FayLZt2zBw4MAqT+qACoyxmzt3LoKCguDn54devXrpMqZaa4qXBd79PUW1HXY/G7M7yuFiWaGhjkRERLWC9Za4ip1g9Zba5r8reH5aUOOK3Q+AsbExHBwcirWPHj0a69atw+nTp9GtWzdV+/Xr13HlyhV8+eWXAID09HTMnDkTx48fR0ZGBhwdHTFx4kR8+OGHFY5FExpnFOvWrYONjQ3eeustODs7o2nTpjAxMVE7RhCEErssqcCbTiZoaW2I22lyAIBCBL65IcOy16z1HBkRERFVRKtWrdC5c2ds27ZNLbH78ccf0bx5c/j5+QEAFi5ciJs3b2LHjh1o0KABYmNjkZycrLO4NE7srl27BkEQ0LBhQ+Tn5yMmJqbYMSzfUTYDQcDHbSww+Uyaqm3bnSzMam+JBiYSPUZGREREJTl27BgaN1bv6Rs3bhzmz5+P0aNHY9asWUhPT4eVlRVyc3Oxa9cuTJkyRXXso0eP0LZtW3Tq1AkA4OLiotN4NU7sbt68qcs46oy3XM3w5aXneJKlBABkK0R8dysTn3eop+fIiIiIqKiuXbtizZo1am0vxs4NHToUn3/+OXbv3o0xY8bgwIEDyMjIwDvvvKM6duzYsXj//fdx9epV9OjRA2+++SZef/11ncXLwV1VTCoREOxpgTkXnqvaNt6SYUobC5gbaTyXhYiIqMar6Jg3fVR5MDMzK3XJVAsLCwwePBjbtm3DmDFj8OOPPyIgIEBtTF6fPn1w/fp1HD16FCdPnsSIESMwaNAgfPvttzqJt8KJ3enTp3H06FE8evQIAODk5ITevXurvV+msn3gYY7lVzOQnlcwkyY1V8QPd7IQ7Gmh58iIiIioIkaPHo2AgAAcOnQIJ0+exE8//VTsGFtbW4wcORIjR45Enz59MHbsWKxatQrGxsZaj0fjxC4zMxNjxozB0aNHIYoiLC0tAQAZGRn45ptv0KtXL2zZsgUWFkxOymNpZIBxLc2x4ppM1bb2hgzjWpnDyIDjFImIiKqL3NxcxMfHq7VJJBLVilve3t5o2bIlJk2aBAcHB/Tp00ft2C+//BLt2rVDq1atIJfL8euvv6Jp06Y6SeqACtSxmz17No4cOYJp06YhOjoasbGxiI2NRXR0NKZOnYpjx45hzpw5OgmyNprY2gLGL82XeJypQNj97NJPICIioioXHh4ODw8Pta+ibyn/+c9/Ii0tDe+++y4kEvXJkMbGxli4cCFef/119O3bFzKZDNu3b9dZvBr32P3yyy947733iiVv9vb2mDt3LhITE/HLL79g1apVWg+yNrI3lWCUmzn+G52paltzPQNvu5pydjEREVE1sG7dOqxbt67c4z766CN89NFHJe6bMWMGZsyYoe3QSqVxYqdUKtGuXbtS97dr1w779u3TSlB1xcdtLPD9nUwo/y5afTNVjqOPcxHgZFL2iURERLWcJmufF51MAXDtc40Tu969e+PIkSMYO3ZsifuPHj2K3r17ay2wuqBZPUMMcjHFLw8KX8Guvp7BxI6IiOq8ktY+fyEnJ6fYIglUQOMxdiEhIXj8+DHeeecdhIeH4+HDh4iNjcWJEycwcuRIxMXFISQkBKmpqWpfVLYpXuqTTc7F5+FCQp6eoiEiIqKaTOMeO29vbwAFhYoPHz6stu/FArgvjnlZSkpKsTYq1L6BFN0bGuPk01xV2+rrGeiix5iIiIioZtI4sfvkk090GUedNtXLQi2xOxibg6YGlrBTZugxKiIiIqppNE7sZs+ercs46jT/RsZoW98I11LyAQAigHPGHhiUfVG/gREREWmJKIqs+qChF29CK6PSa1hlZ2cjO5t117RBEARMLTLW7qqRC54LHBhKREQ1n7m5OdLS0l4pYakrRFFEWloazM3NK3V+hZYUe/DgAZYsWYJjx44hOTkZAFC/fn306dMHn376KZo1a1apIAgY2NQUTS89x4MMBQBAKRjgvLE7AnKu6zkyIiKiV2NoaAhLS0s8f/68/IM18Pz5c9SrV08r16qOLC0tYWhY4VVfAVQgsbt8+TIGDRqErKws+Pv7o3nz5hBFEffu3cOuXbtw4MAB7N27Fx06dKhUIHWdoYGAj9tY4JOIdFXbRWlzvJFzG6bI12NkREREr87Q0BBWVlZauVZCQgKcnJy0cq3aRuPE7rPPPoOZmRmOHTuGFi1aqO2Ljo7GwIEDERISgkOHDmk9yLriXTdzLL6cgaQcJQAgTzDCRWNXvJEbrefIiIiIqCbQeIzdtWvXMH78+GJJHQB4eHhg/PjxuHr1qlaDq2tMDQVMbKX+Tv28tAXyKz8UkoiIiOoQjTMGe3v7Mt/3GhkZwd7evtKBrFixAtbW1pg5c6aqTRRFLF68GC1btoSjoyMCAwNx69YttfPS0tIwYcIEODs7w9nZGRMmTEBaWlql49C3ca0sYG5YOGso08AEV6RN9RcQERER1RgaJ3bBwcHYvHkznjx5Umzf48ePsWnTJgQHB1cqiAsXLmDr1q3w9PRUa1+zZg3Wrl2LJUuW4Pjx47Czs8OQIUOQkVFY323cuHG4du0adu3ahdDQUFy7dg0TJ06sVBzVgY2xAd73MFNrO2bSFvefy/UUEREREdUUGo+xk8vlsLS0ROfOndG/f380a9YMgiDg7t27OHDgAFxdXSGXy/HNN9+ozhEEAZMnTy7zuunp6Rg/fjz+85//YOnSpap2URSxbt06TJ06FYMGDQIArFu3Du7u7ggNDUVQUBCio6Nx7NgxHDp0CD4+PgCAVatWoV+/foiJiYG7u3uFHkZ18WFrC2z48zkUggQAkCsYYfSJFBwJtIOpIWsAERERUck0TuzmzJmj+vOuXbuK7b9x44baMYBmid2LxK179+5qid3Dhw8RHx+Pnj17qtpMTU3RtWtXREZGIigoCFFRUbCwsFAldQDw2muvwdzcHJGRkTU2sWtiYYg+OddwyLRwhvH1lHx8FpmGNX42eoyMiIiIqjONE7tLly5p/eZbt27FvXv3sGHDhmL74uPjAQB2dnZq7XZ2dnj69CmAgunOtra2apWsBUFAgwYNkJCQUOp9Y2JitBF+uV7lPj55f+GhoR1uGTVRtW29k4VmYioCHRR6i6smqO2frzrjs9cfPnv94HPXn7r67MvrtNI4sdOk+HBFCgbGxMRgwYIF+O233yCVSks9rujyI0WXJClpeZLyli2pqp68V7mPAGBQ1gXEW1ghRWKpal9yzwQBnnZobWOkl7iqu5r8Cr6m47PXHz57/eBz1x8++9JVrqzxS+RyOQ4fPoydO3fiyJEjqt608kRFRSE5ORm+vr6qNoVCgXPnzuG///0vzp8/D6CgV65Jk8Jeq6SkJFUvnr29PZKSktQSOVEUkZycXKynT9siIiIQGRlZ5jGrV68u1ubj46P2mctiAjnezorAJotekP893i5bIeL9Eyk4PsAOlkYsg0JERESFKp3YnT9/Hjt37sSePXuQmpoKS0tL9O3bV+PzAwMDi61SMXnyZDRv3hzTp0+Hm5sbHBwccOLECXTs2BEAkJOTg4iICCxYsAAA4O3tDZlMhqioKNU4u6ioKGRmZqqNu9MFX1/fUhM0bf4m4ahMxz+yL2GfWZfC66fLMfVsGjZ1t+GCykRERKRSocQuJiYGO3bswK5du/Do0SMAwIABAxAUFAQ/Pz8YGWn+etDa2hrW1tZqbWZmZrCxsUHr1q0BFJRYWbFiBdzd3eHm5obly5fD3Nwcw4cPB1BQGLl3796YNm0a1qxZA1EUMW3aNPTt27dWddF2zH8AS/fu+F9Mlqpt9/1s+DpIMa6Vhc7uq0mvZEkq0itJRERE2lNuYpeYmIjQ0FDs3LkTV69ehaWlJfr374/XXnsN//rXvzBixAj4+/vrJLgpU6YgOzsbM2fORFpaGjp16oSwsDBYWhaOOdu4cSNmzZqFoUOHAgD69eunNru2tlj2mhUuJ+XhZmphPbuQqHR0bCBFR7vSxyi+ipJ6JYu+Xp46dapO7k1EREQVV2ZiN3z4cJw8eRKGhoYICAjA9OnT0bdvX0ilUsTGxmo9mAMHDqhtC4KAkJAQhISElHqOjY0NvvvuO63HUt2YGRrghx710ePXRGTkiwCAfCXwfngKTg20h40xx9sRERHVdWVmA7///jsaN26MHTt2YOvWrRgwYECZM1hJt9ysjPCfInXsHskUmHQ6FUpR1FNUREREVF2Umdh98sknEAQBgwcPRseOHfHll18WW6uVqtbgZqaY2Mpcre3woxx8fV2mp4iIiIiouigzsZs9ezYuX76MgwcPwt/fH5s3b4afnx+6du2Kb7/9ljMy9eT/ulihs536RJUFl57jzLNcPUVERERE1YFGA7Nee+01rFy5EtHR0fjhhx/g5uaG77//HqIoYuHChVi2bBmuX7+u61jpb1KJgC3+9WFjXJhYK0VgbHgK4rNebVUKIiIiqrkqNOLeyMgI/fv3xw8//IDo6GisXr0aNjY2WLx4Mbp37462bdvqKk4qwsnCEN91q6/WFp+txLiTKVAoOd6OiIioLqr0VEorKyu8//77OHDgAK5evYovvvgC5ubm5Z9IWtOniQlmtLVUazv9LA+LL2foKSIiIiLSJ63UyHBycsInn3yCiIgIbVyOKiCkgyXecFSfqbz8WgaOPMrRU0RERESkLyx+VsNJDARs6l4fjqbqf5UTT6fgkUxeyllERERUGzGxqwUczCTY7F8fkpcmKafmiggKT0GeguPtiIiI6gomdrWEn6Mx5nSsp9Z2MTEfcy6k6ykiIiIiqmpM7GqRf3lZ4E0nE7W2DbcyccOwiZ4iIiIioqrExK4WMRAErH/DBs4WErX2vWadkWRgoaeoiIiIqKpUOLG7ePEiVq5ciZCQENy9excAkJWVhStXrkAm47JW+mZtbICtPepD+tLfbJ5ghJ1mvsiDpPQTiYiIqMbTOLHLz8/HBx98gICAAPzf//0fNmzYgMePHwOAaj3ZDRs26CxQ0lyHBlIs9rFSa0uQWOOgaQc9RURERERVQePE7quvvsL+/fuxePFinD9/HqJYONvS1NQUgwcPxm+//aaTIKnixniYY7irqVrbFWkzfG/eHXsfZEPO1SmIiIhqHY0Tu507d+KDDz7AxIkTYWdnV2x/ixYtcP/+fa0GR5UnCAJWd7VGCytDtfYHhvZ4/0QK2u2Kx/KrGUjM5tqyREREtYXGiV18fHyZa8EaGxsjMzNTK0GRdlgYFYy3MxKLFyqOy1Jg4aXn8Nz5DBNOpeBiYp5aLywRERHVPBondg4ODnj48GGp+y9fvgxnZ2etBEXa08rGCGNkx+EiTyxxf54S2Hk3G733J6LHr4n4X0wmsuVM8IiIiGoijRO7AQMGYMuWLbh3756qTRAKljo4evQoduzYgSFDhmg/QnplDZXpCMoMR3DGYXTKvQszQ6HE464k52PymTR47nyGf19Mx8MMLklGRERUk2ic2M2aNQsNGzZEt27dMGnSJAiCgDVr1uDNN9/EiBEj4OXlhalTp+oyVnpFDsrnGJBzCTffdsQibyu4WpZc/iQlV4nV12XosDse7/6ejPAnOXxNS0REVANonNhZWVnh2LFj+Pjjj/H48WMYGRnh1KlTSE5OxsyZM3HgwAGYmpqWfyHSO2tjA3zoaYGLwxwQ2scWfZsYo6Q+PKUIHIzNweDDyfD+JQEbbsqQA8MSjiQiIqLqoEI/pU1NTTFr1izMmjVLV/FQFTIQBPRuYoLeTUzwIEOOzbcz8eOdTKTlFe+di0mXY1ZkOqT1+qNd3kN45/0FO2WGHqImIiKi0mjcY7d9+3ZkZPAHeW3V1NIQ/9fFCjdHOOJrP2t41Tcq8bg8wQgXjN2wziIAdwwdqzhKIiIiKovGiV1wcDBatGiB0aNHY+/evcjJydFlXKQnZoYGGN3CHKcG2uHQPxpgWDNTlDTXQikY4LRxq6oPkIiIiEqlcWJ35MgRvP/++7h48SI++OADuLu7Y8KECTh06BDy8/N1GSPpgSAIeM3BGJv96+PPtx0R0sESjqbq3y5PJDbIVXBSBRERUXWh8Ri7Ll26oEuXLli8eDHOnj2LsLAw/Prrr9i1axesrKzQv39/DBs2DD169NBlvFSOiIgIREZGlnnM6tWri7X5+PjA19e3xOMdzSSY1b4epre1RPMtf+G5gRkAQCFIcC05H13spa8eOBEREb2yCk9xFAQBr7/+Ol5//XUsW7YMJ0+eRFhYGPbu3Yuff/4ZycnJuoiTNOTr61tqgvaqjAwEOMmTcUNqpmqLSsxjYkdERFRNaPwqtiQpKSn466+/cPfuXS4nVkc0Uagn7hcS8vQUCRERERVV4R67tLQ07Nu3D7t378bZs2ehUCjQrl07zJ8/H0OHDtVFjFSNODGxIyIiqrY0Tuy2b9+OsLAwhIeHIz8/Hx4eHvj0008xfPhwuLq66jJGqkYcFamQiAoohIJVK+KyFIjLVKCxecmrWBAREVHV0TixCw4OhrOzMz766COj5f9mAAAgAElEQVQMHToUbdq00WVcVE0ZQkQjRSoeGTZQtV1IyEPjZlx1hIiISN80TuyOHj2Kzp076zIWqiGaKJLVEruoxFwMZmJHRESkdxpPnmBSRy84yTnOjoiIqDoqtcduxYoVEAQB06ZNgyAIWLFiRbkXEwQB06dP1+jGGzduxJYtW/Do0SMAQMuWLTFjxgz07dsXQMGr359//lntnM6dO+PYsWOq7dzcXMyePRu7d+9GTk4OunXrhhUrVqBx48YaxUCVU3Rm7NXkfOQqRBhLSliigoiIiKpMqYndwoULIQgCPvroI0ilUixcuLDci1UksWvUqBHmz5+P5s2bQ6lU4ueff8aoUaMQHh6uGr/n7++PDRs2qM6RStXrpYWEhODgwYPYvHkzbGxs8MUXX2DEiBE4efIkJBIO5teVemIOrJSZSDcwBwDkKYGryXnwtjfWc2RERER1W6mJXVJSEgCoEqQX29oSGBiotj1nzhxs3rwZFy5cUCV2xsbGcHBwKPH89PR0/Pjjj1i7dq1qtYsNGzbAy8sL4eHh6NWrl1bj1SVdrBaha03kyUiXmqu2oxKY2BEREelbqYld0R4vXfaAKRQK7NmzB5mZmfD29la1R0REwM3NDVZWVvDz88OcOXNgZ2cHALhy5Qry8/PRs2dP1fFNmjSBh4cHIiMja1Rip8vVInTFSZGMG3BWbV9I5Dg7IiIifdN4VqydnR3Wr1+PYcOGlbh/z549GD9+PBITEzW++Y0bNxAQEICcnByYm5tj27Zt8PT0BAD07t0bAwYMgIuLC2JjY7Fw4UIMHDgQ4eHhMDY2RkJCAiQSCWxtbYvFmZCQUOZ9Y2JiNI6xsqriHvpUdJxdxJMsxMSk6CkadbX92VdnfPb6w2evH3zu+lNXn727u3uZ+zVO7ORyOZRKZaX3l8Td3R2nT59Geno69u3bh+DgYOzfvx+tW7dWSyA9PT3Rvn17eHl54fDhwxg4cGCp1xRFEYJQ9iD+8h7Kq4qJidH5PfTNUZEGQ1EB+d+FihPyDGDasBmaWFR4MROtqgvPvrris9cfPnv94HPXHz770lVordiyEqZLly7BysqqQjeXSqVwdXVFhw4dMG/ePHh5eeHbb78t8diGDRuiUaNGuHfvHgDA3t4eCoUCycnqPUdJSUmq17WkO4YQ0VCRqtbG17FERET6VWb3yoYNG/Ddd9+ptmfPno3FixcXOy49PR0pKSl46623XikYpVKJvLySk4Pk5GQ8ffpUNZmiffv2MDIywokTJ1T3jYuLQ3R0NHx8fF4pDtKMU9FCxQl5GNLMTI8RERER1W1lJnZWVlZwcnICANy7dw/169eHvb292jGCIMDMzAwdOnTApEmTNL7xv//9bwQEBKBx48aQyWQIDQ3FmTNnsHPnTshkMnz11VcYOHAgHBwcEBsbiwULFsDOzg79+/dXxfbee+9h7ty5sLOzU5U78fT0hL+/fwUfA5WkvNm6TeTJwEsTYfddi4VDxPd6na1LRERUl5WZ2I0cORIjR44EAPTr1w+zZs3SWtIUHx+PCRMmICEhAfXq1YOnpydCQ0PRq1cvZGdn4+bNm9i+fTvS09Ph4OCAN954A1u2bIGlpaXqGosWLYJEIkFQUJCqQPH69etZw05Lyput+yxLgZ07nqm2E6S2mBQ0BSaGLFRMRESkDxqPdP/tt9+0euN169aVus/U1BRhYWHlXsPExATLli3DsmXLtBkaacjRTAInCwkeyRQAgPy/CxX7OLCeHRERkT6Umtg9ffoUQMGkhZe3y/PieKobvO2keCTLVm1HJTKxIyIi0pdSE7vWrVtDEAQ8e/YMUqlUtV2elJTqUcuMqkYXeyl23y9M7C4kcGYsERGRvpSa2K1ZswYAYGRkpLZN9DJvO/X1ey8k5mlUS5CIiIi0r9TEbvTo0WVuEwFAm/pGMJEAOQXD7PA0S4m4TIXeCxUTERHVRRUqUFySxMRE/PXXX9qIhWogqURAe9vivXZERERU9TRO7LZu3YoPP/xQre3TTz+Fh4cHvL294e/vj9TU1FLOptqsi716YhfFcXZERER6oXFi9/3338PExES1febMGWzcuBFDhgzB559/jpiYGCxfvlwnQVL11qWEcXZERERU9TQeCPXgwQO8++67qu1ffvkFjRo1wsaNG2FgYACZTIa9e/fiyy+/1EmgVH15F+mxu5qcjxy5yELFREREVUzjHru8vDxIpYU/wE+cOIHevXvDwKDgEs2bN8ezZ89KO51qsReFil94UaiYiIiIqpbGiZ2LiwtOnz4NALhy5Qru37+Pnj17qvYnJCTAwsJC+xFSjVC07EkUX8cSERFVOY1fxX7wwQeYNWsW7ty5g8ePH6Nhw4YICAhQ7Y+KioKHh4dOgqTqj4WKiYiI9E/jxG7ChAkwMjLC4cOH0bJlS0ydOhWmpqYAgNTUVMTFxWHcuHE6C5SqNxYqJiIi0r8KVZENCgpCUFBQsXYbGxucOXNGa0FRzVNSoeLHmQo4sVAxERFRlanUT93o6GjExsYCAJydnfkKliCVCOjQQIqI+MJXsBcS8pjYERERVaEK/dQ9dOgQQkJC8PDhQ7X2pk2bYvHixejbt69Wg6OapYudemIXlZiHoa5meoyIiIiobtE4sTt+/DhGjRqFhg0bIiQkBB4eHhBFEXfu3MHWrVsxatQohIaGwt/fX4fhUnVWdAUKTqAgIiKqWhondkuXLkWLFi1w+PBh1KtXT23fxIkTERAQgCVLljCxq8OKTqC4lsJCxURERFVJ4zp2169fx6hRo4oldQBQr149/POf/8S1a9e0GhzVLA5mEjgXKVR8hYWKiYiIqozGiZ1EIkFOTk6p+7OzsyGRSErdT3VD0eXF+DqWiIio6mic2Pn6+mLjxo148OBBsX0PHjzA5s2b4evrq83YqAbqwhUoiIiI9EbjMXZz587Fm2++CR8fH/Tv3x9ubm4AgJiYGBw8eBBSqRTz5s3TWaBUM5TUY8dCxURERFVD48TO09MTx44dw/z583Hw4EHVa1kTExP06tULc+fOZT07Qpv6RjCVCMhWiACAZ9lKPMpUwJn17IiIiHSuQj9tPTw88NNPP0GhUCA+Ph4AYG9vD0ND/tCmAkYGAto3MCpWqJiJHRERke5pNMbuypUr2Lt3L06dOoW8vDxIJBI0atQIjRo1YlJHxRQtexLFCRRERERVosysLCMjA++88w7OnTunamvUqBF27dqFVq1a6Tw4qpmKFSrmBAoiIqIqUWaP3ZIlS3D27Fm8+eabWLRoEcaNG4fExETMmDGjquKjGqjoBIpryfnIlot6ioaIiKjuKLPHbv/+/QgMDMS2bdtUbS1btsSMGTOQkJAAe3t7nQdINY+9qQQuFhI8lCkAAHKxoFCxr4OxniMjIiKq3crssXvy5Al69+6t1ta7d2+IoojY2FidBkY1GwsVExERVb0yE7v8/HyYm5urtVlYWAAAMjMzdRcV1XjFChUzsSMiItK5cqe0ZmVlITU1VbX94s8ymUyt/QUbGxsthkc1VbEeu0QWKiYiItK1chO7adOmYdq0acXa33vvvRKPT0lJefWoqMbzLFKoOD5biViZAi6WLI9DRESkK2X+lP3kk0+qKg6qZYwMBHRoYIRzLxcqTsxjYkdERKRDZf6UnT17dlXFQbVQFzupWmIXlZCH4a5meoyIiIiodtNo5QmiymChYiIioqqlt8Ru48aN6Nq1K5ycnODk5IQ+ffrg8OHDqv2iKGLx4sVo2bIlHB0dERgYiFu3bqldIy0tDRMmTICzszOcnZ0xYcIEpKWlVfVHoVIUnUBxnYWKiYiIdEpviV2jRo0wf/58nDx5EidOnEC3bt0watQo/PnnnwCANWvWYO3atViyZAmOHz8OOzs7DBkyBBkZGaprjBs3DteuXcOuXbsQGhqKa9euYeLEifr6SFTEi0LFL8hF4HISe+2IiIh0RW+JXWBgIPr06QNXV1e4ublhzpw5sLCwwIULFyCKItatW4epU6di0KBBaN26NdatWweZTIbQ0FAAQHR0NI4dO4bVq1fDx8cH3t7eWLVqFQ4fPoyYmBh9fSwqoqSyJ0RERKQb1WKKokKhwJ49e5CZmQlvb288fPgQ8fHx6Nmzp+oYU1NTdO3aFZGRkQgKCkJUVBQsLCzg4+OjOua1116Dubk5IiMj4e7uXur9qiLxY3JZoCkMARQmdz9H3IL4+zmNz3d3d0eLFi0qdE8+e/3hs9cfPnv94HPXn7r67MvKb4AKJHZPnz6FjY0NTExMStyfm5uLlJQUNGzYUOPgbty4gYCAAOTk5MDc3Bzbtm2Dp6cnIiMjAQB2dnZqx9vZ2eHp06cAgISEBNja2qoVvBUEAQ0aNEBCQkKZ9y3vobyqmJgYnd+jpgi0ycOye4mq7ZR6TpgyfgoEQcDq1avVjp06deor34/PXn/47PWHz14/+Nz1h8++dBq/ivX09MSvv/5a6v4DBw7A09OzQjd3d3fH6dOncezYMYwdOxbBwcG4efOman/RVQqKrlxQ0ioGXN2genlRqPiFhGwlHsoUeoyIiIio9tI4sRPFsmczyuXyCidUUqkUrq6u6NChA+bNmwcvLy98++23cHBwAIBiPW9JSUmqXjx7e3skJSWpxSWKIpKTk4v19JH+vChU/LILXDeWiIhIJyo0eaK0xC0zMxPHjx9HgwYNXikYpVKJvLw8uLi4wMHBASdOnFDty8nJQUREhGpMnbe3N2QyGaKiolTHREVFITMzU23cHelf0QkUUZxAQUREpBNljrFbunQpli1bBqAgqZs0aRKCg4OLHadQFLxaGz9+vMY3/ve//42AgAA0btxYNdv1zJkz2LlzJwRBQHBwMFasWAF3d3e4ublh+fLlMDc3x/DhwwEAHh4e6N27N6ZNm4Y1a9ZAFEVMmzYNffv25Xv3aqaLnXpid5GJHRERkU6Umdh5eXnhnXfegSiK2LZtG3x9fdGsWTO1YwRBgJmZGTp06IBhw4ZpfOP4+HhMmDABCQkJqFevHjw9PREaGopevXoBAKZMmYLs7GzMnDkTaWlp6NSpE8LCwmBpaam6xsaNGzFr1iwMHToUANCvXz8sXbpU4xioarBQMRERUdUoM7Hr168f+vXrB6Bg1uv48ePRpUsXrdx43bp1Ze4XBAEhISEICQkp9RgbGxt89913WomHdMfOVIKmlhI8yCjo2WWhYiIiIt3QuNwJEyh6Fd52UjzIyFZts1AxERGR9lVo8sTjx48xffp0dO7cGS4uLjh79iwAIDk5GZ9++imuXr2qkyCp5utSdAIFZ8YSERFpncaJXUxMDLp3747Q0FA0btwYGRkZkMvlAABbW1ucO3cOmzdv1lmgVLMVnUBxITEPHGVHRESkXRq/ip03bx5MTU1x9uxZGBkZwc3NTW1/3759sW/fPq0HSLVDm/pGMDMUkPX3pImEbCXSBDPYiFl6joyIiKj20LjH7syZMxg/fjwcHR1LrGfn7OyMJ0+eaDU4qj0MSyhU/MjQVk/REBER1U4aJ3ZyuVyt1EhRqampkEgkWgmKaifvIq9jH0uY2BEREWmTxoldy5YtcebMmRL3iaKIAwcOoF27dloLjGqfohMoHjGxIyIi0iqNE7vg4GD88ssvWLlyJdLT0wEUJHT37t3DhAkT8Mcff2Dy5Mk6C5RqvqITKOIl1sgDe3mJiIi0RePJE2+99RYePHiARYsW4csvvwQADBs2DKIowsDAAPPnz8ebb76ps0Cp5rMzlaCZpQT3/y5UrBQM8ERig6aKJD1HRkREVDtonNgBwMyZM/H2229j3759uHv3LpRKJZo1a4bBgwcXW2qMqCRd7KW4/1Kh4scSWyZ2REREWlKhxA4AXFxc8PHHH+siFqoDvO2k2Hm3MLF7ZGgLsFYxERGRVlRo5QmiV1V0AsVjiS0LFRMREWlJmT12nTp1qtDFBEHAxYsXXykgqt08bYxgbigg8+9CxZkGJkgVzFFfzNRzZERERDVfmYldkyZNSixGXNSzZ88QHR2t0bFUt70oVHzmWeH718eGtqifz8SOiIjoVZWZ2O3du7fMk58+fYpVq1bh/PnzMDQ0xLvvvqvV4Kh28raXqiV2jyS2aJsfq8eIiIiIaocKT54ACnroVq1ahR9++AFyuRwjR47EjBkz4OLiou34qBYqWs/uMZcWIyIi0ooKJXZM6EgbOhdJ7J4ZWLFQMRERkRYIaWlp5U5KZEJXMVabrPUdQrXnZvAb7grOqu1wxfvoDk68ISKimit9XJq+Qyi7x44JHemKr3hFLbGLENqju8jEjoiI6FWUmdh16NABubm58PLywvTp0+Hi4oLU1FSkpqaWek779u21HiTVPr64im0YqNpeIbyPf4in0BZ39BgVERFRzVbmq1gbG5vCA8spZSKKIgRBQEpKivaiq6H4KrZ8d+CClgb7IQqFNbLri2k4phyLDritx8iIiIgqp9q/il2zZk1VxVGrXOx+Ae7u7voOo1pzAOC7/necM26paksRrNHTNAx7+jZA+wbS0k8uwerVq9W2p06dWunYtHmtuiQmJobf93rCZ68ffO76w2dfujITu9GjR1dVHFQH9cm5DgUMEGncQtWWlidi4OEk/BLQAJ3sKpbcERER1XWVqmNHpA0CgDdzrsIAIiKMPVTtz/NEDDmchNAAW3jbG+svQKqTIiIiEBkZWeHzfHx84Ovrq4OIiIg0x8SO9EoAEJBzDQaiiLMmha9ln+eLGHo4GbsCbOHrwOSOqo6vr2+xBI2v54mopjAo/xAi3RIA9M69jhntLNXaZXIRw48k48yzXP0ERkREVMMwsaNqQQAwu2M9fNZePbnLlIt460gyTj5hckdERFQeJnZUrXzWoR6+6KCe3GUrRIw4loTjcTl6ioqIiKhmYGJH1c7M9vXw70711NpyFMA7vyfj2GMmd0RERKWp8OSJrKwsxMXFITU1FaJYvLaxj4+PVgKjum1qW0tIDIA5F56r2nIVwLu/J+OHnvXxppOpHqMjIiKqnjRO7NLT0/HZZ59h9+7dkMvlxfZz5QnSto/bWMJQEBASla5qy1MC7x1Pwff+9RHowuSOiIjoZRondtOmTcPevXsxZswYvP7667C25rJZpHvBnhYwNABmni9M7vKVwPsnUrDZvz4GNWVyR6RPrPtHVL1onNgdPXoUEyZMwOLFi3UZD1Ex41tZwFAQMC2icA0+uQiMCU/Bpu42GNLMTI/REdVtrPtHVL1oPHnC0NBQq+uyrVy5Ej169ICTkxOaN2+OESNG4ObNm2rHBAcHw9raWu2rd+/easfk5uZi5syZcHV1RaNGjTBy5EjExcVpLU6qHoJamuNrP2sIL7UpRGDsyVTsupult7iIiIiqE4177AYOHIjff/8dY8aM0cqNz5w5g7Fjx6Jjx44QRRGLFi3C4MGDERkZCRsbG9Vx/v7+2LBhg2pbKlVfPzQkJAQHDx7E5s2bYWNjgy+++AIjRozAyZMnIZFItBIrvTpNXtcU/S0fUH9dM7qFOQwFYPKZNLyYtqMUgYmnUzHIyBnt8mO1HTYRVZG68EpXm5+xLjwvqpxSE7vU1FS17WnTpiEoKAgfffQRxo4dCycnpxITp5eTsrKEhYWpbW/YsAHOzs44f/48+vXrp2o3NjaGg4NDiddIT0/Hjz/+iLVr16JHjx6q63h5eSE8PBy9evXSKBbSvZJe11TGu+7mMDQQMOl0KpR/Z3dKEfjF1BtKGKBD/oNXvgcRVb268EpXm5+xLjwvqpxSEztXV1cIgqDWJooirly5gp9++qnUC1Z2VqxMJoNSqSw2KSMiIgJubm6wsrKCn58f5syZAzs7OwDAlStXkJ+fj549e6qOb9KkCTw8PBAZGcnErpZ6u7kZDAVg/KlUKF503QkC9pp1gTJLQKf8+3qNj4iISF9KTew++eSTqowDn332Gby8vODt7a1q6927NwYMGAAXFxfExsZi4cKFGDhwIMLDw2FsbIyEhARIJBLY2tqqXcvOzg4JCQml3ismJkZnn6Mq71GXeQH40kOCL6KlUIiFv4D8atYZ5pm5Wn3+/LvUXG19VumCKe4b2qOxIgV2yoxq+TmrY0wvaCu26vgZtRFTkoEFHkls0UyeyP+7KqC2f77SlDffodTEbvbs2VoPpjSff/45zp8/j0OHDqm93h02bJjqz56enmjfvj28vLxw+PBhDBw4sNTrvaipVxptTgIpSUxMjM7vQYC7O9CkUTaCwlOQryxs/92kDda5uZX5PVCx+/DvUhO19fv+kUyO7yx6I9PABAaiEkGZJ6rd56zuz15bsVW3z6iN5/5YYoPvzXtALkhgICphlmmFaW0tYWTw6v9/VbfnpU3V/XtenzSeFTtlyhT88ccfpe6/fPkypkyZUuEAQkJCsHv3buzbtw9NmzYt89iGDRuiUaNGuHfvHgDA3t4eCoUCycnJasclJSWpXtdS7dbfxRQ/9KgPQSzM7BIlVjgXn6fHqKg2WXE1A5kGJgAApWCA4yZt9BwR1SZHTNpBLhR0aCgFAyy6nIEevybiShL/D6PK0Tix++GHH1QJVUnu37+PH3/8sUI3nzVrFkJDQ7Fv3z60aNGi3OOTk5Px9OlT1WSK9u3bw8jICCdOnFAdExcXh+joaC5tVof0czaFh/yJWtt/b2fqKRqqTZ5mKfDTX+rldO4bOuBOWr6eIqLa5OyzXMQaFu+E+DMlH732J2LBH+nIkRdfupOoLBonduVJSUmBsbGxxsfPmDEDP/30EzZt2gRra2vEx8cjPj4eMpkMQMFkitmzZyMqKgoPHz7E6dOnMXLkSNjZ2aF///4AACsrK7z33nuYO3cuwsPDcfXqVUycOBGenp7w9/fX1kejGqBL3l217X0Ps5GQrdBTNFRbrLshQ56yePsm/uJAWrD8akap+xQisPKaDN32JSAqIbcKo6Karsw6dhERETh37pxq++DBg4iNLV4rLC0tDaGhofD09NT4xps2bQIADBo0SK191qxZCAkJgUQiwc2bN7F9+3akp6fDwcEBb7zxBrZs2QJLS0vV8YsWLYJEIkFQUBBycnLQrVs3rF+/njXs6phm8gTUV2QgRVLwvZGvBLbFZGF6W8tyziQqWVqustSe35//ysKcTvVgaaS1342pjrmYmIcTT9QTtub5z3DXyFGt7U66HH0PJGFSa3PM7lgP5vyeo3KUmdidPHkSS5YsAQAIgoA9e/Zgz549JR7brFkzLFq0SOMbp6Wllbnf1NS0WK27kpiYmGDZsmVYtmyZxvem2scAQOe8uzhi2l7VtiU6E1PaWECihUHIVPdsvp0JWSmvwTLyRey8m4WxLS2qOCqqLZYV6a1zkSfgvazTaDlsIqafS8OTrMKuYhHAupuZ+O1RDr72s0G3hpq/HaO6p8zEbvLkyRg9ejREUUSbNm2wdOlSBAYGqh0jCALMzMxgZWWl00CJytM+/wGOm3ipBiI/kilwLC4XfZ1M9BwZ6Zq2q/Bny0WsuylTa6unzMJzg8J1iTfdysQYD3Otzb6muuNqch4OP8pRa+uWcwsA8KaTKXyHGGPuhXRsvaM+vvNBhgIDDyUhyMMM8ztboZ6UvXdUXJmJnaWlpeq156VLl2Bvbw9zc/MqCYyooszEfHjmP8JVaVNV239vy5jY1QHarsL/v5hMJOUU9phIxXyMyjyN9RZ9IAoFP0xvpclxNj4PrzvWvN4TLkelXyuvqffWNZEnw1VRWHvVSmqANX42GNLMFP86m4ZYmfp44S3RWTjyKBer/azRpwn/fyN1Gq8V26xZM13GQaQVXfLuqiV2Rx7n4kGGHE0tNf5WpzpOrhTx9Z/qvXVd8u7CQfkcLeVPcMuoiap94y1ZjUzsuByV/txOy8e+B0V663JvoqR+X/9GJjg32B4L/niOjbcy8fLAgLgsBd46mox33MywyNsKNsbsvaMCpf60GzJkCARBwK5duyCRSDBkyJByLyYIgkbj4oh0pbEiBY6KVDyTFKxZLALYGp2JeZ05VIA0E3Y/W62HRGoAvJZbUOHeO/cvtcRu/8McPMlUoJE5J2uRZlZezVBL0BwVqXCXPyv1eAsjAyx9zRpDmpni4zNp+Ou5XG3/z39l4fe4HKzwtS7lClTXlJriZ2dnIzs7G6IoqrZzcnLK/MrOzq6ywIlKIgDokqte+uTHmCzkKlgLisoniiJWF3lN9q6bGSzFgh6WpopE2CnSVfsUIvD9HZY+Ic3cey5H6H31n5Pdcm6V2FtXlK+DMU4PsseUNhYoOh8sIVuJ946nYKfpa5AJNa8HmbSr1B67Q4cOlblNVF155cfipLQLnucVJHNJOUr8+jAbw13NyjmT6rojj3NxM62wR8RAAP7lZYl9Fwq2BRS8lj1o2lF1zNboTMxoawmphJMoqGyrrmVA+dLvmC2tDdEyPU7j800NBczvYoVBTU0x+UwqbqWp997dlDrhvqE9+uVchlf+I22FTTUMBx5RrSOFAiObm+G7W4U9KZtvZzKxo3Ktvq7eWze4qSlc66n/N9ku7yFO1+uEjPyCn9Dx2Ursf5iNoTX8+0sEkAcJjKDQXuV6PamOk0NiZXL8XGQVk0/aWiLuYcWv1dFOivCB9lhxLQMrr2bg5ao82QbGCDN7DbfzGuMjpaiVNWepZtE4sevXrx/8/Pzg6+sLb29vtSLBRNXNmJbmaoldRHwebqbmo7WNkR6jouosIj4XEUXWGJ7iVbxOnTHkGNncDBtfKl688XZmjU7sknMU2GreHQ8M7WGizENTRQLMbsrQrZExPKwMa1xJl+o4OeTr6zK1BMzVUoIhzUzxTSWvZywR8HmHehjgYoqPzqTiarL6Mnc3pU7Ycz8bbzWvud+XVDkaJ3ZSqRTr16/HihUrIJFI0KZNG3Tt2hW+vr7o2rUrbG1tdRknUYW0tDaCn6MUZ58V/qD+7+1MLK8hA4yrY49DbZr7cRcAACAASURBVFd0bF2vxsZoZyst8dixrczVEruI+Dz8mZKPNvVr3i8OGflKDD+ajAeG9gCAHAMpbhs0waeRBWMJ7U0N0K2hserLxUJS4xK9V6GNf4tPsxT4MUZ9LOb0dpYw1EJvmld9I/ze3w7/+VOGhRdToRAKJ/Lse8jEri7SOLHbu3cvFAoFLl26hHPnzuHcuXP46aefsG7dOgiCAHd3d/j5+WHlypW6jJdIY+NamqsldjvuZuHfnevBogYsyVMdexxqsz9T8nH4sfryTlO9Sn8r0dLaCG84SnH6pe+vTbdkWO1no7MYdSFHLuLdY8m4nJRf6jEJ2UqE3stG6L2CQf9OFhJVkveGo3GtnxGsjX+L//kzA7kvlaJrYi7BCC0mXIYGAqa1tcSDk/uw1cJf1X48Lhc5chEmhnUnEacyZsWWRCKRoEuXLpgyZQp27NiBu3fv4ttvv4Wbmxvu3LmD77//XkdhElVcoLMp7E0Lv8Uz8kXsusuZ21Tc10XG1nWxM8LrjiX31r0wvpX6a9qd97KRlqss5ejqR64UMfZkilpyqolHMgX+F5OFiadS0XrnM3QJi8cnEWnY+yAbyTmK8i9QxyTlKLDltvrYumltLXQy9s1FkQhLZeH/cZlyESef5pZxBtVGFZo8oVAocPnyZVWPXWRkJNLT0+Ho6IihQ4fyFRBVK1KJgNHu5lj+0iu2zdGZ+MDDTCevkvj6tGZ6kCHH7iIlKKZ6WZb7PfIPZxM0NpMgLqsgmcmSi/jpryx86Fn9149ViiL+dTYNB2LVC+U2lifjzZwriJU0ANy8cS4+D5mlrJf7Qky6HDHpcmz++9W0p40hLE3aoak8AfWVmTAV85CrEGFcR2cNf3tDhuyXyi01NDPAKDfdrOBkAMAjPw4Xjd1UbQdis7n6Th2jcWI3aNAgXLx4EdnZ2WjatCm6du2KhQsXws/PD02bNtVhiESV976HGVZeLywx8GdKPi4k5sHbXvu1nvj6tGZa+6cML5c59LAyRD/n8n8QGhoI+MDDDF9efukXh9syTGptDoO/k0JtJvvaupYoivgiKh0/FZmhaadIx6isMzAT8+CkSMHUgH8gXyniUmIeTj3NxamnuYhKzFN7pViSG6lywLgFzhu3ULWt+OEJzAwF2EgNYG0swMbYoPBLWvhna7V2QTVLt6amhGm5Smy8pT627uM2ljp9NdpS/kQtsTv0KAdKUVR9T1Ltp3Fid+rUKRgYGGDIkCEYMmQIunbtivr16+syNqJX5mRhiIAmJjj00oLbm29n6iSxo5onMbv4oPYpXhYa/xB838McS69mIP/vN7B3nysQ/iQXPRsXJIbaTPa1da3lVzOw7qb6Z3a2kGD4k1MwE9VfyxoZCPBxMIaPgzFmti8Ykxf1d6J3+mku/kjMQzkdeipZchFZcgXisso/VsVqKCSiAiZiPozFfOzemwALIwHmhgLMjQSYGxrA3EiAhaEAcyMDVbtqW/VnAc8FE0hFOYyggARVU7B8/U2ZqiwOADQwMcD7LXQ7maGpPBFSMR95QsFEnoRsJf6fvfsOa+ru4gD+vUnIYIaNqIAKCiLuhdZNUUHUuq21iqu1Q2urVWq3LVi1VarW1qrt+7bWKmrV2jpftVZEXFVsceBAxMFeCQmQ5L5/UAOXmUBCApzP8/i0uffm5nBJwrm/cX4XjXQzS8yTzondnj17tF2wc+bMQXFxMTp06IB+/fpp/7Vo0cKYsRJSJ7N9rTiJ3S/3FIjsrYajuGkP+ia1+zpRBmWFQe361Dt0kfAxxkuinVgAAN9el2sTO3Oz5bqM08IIlM563TfcCQe2Kat5VhmxgNFOnABKZ9SeSytr0UvIKjF4yqRm+JAzfMghRnZ29ZM8amUbBgBgWA18VY8wq1gDW6HxJlLlF2vwdSJ3zeFX/a1hZeTJWwJo4FPyBP8IW2u3/Z6ipMSuGdE5sRs6dCiGDh0KACguLsbFixcRFxeHuLg4xMTEQCaTwcvLC5cvXzZasITUxbCWpSUa7v+7/mexBtieVIgFNcx6JE1ffrGGU7IEKP3Dq+8KEnN9rTiJ3ZFUJe4XqOBpY17132PuFGLJuTzONlshg73BTpWKMOvKxoKHZ1uJ8Wyr0kQ2p0iDM0+KsP5QPB7z7VHICKFghCjii2Euq/qxDA/XLVph/NFM7A52gp2RkrttN+TILS77oaVCBrN9jTO2riJf1UNOYvdbihIf0nrZzUadPs1CoRCOjo5wcHCAVCqFlZUVCgoKkJycbODwCKk/HsNglq8VPriYr9323U05Xuuke5cbaXq+vynXLjsHAA4iHl6sQzdZbxchAhwscO3f1iQNW/r+Mqc/pEceKDH/zxxOa5qEz2BXkKNBa+/Zi3gI85TgjvIKZ/vChQtRUMIip0iDnCINcos1//5/2bYc7TYNcv/9b0ZhCacumyFdyCjBc0cysTfYCVKRYZM7eYkGG/7htta93NHaqC2E5XmXPAGP1UDDlL5e6QSXEvjYNa46i+Y4RtXQ5zIGnRO7hIQExMbG4uzZszh37hyysrLAsixat26NQYMGabtjCTFH03ws8enlfBT/OxbqXoEaJx8VYZiZdpkR41KqWGys8If3pY5WdeomYxgGc/2ssCA2V7vtv7cKsayrrVnUDzv7pAgzTmZxxsJZ8IAfhjqgr2vDdM8xDANbIQNbIQ+eejSUr123DiXgQ8lYoJgRYMLzL0KmYiEvYSEv0ZT9v6r0sVz19P8r7tcgLVcGJWMBFVP2Z+9yZgnGHMnEvuFOsDdgcvefW4XIVJaVvrGxYPByx4abLS1BCbxUGbhr4ard9nuKEgsDGldiZ45jVA19LmPQObEbNGgQAKBDhw4YNWqUNpFr2bKl0YIjxFCcxHyM9ZJgV7kus6035JTYmZAp73p33ilEmqLsD6+VgMHcenSTTWgrwXsX8pD3bwtgdpEGvyQrMNXbtFX/r2YVY8rxLM44QgbANwPsEdTK/N/7DErXfhayaoAFujrVXFuwJuvWrYMSAmy3GoAHAift9qtZJRh9OBP7hjsaZNytUsVi/d/ccYxz/awM3ipYmw6qh1UkdjT8pDnQObH773//i/79+9NMWNJozfK14iR2hx8okSpToZW1eY2Fai5Mdder1rCIrlCQeEYHSzjU44+6pYCHF3ysOK2AW67LTJrY3c4rwfijWcgv4Q5u+yJQ2qjXta0PMVR4Qf4ntls9gxSBs3b7tewShB3OxP7hTnCW1C+5++l2IR4Xlt00SPiMSWob+pY8wiFJd+3j8+nFSFeo4VLPn4+YP53/ooWFhRkzDkKMro+LEB3tBUjMUQEoHQv1n1uFWN7d1sSRGZe5jwdpaAfuK3C3oKwJy4IHvOpf/5aM2b7cxO5SZgkuZxSju3PdW5nqKlWmwtgjWZzuQAB4v4ctwhtoAL+5Ev2b3J3uMAVnyq26kZijQtjhTBwY4VTn5KdEw2JthZuGcF9LOJlgBr4dq0AXRwtczSod+8mi9Gb2xfbN+/ffHFBTBWk2GIbBHF9rvBlXfiyUHG93tTHK8j7mwtzHgzQklmWxNoE7tm5SO0u0NMB6p21tBQhqKcLxh2VLOH17Q45NDZzYZSnVGHc0C6lybiXh1ztZY1GA+a+K0RCEUGPXs46Yejybs+TWjVwVRh0qTe7cLPV/T+y8U4gHsrLrLuKXFiQ2lRAPsTaxA0pnx1Ji1/SZ/2rohBjQxHYSWJcb0J6m0OC3+7XX7yJNw8lHRUgoVwuNAbCwk+GSnTl+3D+ae+8VNuj6qfnFGkw4loVbeSrO9uk+lvi4p61RltJrrCwFPPwc5Iih7twJJLfySpO7R3L9fm9qDYsvrnJb66b7WKFFHRJEQwnxkHAen3qkhKyk8axnTOqGEjvSrNhY8DC5wrinrTdk1RxNmpq1Cdw/vKM8xWgvNdxMwWdbiuFhXfaHvEgN/Jikz1ILdVcCHp7/Xxb+yuQW8Q3zFGNtPykldVWQCBj8NMwRz7bkJne381UIPZSBVJmqmmdWtvcet4tfwAALTNxC2sleUOn9eKJcizJpmiixI83OrA7cVpU/nxTjVm49KtqTRuFiRjH+fMJdMusNA88S5PMYzKkwhm3rDTnUGuNW51WDwW7LvpwxYwAwqIUIWwY5QNCEhxrUl1jA4MdhjhjRmjtL+F6BGqGHMnG/oPbkTsOy+LzCTcMUb0t4mHhiFsMwCKmw7vHvKYpqjiZNBSV2pNnxd7BAXxfuuKdtN+XVHE2aioqtdQNbiNDDCOPfXvCxRPmx8ikyNY6mGq+7XwPggKQnblpwS0/1dLbA9mEOEOm5kkZzJOIz+O8QB4RWSILuy0qTu+RakruD95W4kVt2DI8B3uxsHqVFKnbHHklVQmXkGw1iWjondunp6bh69SpnW1JSEhYvXow5c+bg0KFDBg+OEGOZVaFV5afbhZDT2JMmK4Nng99SuMmVsSYSOIj5GNeG292/5YZxbhxYAEfEXXBV6MXZ7icVYFeQI6yNvC5pUyLkM/h+iANGe3KTu1S5GqG/Z+JuftXJHQtgTYWxdRPaSOq8TJuh9XMVQiosS+5ziljEpRXX8AzS2On8qV+6dCmWLVumfZyTk4OQkBB8//33OHz4MKZNm4ajR48aJUhCDG2MlwSO5QqG5hez2HOveXRR5BdrcNnCC/skPREv9EZzSGdjRR04j7s4WmCwu/FWXZhbYRLF/x4W4U6e7uO1dKFhWZwU+SNe1J6z3cOaj73DnepVl6+5suAx2DrYAePacFu5HhaqEXooA7fzKg/ZSBK4cSbkAMCbXcyjtQ4ABDwGw1tTd2xzovMtxYULFzBz5kzt4507dyInJwenTp1C+/btMXr0aERHRyM4ONgYcRJiUCI+g+ntLbHuWtnEiW035E22FICGZfHn4yJsv12IX5OVUFj2AgBcAaBkLPCmjudpjDXx8hgJEiw8Odve7Gxj1MkE3ZyE6OlsgYsZZX/wt96UIbK31CDnv5ZdgrfO5uK8uCNnu4uEh33DnUw6E7Oxs+Ax2DzQHgIGnILmjws1CD2UiV9HlK1awQL4Q8T9HYz2FMPXgBNyDCHEQ4Kdd8p+lt9TlIjszdKEmiZK58QuMzMTbm5u2sdHjhxBYGAgOnXqBACYMGECIiMjDR8hIUYys4MVoq/JtAujX8kqLSjblNzNV+Gn24X4+XZhpbpmT50W+eFOngrt7Gr/OmiMNfHiRO21i6EDQDtbPkZ5GH85rTm+1riYkaN9/GNSIZZ3q18x7PxiDaL+ysc31+WoOExKzBZjb3Ars+kCbMwEPAabBtiDz2Ow43bZrOY0RWlyN5FnCxdNPu7xXfBQ4Mh57mIzaq17alhLEUT80lmxQOnYwcQcFfwdShPQxnjDRqqn8zeAVCpFeno6AEChUCA+Ph5LlizR7mcYBkVFNI2aNB5eNqUFZY+Vm/6/9aYcPiaMyRDyizXYl6zAjtuFOo2lUTN8LDmXiz3Bjk3uDr6QEeKSsC1n28IAG/AbYJboWC8Jlp/PQ1ZRaWd3fjGL3Xfr1gXGsiz23lNg+fk8PFFU7jwXsiV4Xn4GnRym1ytmUobPY7DxGSkEDPBDuZI1GUoNvrcajBflf+APsR/nOcNbi9HZseFXGqmNtQUPg1qIcDS17LvutxSFNrFrjDdspHo6j7Hr3bs3tm3bhkOHDuHdd9+FUqnEyJEjtftv377NadEjpDGoOIli710FFDCvbhRdaFgWpx4pMe+PbHT4+QkWxObWmNRZarg3YSceFWF/ctMr1Bwv9EYJU3b/6ibhYXK7hlknVSxg8GJ77mt9e0MOfecjJuWVYOyRLMz+I6fKpK5DyUPMLzgKD3VWPaIlVeExDKL7SxHegft7LOSJsM16CO4LXDjbl5hha91ToRVmx/6e0vQ+76SUzondhx9+CB6Ph+effx7btm3DnDlz4OvrCwBQq9U4cOAA+vfvb7RACTGG4FZitCq3nJRCzeJKhRmG5uxOngqfXMpH55g0jD2ShV13FVCoq04dJHwGk9pKsG+4IxYXHICXKp2zP+J8Lgqa0MzgIvBxXujN2faqv3WDlv8I97VC+cbBv7NL8IDvWP0TyilUabDiUh767UvnLHv1lIc1H1PlZzC18Czs2YYpgtwc8RgGXwRKMbfCTWAxw70BHOIuQk8TrAusqxGtxSj/zr+SVYKHeq6uQRoHnbti27Zti4sXLyIxMRG2trZo27ase0MulyMyMhJdunQxSpCEGAufxyC8gxVWXM7XbrsobIe+xUkw105JJQT4x6I1RvyWgXPptXe1BroKMdXbEmO9JLAVlt7LXQEQqriMTdbB2vFnjwtLx28ZaoC/qV0WtoWCVzbz1U7IYKZvw06O8bAWYERrMad15LzQGx6KmlvXDqUo8HZ8Hmfd0acseMDCTjZ4s4s1Nm94bPCYSWUMw2BVXzvwecDXiVWXrjHHsXXluVry0dPZAhfKTeg5lKLAHD9aP7ip0avIkVAoRNeuXTlJHQDY2tpizJgx8PLy0vlcX3zxBYYMGYLWrVujXbt2mDx5MhITEznHsCyLqKgo+Pr6ws3NDaGhobh+/TrnmNzcXMybNw8eHh7w8PDAvHnzkJubC0J0Nb29JcqX+8ri2+Ae36X6J5hIGs8WeyS9scY2DL9a9qwxqWtlxcfiLja4NM4Vh0Kc8WJ7K21S95SzpgD9im5ytn2TKMe17Ma/CkdygQpnK5QBmetnDRsT1HWr2NKTaNEKBUzVpVbuF6gw9XgWpv4vu8qkblALEc6OdcG7PWxhKaAadQ2JYRhE9bbDa/6VE6FAVyH6uxmvfI6hVOyOrVjbkTQNek2fKigowNatW3H69GlkZGRg3bp16NGjB3JycrB9+3aEhIRUSvqqc+bMGcyePRvdu3cHy7KIjIzE2LFjER8fD3t7ewBAdHQ0Nm7ciI0bN8LHxwerVq3Cc889hwsXLsDGpvTuaM6cOUhNTUVMTAwYhsGCBQvw0ksvYefOnXpeCtJcuUj4CPOUYG+5OnYXRO3QtjC9hmc1rPsFKmy1Hlqp+6c8CZ9BmJcY07wtMaCFCDwdJkIMLLqOa0IP5PFKkw81CyyOy8WhECednm9uZCUarE0owIZ/ZCjilY2LErAqvNzRNKVsBrmL4G0rwO1/C9xqGB4uC9tiUFHZTWqRmsWGv2VYc7Wgyq50NwkPkb3t8FwbidlNcNFlRmXFgfhA5RmVhjqPMTEMgxW9bPHXpYuIFZcOReKxGrzbvX6znRtKiIcYH14q650486QIecUa2AnpJqEp0Tmxe/LkCUJCQpCSkgIvLy/cvXsXMllpDTB7e3ts27YNqampWLlypU7n27t3L+fxN998Aw8PD5w7dw4jR44Ey7LYtGkT3njjDYwZMwYAsGnTJvj4+GD37t0IDw/HzZs3cfz4cRw+fBh9+vQBAKxduxYjR45EUlISfHwa+/xG0lBm+VpxErsbAnfkM2LYsuZxR/vRpfxqk7pAVyGe97bEmHJdrboSQo0QxV/YYfWMdlt8ejG2JxVieiOq6ceypTNOP7iYh0eFlccJdi++ByexZxXPND4ew2C2rxUizudpt10UtsUzRTfAB4s/Himx+FwekqooYMxjgJf8rBDRzVbv321NDJlEVTWjsi4MdR5jYxgGQUXX4KHOxF2BC9qXPEZ/t+dNHZZO2kstODcZJRrgeKoS49s2zIQi0jB0Tuzef/995OTk4OTJk3B3d4e3N3dQcmhoKI4fP17nQGQyGTQaDaTS0vE99+/fR1paGoYOHao9RiKRoF+/foiPj0d4eDjOnz8Pa2trbVIHAH379oWVlRXi4+OrTeySkpLqHKeuGuI1SPX0vf4uLNDGUox7haV/PFmGh8vCNhhcdN2gv8u6nCshn4e997h11+w0ckzwFCLURYXWkkIAuUi7D6TVIaYOqscY6KDC6eyyr4N343Pgq3qEutRZbejrdVPGYM1dIa7kV12Ut40qDUHKa0hKalnlfmPFVV4fHiDhSaDQlLa2FfAscVHYFg/4TvjwSNXj7QJs1FjarhgdrAuRdj9Dp9+trnE5OTkhNDRU1/Dr9Brmrj4/B4PSz00H1eN6n6siY58r0MYCt/PLPtg7/8lAZ3XtY3XN9ffemK69odTWaKVzYve///0PL730EgICApCdnV1pf5s2bfDw4UP9I/zXsmXLEBAQgN69ewMA0tJKv8acnZ05xzk7O+Px49IPU3p6OhwdubW3GIaBk5OTtuZeVYzdkkethaZXl+s/XyXD2/FlrSqXhG0xoOiGQX+X+p6LZVnM/y0DQNm4Nzd1DubJjuPNIMPVlVo/tCX6/pKu7QbMUzH4IccJX/a31/tcDXW9spRqfHI5H9/fLKyyhIi1RoFnlQkIKEkBrwHjqs6UnBx8d7Ns9uohSfcqj3MQ8fBRT1tM87HUuzucvnd0Z+r3g6nO9YJtEX54mKl9fC7PAp5tPSCsZba4ub63GtO1byg6t+3L5fIa69QVFhZCra7b1Ol33nkH586dww8//AA+n3vXXXE8CcuylRK5iioeQ4guJntbwlJQ9r4p4FnilqCFCSMC9t5TcJalAoDhiqv6zXrSgaeNAG935c7q+++tQpxPN7+i4yoNi82JMnTfk4bvqkjqLHjAGwHWeL3gMLr8m9SZgzm+tc8+nNHeEhfHuWB6e6tGOcaRmL+ezkI4i8utk13C4swT8/uck7rT+Tuvbdu2+Ouvv6rdf+LECXTs2LHa/dWJiIjAnj17cODAAc6sWldXVwCo1PKWmZmpbcVzcXFBZmYmWLbsq51lWWRlZVVq6SOkNnZCHia25c4aOyHuhKJq6sIZm1LFcgY6A4BvyUO0UWcY5fVe9bdG+wrLir0ZlwdVxbWrTOiPR0UYuD8db8fnIa+4clzDW4lwbqwrPuxpBxEqj1kzJX8HCwS6Vl3nrLODBY6FOiO6vz0cxLTOKzEePo/BiNbcoR1UrLhp0Tmxe/HFF7Fjxw7s3r1bm0gxDAOlUokPP/wQp06dQnh4uF4vvnTpUuzevRsHDhxA+/bc0gSenp5wdXXFyZMntduUSiXi4uK0Y+p69+4NmUyG8+fPa485f/485HI5Z9wdIbqqWNMpg2+HzxMKTBLL14kyTskLHqtBkDLBaK8n5DNYE8itYfd3dgk2X6+6bldDSpGpMONkFsYcyURibuWErZ0tHzuDHLHzWSed1rw1lVcrlMoQsSX4rI8dToQ5o5eL+Ra3JU1LiEfFxE7BaSBpLgoZC+yW9MF66+E4LuoEWRMp0K7zN+DLL7+Mf/75B3PnzoWtbenU7rlz5yI7OxsqlQpz5szB88/rPjNo8eLF2LlzJ3788UdIpVLtmDorKytYW1uDYRjMnz8fn3/+OXx8fODt7Y01a9bAysoKEyZMAAB06NABQUFBWLRoEaKjo8GyLBYtWoThw4eb7XgAYt4CHCzQrfge/hK20W774moBxnhKtOsqNoQMhbpSQtmr+DacNDKjvu7AFiJMaifBrjtlM4QjL+djrJcE7lYN35JUqNIg+poM0dcKoKxipIe1gMHbXW3wckfrWscImYNRnhI8q7iKvy1ao5U6GwOLruOlji+bOizSzAx2F8NSwKBQVZrMPSrU4EpWCbo5NZ+bC3mJBtstB+ChoHQlmDN8WwTuS8fnfaUIrtCi2djodWu7fv16TJkyBfv27cOdO3eg0WjQpk0bjBs3DgMGDNDrhbds2QIA2lImTy1duhQREREAgIULF0KhUGDJkiXIzc1Fjx49sHfvXm0NOwD49ttvsXTpUowbNw4AMHLkSKxatUqvWAgpL1hxFUkCN8h4pd2yKhZ4PTYHx0KdG2TxeACI+qsABSVld9BSIYNB+Yk1PMNwVvS0w+EHSuT/29UpU7F490Ietg12aJDXBwAWQKKgJXrvTUdqNcseTWknwYc97eBm2bi6LvsX30L/4lumDoM0YxIBg6HuIhws1wX7W4qy2SR2JRoWM09ma5O6px7I1Jh0PAvj20gQ1ccOLpLG9d3ylN59Fv379zfImrC6rA7BMAwiIiK0iV5V7O3tsXnz5nrHQ8hTEpQgVHEZO63K3ueXM0uwKVGG1zoZf9mg6zkl+P4Wt/vz7a62KD7WMCtCuFry8V53Wyw5VzZDeO89Bab7KDGkpfHvZNN4tjgk6YZkgQtQRVLX1dECq/raobeL+Vf6J8RchXiIOYnd7ymKRlNouT40LIvXzuTg2MPqJ4zsuafA8YdKrOhlhxfqMDvd1HQeY+fs7Iw9e/ZUu3/fvn00YYE0GX6qR/ArSeVs+/RyAe7lG39A/nsX8lB+vkJbGz7mNPAap7M6WKGrI7frefG5XChVxhuHo1CxOCzugq+tny1N6ipwEvOwvr8UJ8KcKakjpJ6GtxajfAdEYo4KyQXmNeHIGD64mI+d5YaaAICtphBMhTGGecUsFsTmYtShTNzKbVzLLOqc2KlUKmg01Q8srG0/IY1NiOIyxGxZ4U6FmsXCs7lGHWR8PFWJ4xXuJD/uZdfg48f4PAZfBEpR/lXv5Kvx5d/GmUiSkFWMIb+m45yoPViG+7UkYIBX/K1wcZwrlQEhxEAcxfxKs7Sb+tqx668VYP3f3HHK9moZ5sqOY67sODpXMY76bFoxntmfjs+u5JusQoK+9CrxVFNtuMuXL8POzq7eARFiLmzYIgxXXOFsO/24CD8kFVbzjPpRaVi8dyGPs62/mxChHqYZyNvdWYhZFVoKP08wbKulWsMi+loBhh3MwI0qZrsOdhfhzFgXRPaWQioyl4p0hDQNIR7c8k6/pyiqObLx23G7EO9d5JaPstIo8ULhadiwRXDX5OJEmDNW9LLl1DMFgGJN6bjnAfvTcbYR1Pyr8Zvym2++QY8ePdCjRw8AwLvvvqt9XP6ft7c3vv76azz77LMNEjQhDaVryX0Mced2+717IQ+PC+tWjLsmP9wqxPVyyQ0D4NNediYttv1ed1s4lStm7DmhaAAAIABJREFUWqQGlsYbptUyRabC6COZ+OBiPipWGbDTyDFZHotfgh3hW5d1zQghtap40xiXVozsqqafN3JHHijx2pkczjYbCwbT5H/CUVM2nlnAY/B6JxvEjXVBUMvKwz1u5akQcigTb8TmILfIfHsoa0zs7Ozs0Lp1a7Ru3RoA4ODgoH389J+Hhwf69OmDd955B59//nmDBE1IQ2EArOsn5dzB5RezWBxn2C7Z/GINPv2Lezc5xdsSXU08S00q4mFFL25L/NHUIvx6v35dNrvuFOKZfemIfVJ5jcquxfcwv+Ao/FSPaAUZQozIy0aAjtKyOZQaFjj8oGl1x55PL8LMk9ko34sq5AE/DnWEu6bqSZyeNgLEPOuIrYPsOat0PPX9rUL0+SUN++6ZZ/2/GmfFTpkyBVOmTAFQWkZk6dKlGDx4cEPERYjZ8LQR4L3utog4X9ZN+luKEgfuKzHGS1LDM3W3NqEAmcqyO0AJn8F7ZjJDbUo7CX64JcfZtLIkLCI+D0NbimBtoV/3aG6RBm/F5WLPvcpdPvYiBkHZsfBX1X3NaUKIfkI8JUjMLRs7+3uKEs/7NOxkLWO5kVuCSceytGtgA6U365sHOmCQuwjVr6VVOvRsfFtLDG0pxvsX8ioNwUlTaDDzVDaGtxZjTV/zGoam87fyoUOHKKkjzdY8Pyv0cq4wSzQuFzkGaI6/X6DCV4ncAb0LAqxNUhC4KgzD4PNAKcoPO3lYqMaqK/pNpDj9uAj996VXmdQNcRchdowrJXWENLCK3bEnHhVBYcTZ7w0lVabC+CNZyK2w9ODqvnYY20b3G3J7EQ/rn7HHwZFO8Lat3BZ25IESfX9JR5zQB+bSOavX7bZGo8GOHTsQHh6OYcOGYdiwYQgPD8fPP/9MM2JJk8bnMfiyvz3KN1BlKDV453xe9U/S0YrL+SgqN6zFTcLDgk61LxjfkPzsLSoth/XVPzIk5tReBqBIzeLd83kYczgTDyuMTRTxgajedtgT7Gg2iSwhzUlXRwu4W5Z9sRWqWPzxuHF3x2Yr1Rh/NKvS983bXW0qLRupq2fcRDgzxgVvd7VBxY4KuYrFEUlXbLEahsc8adUnaEA6J3YFBQUYOXIkXn31VRw7dgwKhQIKhQLHjh3DK6+8gpCQEMhkxl3uiBBT8rO3wOIu3ALFO24X4n8P6/4leCG9GLvvcluw3uthCys9uzgbwpKuNmhVLvlSscBbcbmo6d4+MacEQ39Nx4Z/ZJWO6+RggVNhLpjvb00lTAgxEYZhMLLC7Njf6jmG1pTkJRpMPp6Fm3ncWfbhHSwR0bV+BebFAgbvdLPFn2Nc0LeKtZ0fCRyw2XoYnvBM2zWr81+PTz/9FBcuXMDHH3+MO3fu4OzZszh79izu3LmDFStW4MKFC/j000+NGSshJrcowIYz2BgA3jibW6fFo1mWxfIKLX4BDhaY6m1ZrxiNxdqCh5V9uF9YcWnFuGrhWelYDcviq39kGPJrOv7J4X7BMgAWdrLG/0Y5w8+eZrwSYmoVu2MPP1CaTbeiPko0LMJPZeNCBrcnIcxTjDV9pQabjOUrtcDvIU5YGyiFrZB7Tm9VGlw19e/JqQ+dE7tff/0VM2fOxGuvvQaRqGwasEgkwquvvooZM2bgwIEDRgmSEHMh5DNY/4w9p2L7A5kaKy7lV/+kauxLVuB8BndW6Ce97My69SrUQ4zhrbhlAI6KO6OQKUvQHsnVGHc0C++cz+N0MQNAKys+Doxwwke97CBq4KLLhJCqPeMmgq1F2ecxQ6lBKt+xhmeYHw3L4vUzOTiayq0z94ybEN8OdDD4Ot88hkG4rxXOP+eKsf9OorNgVQhVXIapv9l0TuwyMzPh7+9f7X5/f39kZmYaJChCzFkPZyHmd+SO09h8XY74NN0LVypVLD6oUCxzZGsxBrmb91JZDMPgs75SiMsNhyvkiXFCFAAA+EfQCv32peHUo8rXYmJbCc6MccGAFub9MxLS3Aj5DIJacVvtblq4myiauvngYj5+rrBUWCcHC2wf5gixwHiplpslH98PccBU+RmEKP6ClDVOAXt96JzYtWrVCn/88Ue1+//44w+0atXKIEERYu7e6WYDL5uy7IYFsCA2V+clZ765LkOKrKw5S8AAH/cyj/ImtfGyEeCtztyxKheFbfGTZX/EWAVWmoVmK2SwZZA9vh3kQKtHEGKmQip0x94QtDRRJPqraqkwT2s+9jzrCDthw3zndFA9RreS5AZ5rdro/BNPmzYNv/76K15//XXcunULarUaarUat27dwoIFC3Dw4EG88MILxoyVELNhZcFDdD97zrabeSqsuVp7CZAMhRqfVzhutq8VfOwaz3izBQE23Kn/DINbVdzhP+MmROwYF0xoa57jBgkhpZ5tJebM9szi2yCDV7/JBg2hqqXCnMU8/DLcCa6WzXOmfY0Fist74403cO/ePfz444/Yvn07eLzSd4BGowHLspg+fTreeOMNowVKiLkZ5C7CdB9LTuHKtQkFGOMlQacqFpN+auWVAuSXlLVq2QkZLK3nbK2GJuIzWBNoh7FHsqrcb8ED3u9ui1c7NcyM17i4OMTHx9d4zLp16ypt69OnDwIDA40VFiGNhp2Qh2fcRDhZbhjFTYE7nItvmjCqmt0SuGFFFUuFxTzriLZV1JxrLnT+yXk8HtavX4958+bhyJEjSElJAQB4eHhg+PDhCAgIMFqQhJRnTn/EV/Syw7FUJZ4oSueQqVjg9dgcHAt1hqCKwbrXc0rw3U05Z9vbXW3hIG58d5aD3cUY30ZSqeCwn1SAzYMcEFBDcmtogYGBBvvdmtP7i5CGFOIh5iR2Nyzc8YyeiZ0un5+q6Pv5ecB3wC7LwCqXCjP1UoymVmNid/36dfj5+XG2BQQEUBJHTKqmP+JJSUnw8fFpsFikIh7WBErxwols7ba/MkuwKVGG1ztVboV7/0IeNOW+iNra8DHXt/Eu3/Npbzscv5OJPF7pz9C36Bb2hQ026mBlYzNkkkhMg5LzuhnZWowl58pKdaTyHVHAiGDD6j4xrKrPT8VrXd/evQyeDX6yfAYqpiyFKb9UWHNXY2LXr18/BAQEYNKkSZgwYQLc3NwaKi5CGo1RnhKM8RJjf3JZUc/IywUIrVD087bAFccecr8gP+plB2EjLvvhZsnHXNn/cE/gAjd1Lpw1BRALhpg6LNLMNYfk3BjJaytrAbo6WuBK1r914BgGtwTu6FFyr97xGkoBI8YPVgOh4HETOH2XCmvKakzs5s+fj19++QXvvfcePvzwQwwYMACTJk1CWFgYrK3Na8kjQkxpVR8p/niUpp0RqlCzWBCbg2EovZPUADgq7sJ5Tj9XIUZVmInWGFmzRQgoeWDqMAgxCnNt/TNW8hriIS5L7FDaHWtOid1xcQDyedzJWPVZKqwpqjGxi4yMxKeffoo//vgDu3btwsGDB3Hq1Cm89dZbCAkJwaRJkzBs2DDw+Y1vfBAhhuRqyUdkbzu8ciZXu+3Mk2LYW7RBj5J7+MuiDdL53FUbInvbGawSOmn6zDXBaOrMaehHQwjxkCDyr7JZ+3cFriiCefyNv5evQoKFB2fbzPb1Xyqsqal18gTDMBg8eDAGDx6MtWvX4tChQ9i1axd+/fVX7N27Fw4ODhg3bhwmTZqEnj17NkTMhJilqd6W2H1XgRPlBh8flXSBhzoTJ8SdOMdOaSdp9gN8iX6aW4JBTMPfXgBPaz7u/1tnU83wcUdgHsOwvkgoAMuU1WRxVOdjTaA73SBXoFflPpFIhLFjx+Knn37CzZs38cUXX6B9+/bYsmULgoOD0aNHD2PFSYjZYxgGa/tJYVVu4kARY4Et1kMh55V1uUr4DN7rYdpFogkhpCoMw1QuVmwGq1DcL1Bhx23uqg4Di65XWX2guatzSWapVIqZM2fio48+wogRI8CyLO7dM59+eEJMwdNGgPd6cFeQKGK4LXOvdbJGSyvz6NoghJCKQipM/LolcIdKo9uqOsay7loBVOVCcFAXoBON7a1SnSr4JSUlISYmBrt370ZycrK2u3by5MmGjo+QRmeurxX23C3EhYySSvtcJTwsDKBBvoQ0R41lnGSgqxASTZF25qmSJ8TJR0V4tpVpJnulylT4MYnbWjeg6Dr40D3ZbCzX3hB0TuyePHmCPXv2ICYmBgkJCWBZFp06dcLHH3+MiRMnwtXV1ZhxEtJo8HkM1j9jj4H701Gs4e57t7strC1qbyhvTl9ChDQXjaUMi4DHoL3qMa4KvbTbPrqUj6HuIvBN0PUZ/bcMJeW+S6UaOTqXpOh1jsZy7Q2hxsQuPz8fBw4cQExMDGJjY6FWq9GyZUssXLgQkydPhq+vb0PFSUij4iu1wOIuNpzZZa7qXDzvrdtYleb0JUQIMT89i+9wEru/s0uw/XYhXmzfsAXVnxSq8d9b3NV6Bij1a61rbmpM7Nq3b4/i4mJYW1tj6tSpmDRpEgYMGNBQsRHSqL0RYIMD8f/gb6EHbDSFGFcYDz7P39RhEUJIrVqrs9GpOAV/C8vKi3xyOR9jvSSwFdZ5eL7evvy7AEXqsse2mkJ0KUlusNdvjGpM7IYMGYLJkydj5MiREIlomQ5C9CHkMxiviMdI5V8QsipYQFP7kwghxEwEKRNww6IlVEzpZK90hQZrEwrwQc+GmdWfrlDjuxuVx9YJTNxaZ+5DZWpM7Hbs2GH0AAhpyhgAVmyxqcMghBC9SVkF+hXdxGlxR+22jf/IMKODFbxs6jT3Ui8b/pZBoS5L4lpY8tA1L9nor1sbcx8q03DtqYQQQghpVPoX3YC1RqF9XKwBPriYZ/TXzVKqsfUGd2zdwgAb6vnQASV2hBBCCKmSCGoEKa9xtu1PViL2SVE1zzCMr/6RQV6ucJ2LhIcZDTxxo7EyflsqIYQ0U+Y+FocQXXQuuY9kx/64klVWm/Od83k4GeYMnhGW88op0mDzdW5r3YJO1pAIaJUJXVBiRwghRmLuY3EI0QUPQFQfO4z8PVO77WpWCXbcLsQ0H8O3om1KlKGgpKy1zlHEQ3gHaq3TlUm7YmNjYzFlyhT4+flBKpVi+/btnP3z58+HVCrl/AsKCuIcU1RUhCVLlqBt27Zwd3fHlClT8PDhw4b8MQghhJAmLdBVhOe8uEuNfXwpH7ISw455yyvW4OtEGWfb652sYaVDYXdSyqRXSi6Xo2PHjli5ciUkEkmVxwwePBg3b97U/ouJieHsj4iIwK+//oqtW7fi999/R0FBASZPngy1Wl3l+QghhBCivw972kJUbpnrNIUG6xJk1T+hDjYnypBfXNZaZy9iMNuPWuv0UW1XrL29PRg9+84ZhkFWVpbOxwcHByM4OBgA8Morr1R5jEgkqna5sry8PPzwww/YuHEjhgwZAgD45ptvEBAQgFOnTmHYsGF6xU8IIYSQqnnaCPCavzU+L5fMrf+nAC92sISHdf1HdhWUaLDxH26i+EpHa9hQa51eqv1NvP3223ondsYQFxcHb29v2NnZoX///njvvffg7OwMALhy5QpKSkowdOhQ7fGtWrVChw4dEB8fT4kdIYQQYkBvdLbBj0mFSFOUdsEWqYEPL+Zj22CHep97y3U5csu11tkKGczraF3v8zY31SZ2ERERDRlHlYKCghAWFgZPT0+kpKTgk08+wejRo3Hq1CmIRCKkp6eDz+fD0dGR8zxnZ2ekp6dXe96kpCRjh94gr0GqZuhrb8jzmev7wlx/RnO9XuaIrpVpNIXrfuvWrVp/jvKzt/tYeOGAZS/t4733FAixuYMutrqNt6vqtRRqIPqqBKVl3UtNdi1G+v07qP6vedO4/vry8fGpcb9Zz4odP3689v/9/f3RtWtXBAQE4MiRIxg9enS1z2NZtsbWxtouSn0lJSUZ/TVI1Yxx7Q15PnN9X5jrz2iu18vc0HeOaTSV667vz6DWsBjyawYSssvKn3z1yAbHu+tW/qSq11v/dwFyVfnaxzYWDJYP8IBUVHM3bFO4/oamd2L3+PFjXL16FXl5edBoKmfnU6dONUhgVWnRogXc3d1x9+5dAICLiwvUajWysrLg5OSkPS4zMxP9+vUzWhyEEEJIc8XnMYjsY4dRh8rKn1zOLMGuOwpM8bbU+3wKFYv1f3PH1s3zs6o1qSNV0zmxKy4uxmuvvYY9e/ZAo9GAYRiwbGlfePnWMWMmdllZWXj8+LF2MkXXrl1hYWGBkydPYuLEiQCAhw8f4ubNm+jTp4/R4iBNBxWQJYQQ/T3jJsJoTzEO3Fdqt310KQ9hnmK9S5P855Yc6YqyhiIrAYNX/GlsXV3pnNhFRkZiz549iIiIQGBgIEaNGoVNmzbBzc0NGzZsQEZGBr7++mu9Xlwmk2lb3zQaDVJTU5GQkAB7e3vY29tj5cqVGD16NFxdXZGSkoKPP/4Yzs7OGDVqFADAzs4O06dPx/vvvw9nZ2fY29tj+fLl8Pf3x+DBg/WKhTRPVECWEELq5uNedjj8QInif3Oyx4UaRP8twzvdbHU+h1LFIvpaAWfbHF8rOIr51TyD1EbntHrPnj2YPHkyFi9eDD8/PwClXaODBw9GTEwMLC0tsW3bNr1e/K+//sLAgQMxcOBAKBQKREVFYeDAgYiMjASfz0diYiKef/559OzZE/Pnz4e3tzeOHj0KGxsb7TkiIyMxatQohIeHY8SIEbCyssLPP/8MPp/eFIQQQoixeNkIKrWsrb8mQ6pMpfM5fkyS43FhWWudhM/gtU7UWlcfOrfYpaena7s3BYLSpymVpU2wDMNgzJgxWLt2LVavXq3ziw8YMAC5ubnV7t+7d2+t5xCLxVi9erVer0sIIYSQ+nuzsw22JxUiQ1manCnULD6+lI/Ng2ovf1KsZrHuGndsXbivJZwl1DBTHzq32Dk6OmqTMBsbG0gkEiQnJ2v3l5SUQC6XV/NsQgghhDQ1tkIe3u3O7XrddVeBC+nFtT53x+1CpMrLVokS8YEFnWxqeAbRhc6JXUBAAC5cuACgtIWuf//++OqrrxAXF4fY2Fhs3rwZAQEBRguUEEIIIebnBR9L+NtzOwAjzudqJ1hWpUTD4vME7ti6Ge2t4GZJrXX1pXNiN2PGDLAsq+1+XbFiBeRyOUJDQzFq1CgUFhbi008/NVqghBBCCDE/fB6DqD5SzraLGSXYfVdR7XN23ilEiqystU7IAxYGUGudIeg8xi4kJAQhISHax76+vrh8+TL+/PNP8Pl89O3bF1KptIYzEEIIIaQpGthChFAPMX5LKSt/8uHFfIR6iisdq9Kw+Pwqt7XuBR8rtLSi1jpD0CmxUyqViI6ORq9evTjrstra2iI0NNRowRFCCCGkcVjRyw5HU5Uo+XeS68NCNdb/LYOownF77ilwr6CstU7AAG90ppmwhqJTV6xYLMbatWuRmppq7HgIIYQQ0gi1tRXg5Y7cBC36mgz5TFmrnQbAmgqtdc/7WMLD2qxXOG1U9Jo88bSYMCGEEEJIRYu72MCx3FJghSoW/xOXTaz8x6I1kvLK6tzxmdKSKcRwdE6R33//fcyYMQOBgYEYPny4MWMihBBCSCNkJ+RheXdbvBlXVqP2qtALvYtvo4U6B6dFfpzjJ7WzhJdN1akILflYNzondl9++SWkUimmTp0Kd3d3eHl5QSKRcI5hGAa7du0yeJCEEEIIaRxebG+JLddlSMwta5k7LO6KvkW3kMG3027jMcBbNYytq2nJx6SkJPj4+Bgu6CZE58Tuxo0bYBgGrVq1AgCkpKRUOoZhGMNFRkgjQ3eXhBACCHgMPu1th+eOZmm3PRA4IYPPLWQ8oY0E3nYWDR1ek6dzYnft2jVjxkFIo1fT3SUhhDQnQ1qKMaK1GIcflJU/UTJC7f8zAN7qQmPrjEHnyROEEEIIIbr6pJctBNV05I31kqCDlFrrjEHv+cV//PEHjh49qu2K9fDwQHBwMAYNGmTw4AghhBDSOHnbWWBeRyt89U/ldeQXU2ud0eic2BUXF2P27Nn47bffwLIs7OzswLIs8vPzsWnTJoSGhmLbtm2wsKAMnBBCCCHA211s8d21bCh4ZWWKwzzF8HegXMFYdO6KXbVqFQ4ePIiXX34ZN27cQHJyMu7fv4+bN29i/vz5OHjwIFavXm3MWAkhhBDSiEhFPDyrTNA+FrBqLOtqW8MzSH3p3GIXExODiRMnIjIykrPdxcUFn376KTIyMrBz50688847Bg+SEFJ3NFuXEGJK3UuSIZKr8EDgCP+SB/B3eNHUITVpOid2T548Qd++favd36dPH+zfv98gQRFCDIdm6xJCTM1flQp/FS1L2hB07op1dXXFpUuXqt1/+fJluLi4GCQoQgghhBCiP50Tu3HjxmHHjh2IiopCfn6+dnt+fj5WrlyJHTt2YMKECUYJkhBCCCGE1E7nrthly5bh77//xqpVq7BmzRq4uroCANLS0qDRaBAUFIRly5YZLVBCCCGEEFIznRM7sViM3bt34/Dhw5w6diNGjMDw4cMxfPhwowVJCCGEEEJqp3eB4hEjRmDEiBHGiIUQQgghhNSDzomdg4MDvvnmG0ycOLHK/Xv37sWcOXOQnZ1tsOAIIU0XlWEhhBDD0zmxY1m2xv0ajQYMU82icIQQUgGVYSGEEMPTeVYsgBoTt4sXL0IqldY7IEIIIYQQUjc1ttht2rQJX3/9tfZxREQEVqxYUem4vLw85OfnY/LkyYaPkBBCCCGE6KTGxM7R0RE+Pj4AgJSUFLi6usLNzY1zDMMwsLS0RLdu3TBv3jzjRUoIIYQQQmpUY2I3adIkTJo0CQAwatQoLF68GIMHD26IuAghhBBCiJ50njxx8OBBY8ZBCCGEEELqSefJEz/88AOmT59e7f4XX3wRP/30k0GCIoQQQggh+tM5sdu6dat2GbGquLm5YcuWLQYJihBCCCGE6E/nxO7OnTvw9/evdr+fnx9u375tkKAIIYQQQoj+dE7sGIZBVlZWtfuzs7Oh0WgMEhQhhBBCCNGfzoldly5dEBMTA6VSWWmfQqFATEwMOnfurNeLx8bGYsqUKfDz84NUKsX27ds5+1mWRVRUFHx9feHm5obQ0FBcv36dc0xubi7mzZsHDw8PeHh4YN68ecjNzdUrDkIIIYSQpkDnxO7NN99EUlIShg8fjv379yMpKQm3b9/G/v37MXLkSCQlJeHNN9/U68Xlcjk6duyIlStXQiKRVNofHR2NjRs34rPPPsOJEyfg7OyM5557DgUFBdpj5syZg4SEBMTExGD37t1ISEjASy+9pFcchBBCCCFNgc7lToYMGYKvvvoKb7/9NsLDw7XbWZaFjY0N1q9fj6CgIL1ePDg4GMHBwQCAV155hbOPZVls2rQJb7zxBsaMGQOgdCUMHx8f7N69G+Hh4bh58yaOHz+Ow4cPo0+fPgCAtWvXahPNp8WVCSGEEEKaA50TOwCYMmUKQkNDceLECSQnJ4NlWbRp0wZDhw6FjY2NQQO7f/8+0tLSMHToUO02iUSCfv36IT4+HuHh4Th//jysra21SR0A9O3bF1ZWVoiPj6fEjhBCCCHNil6JHQDY2NhoW9CMKS0tDQDg7OzM2e7s7IzHjx8DANLT0+Ho6AiGYbT7GYaBk5MT0tPTqz13UlKSESJu+NcgVaNrb1p0/U2Drrtp0HXXn6GuWXO99rU1WumV2KnVauzZswenT59GRkYG3nvvPXTq1Am5ubk4efIkAgMDK60lW1/lkzagtIu2YiJXUcVjKjJ2Sx51A5sOXXvTo+vf8Oh9bxp03evGENeMrn31dJ48kZeXh+DgYLz00kvYv38/jh07pi1/YmNjg+XLl2Pz5s0GC+xpMeSKLW+ZmZnaVjwXFxdkZmaCZVntfpZlkZWVVamljxBCCCGkqdO5xe6jjz7CjRs3EBMTg27dusHb21u7j8/nIywsDMeOHcP7779vkMA8PT3h6uqKkydPonv37gAApVKJuLg4fPzxxwCA3r17QyaT4fz589pxdufPn4dcLueMuyOEGEZcXBzi4+NrPGbdunWVtvXp0weBgYHGCosQQsi/dE7sfvvtN8ybNw9BQUHIzs6utL9du3bYuXOnXi8uk8lw9+5dAIBGo0FqaioSEhJgb2+P1q1bY/78+fj888/h4+MDb29vrFmzBlZWVpgwYQIAoEOHDggKCsKiRYsQHR0NlmWxaNEiDB8+nJpoCTGCwMDAahM06hohhBDT0zmxy83NRZs2bardz7IsiouL9Xrxv/76C2FhYdrHUVFRiIqKwtSpU7Fp0yYsXLgQCoUCS5YsQW5uLnr06IG9e/dyZuB+++23WLp0KcaNGwcAGDlyJFatWqVXHIQQQgghTYHOiZ2HhwcSExOr3R8bG8vpntXFgAEDalwlgmEYREREICIiotpj7O3tDTq2jxBCCCF1Q8M1TE/nxG7ixIlYt24dwsLC4OfnB6BsRuo333yDgwcPIjIy0jhREkIIIcTs1TRcgzQMnRO7RYsW4eLFixg9ejS8vb3BMAyWLVuG7OxspKWlITQ0lJbyIoQQQggxIZ0TOwsLC+zatQsxMTHYt28fGIaBSqVCly5dMG7cOEyaNKnG2nGEEEIIIcS49F55YuLEiZg4caIxYiGEEEIIIfWgc4FiQgghhBBi3qptsXv11Vf1PhnDMNiwYUO9AiKEEEIIIXVTbWJ3+vRpvcfM0Rg7QgghhBDTqTaxu3btWkPGQQghhBBC6onG2BFCCCGENBE1JnZHjx7FkydPONsKCwvBsmylY2/dukXj6wghhBBCTKjGxG7KlCn4888/tY+zs7PRqlUrnD59utKxV65cwfvvv2/4CAkhhBBCiE5qTOyqapmrahshhBBCCDE9GmNHCCGEENJEUGJHCCGEENJEUGJnBD4+PqYOodmia286dO1Nh669adB1Nx269tWrda3Y5ORkXLp0CQCQn58PAEhKSoK1tTXnuHv37hkhPEIIIYQN6tShAAAPXUlEQVQQoismNze32tkQ9vb2lVaTYFm2yhUmnm7Pzs42fJSEEEIIIaRWNbbYbdy4saHiIIQQQggh9VRjix0hhBBCCGk8aPIEIYQQQkgTQYkdIYQQQkgTQYmdAW3ZsgWdO3eGq6srBg0ahLNnz5o6pCYvKioKUqmU8699+/amDqtJio2NxZQpU+Dn5wepVIrt27dz9rMsi6ioKPj6+sLNzQ2hoaG4fv26iaJtWmq79vPnz6/0OQgKCjJRtE3LF198gSFDhqB169Zo164dJk+ejMTERM4x9N43PF2uO73vq0aJnYHs3bsXy5Ytw1tvvYXTp0+jd+/emDhxIh48eGDq0Jo8Hx8f3Lx5U/uPEmrjkMvl6NixI1auXAmJRFJpf3R0NDZu3IjPPvsMJ06cgLOzM5577jkUFBSYINqmpbZrDwCDBw/mfA5iYmIaOMqm6cyZM5g9ezaOHDmCAwcOQCAQYOzYscjJydEeQ+99w9PlugP0vq8KTZ4wkGHDhsHf3x9ffvmldlv37t0xZswYfPDBByaMrGmLiorCgQMHEBcXZ+pQmpWWLVti1apVmDZtGoDSFgtfX1/MnTsXixcvBgAoFAr4+PhgxYoVCA8PN2W4TUrFaw+UtlxkZ2dj586dJoyseZDJZPDw8MD27dsxcuRIeu83kIrXHaD3fXWoxc4AiouLceXKFQwdOpSzfejQoYiPjzdRVM1HcnIy/Pz80LlzZ8yaNQvJycmmDqnZuX//PtLS0jifAYlEgn79+tFnoIHExcXB29sbPXr0wIIFC5CRkWHqkJokmUwGjUYDqVQKgN77DaXidX+K3veV1bryBKldVlYW1Go1nJ2dOdudnZ2Rnp5uoqiah549e+Krr76Cj48PMjMzsXr1agQHB+PcuXNwcHAwdXjNRlpaGgBU+Rl4/PixKUJqVoKCghAWFgZPT0+kpKTgk08+wejRo3Hq1CmIRCJTh9ekLFu2DAEBAejduzcAeu83lIrXHaD3fXUosTMgXVfpIIbz7LPPch737NkTXbt2xU8//YTXXnvNRFE1X/QZMI3x48dr/9/f3x9du3ZFQEAAjhw5gtGjR5swsqblnXfewblz53D48GHw+XzOPnrvG091153e91WjrlgDcHR0BJ/Pr9Q6l5mZWekujhiXtbU1fH19cffuXVOH0qy4uroCAH0GzESLFi3g7u5OnwMDioiIwJ49e3DgwAF4eXlpt9N737iqu+5Vofd9KUrsDEAoFKJr1644efIkZ/vJkyfRp08fE0XVPCmVSiQlJWm/bEnD8PT0hKurK+czoFQqERcXR58BE8jKysLjx4/pc2AgS5cuxe7du3HgwIFK5ZTovW88NV33qtD7vhR/2bJlH5o6iKbAxsYGUVFRcHNzg1gsxurVq3H27Fls2LABdnZ2pg6vyXr33XchFAqh0Whw+/ZtLFmyBHfv3sXatWvpuhuYTCbDjRs3kJaWhh9++AEdO3aEra0tiouLYWdnB7VajbVr18Lb2xtqtRrLly9HWloa1q1b16zHuxhCTdeez+fj448/hrW1NVQqFa5du4bXX38darUaq1evpmtfT4sXL8bPP/+M77//Hq1atYJcLodcLgdQelPPMAy9942gtusuk8nofV8NKndiQFu2bEF0dDTS0tLg5+eHyMhI9O/f39RhNWmzZs3C2bNnkZWVBScnJ/Ts2RPLly+Hr6+vqUNrcv7880+EhYVV2j516lRs2rQJLMti5cqV+P7775Gbm4sePXpgzZo16NixowmibVpquvZffPEFpk2bhoSEBOTl5cHV1RUDBgzA8uXL0apVKxNE27RUnIX51NKlSxEREQEA9N43gtquu0KhoPd9NSixI4QQQghpImiMHSGEEEJIE0GJHSGEEEJIE0GJHSGEEEJIE0GJHSGEEEJIE0GJHSGEEEJIE0GJHSGEEEJIE0GJHSGkyYqKioJUKtUu1G4M8+fPR0BAgNHOTwgh+qDEjhCit+3bt0MqlUIqleL06dNVHjN06FBIpVL06tXLqLHIZDJERUXhzz//NOrrGENiYiKioqJw//59g563MV8TQkj9UGJHCKkzsViMmJiYStvv3LmDy5cvQywWGz0GuVyOzz77DGfOnDH6a1Xlyy+/xMWLF+v03OvXr+Ozzz5DSkqKQWMy9TUhhJgOJXaEkDoLDg7G/v37UVRUxNm+c+dOuLi4oFu3biaKrOFYWFg0m3Up1Wo1iouLTR0GIaQGlNgRQups/PjxkMlkOHz4MGf77t27MW7cOPB4lb9iNBoN1q1bhx49esDFxQV+fn5YsmQJ8vLyOMeFhoaiV69euHPnDsaPHw93d3f4+Pjgo48+gkajAQDcv38fHTp0AAB89tln2u7h+fPnc84lk8mwaNEitGnTBi1btsSMGTOQnZ3NOebKlSuYOHEi2rVrBzc3N3Tp0gUvvfSSduHx6lQ1xk4qlWLRokU4duwYBgwYAFdXV3Tv3h27d+/WHrN9+3bMnj0bABAWFqaNffv27dpjfv/9dwwbNgwtWrSAp6cnpk2bhlu3btUYjy7X5MmTJ1i4cCF8fX3h4uKC7t27Izo6GizLcs4jlUqxdu1abNmyBd27d4eLiwvi4+M5+/7zn/+gW7duaNGiBcLCwpCcnAwA2LBhAwICAuDm5obx48fjyZMnNcZNCDEMgakDIIQ0Xu7u7ujfvz9iYmIwZswYAMDFixdx9+5dTJo0CdeuXav0nLfeegvfffcdRo4ciZdffhnXr1/H1q1bcenSJRw5cgQWFhbaY/Pz8zFmzBiMGDECoaGhOH78ONauXQtPT0/MnDkTTk5OWL16NZYsWYJRo0YhLCwMANCmTRvOa86ePRuurq5Yvnw57ty5g82bN8PCwgJbtmwBAGRmZuK5556Do6MjFi5cCKlUitTUVBw6dAhyuRxWVlZ6X5sLFy7gt99+Q3h4OKZPn47//ve/mDdvHgICAtChQwf0798fc+fOxbfffou33noL7du3BwD06dMHQGlyPHfuXHTq1AnLly9Hfn4+Nm/ejODgYJw6dQpeXl5Vvm5t1yQjIwNBQUFQqVSYMWMG3NzcEBcXhw8++ACPHz/GypUrOefbtWsXZDIZZs6cCWtra7i5uWn3/fLLL1AoFJg1axZkMhmio6Mxbdo0jB8/HgcOHMArr7yCJ0+eYMOGDXjzzTfx008/6X0dCSH6ocSOEFIvEydOxOLFi5GbmwupVIqdO3eiXbt26N69e6VjExMT8d1332HSpEnYvHmzdruPjw8iIiKwY8cOvPjii9rtaWlp+PLLL7XbZs2ahWeeeQb/+c9/MHPmTFhZWWH06NFYsmQJ/P39MXny5CpjbN++Pef1WJbFt99+i88//xx2dnaIj49HTk4O9u7dy+k+fuedd+p8XW7cuIHY2Fht69nYsWPRqVMn/Pjjj1ixYgW8vLzQt29ffPvttxg8eDAGDBigfW5JSQmWL18Ob29vHD58WJtYhoaGYsiQIYiMjOT8POXVdk0++eQTFBUVITY2Fi4uLgCA8PBwuLm5YcOGDZg/fz48PT21x6ekpODSpUuchO7pZI/U1FRcvnwZUqkUAMDj8RAVFQWlUomzZ89qu6hlMhm2bduGzMxMODk51fmaEkJqR12xhJB6GTNmDBiGwf79+6FSqbBv3z5MnDixymOPHDkCAFiwYAFn+6xZs2Bra6vd/5RYLMa0adM42/r376/t7tPV0y7P8udQq9VITU0FANjY2AAADh8+jJKSEr3OXZ0BAwZokzoAcHFxgY+Pj06xX7lyBWlpaZg9ezantbBLly4YPHgwjh49yuk21RXLsti/fz+GDx8OPp+PrKws7b9hw4ZBo9EgNjaW85zQ0FBOUlfe6NGjtUkdAPTs2RMAMGHCBM64wx49eoBlWYPP/iWEVEaJHSGkXuzs7BAcHIxdu3bh5MmTyMjIqDaxS0lJAcMw8PHx4WwXiUTw9PSsNDvU3d0dfD6fs00qlSLn/+3dP0hyXRwH8K8JhVG3f4JEpaZGUJGRYwXVoA3VpIhQRERzDUFFDkI0VFxycYsU+zPWUEEUUotjfyAoyK0xhOdqgRSF7/Ci5NOjZebzvsj3Aw4e7/2dc+/05Zxzr79+ZTXGhoaGDzUAJOv09PRgaGgIy8vL0Ol0sNvt8Pl8eHp6yqqfTH0m+v3K2BP3IbE8+15zczMkSUI0Gs16TOFwGJIkYWtrC3q9PuWTWEoPh8Mp56Rb8gWA+vr6lO+CIAAA6urq/tguSVLWYyai7HAplohyZrPZMDY2BuDf2Rm9Xp91jXg8DplMltL2e6j7rnR1ErNeMpkMm5ubOD8/x9HREc7OzjA9PQ1RFBEIBJJLlj/Z53flcn7ioROr1YqRkZE/HqPT6VK+KxSKtPXSXWO+rp2IPsdgR0Q5s1gsEAQBwWDww+b799RqNeLxOEKhENra2pLtLy8vuL+/T9ln9lW/h8FcmEwmmEwmLCws4OTkBDabDX6/HzMzMz/Wx3vpxq5WqwEAd3d36O/vT/ktFAqhsrIyOQuWTV2lUglBEPD6+ore3t7vDZqI/te4FEtEOSspKYEoipidnYXVak17nNlsBgB4PJ6Udq/Xi2g0CovFknXfpaWlAHJb5pMk6cNsktFozLnuZ9KNvaOjAyqVChsbG4jFYsn26+trnJ6ewmw2Zwy06erK5XIMDw/j4OAAV1dXH86LRCI/tseQiP4bnLEjoh+RKdAltLa2Ynx8PBnk+vr6cHt7C6/Xi87OTjgcjqz7LSsrQ1NTE3Z3d2EwGFBdXQ2NRpPcyP8VOzs7WF9fx+DgIBobGxGLxbC9vQ25XJ7ce5YPRqMRRUVFWFtbQyQSgUKhgMlkglarxdLSEiYnJ2GxWGC325OvOxEE4dOndTPdE5fLhWAwiIGBAYyOjqKlpQWPj4+4ubnB/v4+Li4uoFKp8nbNRJRfDHZE9FeJogiNRgO/34/j42PU1NRgYmICTqcz5R122fB4PJifn4fT6cTz8zMcDkdWwa6rqwuXl5fY29vDw8MDysvL0d7ejpWVlbz+121tbS3cbjfcbjempqbw9vYGj8cDrVYLq9UKhUIBURSxuLiI4uJidHd3w+VyZXygISHdPVEqlQgEAlhdXcXh4SF8Ph8qKipgMBgwNzeHqqqqvF0vEeWfTJIk7mYlIiIiKgDcY0dERERUIBjsiIiIiAoEgx0RERFRgWCwIyIiIioQDHZEREREBYLBjoiIiKhAMNgRERERFQgGOyIiIqICwWBHREREVCD+AaDXx0UOIPieAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAGVCAYAAABzbLxIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdUVNfaBvDnMPQBAWliwQKISogFFbEgKraLXRNN/OJVE1FjEktsGEv0Go0aWxJb1KjRJBY09h5FQRF7iRouahQL0kFA2syc7w+ugyNtwCmU57cWa+Xss88572wn+rL32XsLKSkpIoiIiIiowjPQdwBEREREpBlM7IiIiIgqCSZ2RERERJUEEzsiIiKiSoKJHREREVElwcSOiIiIqJJgYkdERERUSTCxIyIiIqokDIs6ERERUaYbent7lzkYIiIiIio7oaidJ2xsbCAIgto3EkURgiAgKSlJY8FVVFFRUXBzc9N3GFUC21q32N66w7bWLba37rCttavIHru9e/fqMg4iIiIiektFJnYdO3bUZRxERERE9JY4eYKIiIiokiiyx64wOTk5OHz4MK5fv47U1FQoFAqV84IgYMWKFRoNkIiIiIjUo3ZiFxMTg759+yIqKgqWlpZIT09HtWrV8OLFC4iiCBsbG5ibm2szViIiIp2SyWTIyMjQdxiViqmpKVJTU/UdRrkmlUphaFiqvjclta+aM2cOnj9/joMHD6JRo0ZwdXXFli1b0KpVK/z444/49ddfsW/fvjIFQUREVN7IZDKkpaXB2tq6VKtEUPFMTExgamqq7zDKLVEUkZKSAktLyzIld2q/Y3fq1CmMHDkS7dq1U/mCm5ubY+rUqfD29saMGTNKHQAREVF5lJGRwaSOdE4QBFhbW5e5p1jtxC49PR0NGjQAkJdtA0BaWpryvI+PD86dO1emIIiIiMojJnWkD2/zvVM7satRowaePXsGIG/s18bGBrdv31aef/r0KSQSSZkDISIiIqK3o/bgrY+PD06fPo3p06cDAHr16oXvv/8exsbGUCgUWLt2Lfz9/bUWKBEREREVT+0eu08//RT/+te/kJWVBQCYO3cuvLy8MG/ePMyfPx+enp749ttvyxzI0qVLYW1tjSlTpijLxo4dC2tra5WfN5PH7OxsTJkyBQ0aNEDNmjUxZMgQPH36tMxxEBEREVVUavfYeXp6wtPTU3lsY2OD/fv3IykpCQYGBrC2ti5zEJcuXcKWLVvg4eFR4Jyfnx/WrVunPDY2NlY5HxQUhMOHD2Pjxo2wsbHBV199hcGDB+PMmTMcGiYiIqIqRe0eu8ePHxdaXr169bdK6lJTUzFq1Cj88MMPhd7HxMQEjo6Oyh8bGxuVa7du3Yp58+ahU6dOaNasGdatW4fbt28jJCSkzDG9jbMx2eh9yRRnY7L18nwiIqrali1bhk6dOqFOnTpwcXHB4MGDcefOHZU6b46GvfqZPHmyso4oili4cCEaNWqEGjVqICAgAHfv3tX1x6FSUrvH7t1334W3tzcGDBiAfv36wcHBQSMBTJgwAX379kXHjh2xePHiAufDw8Ph6uoKKysrtGvXDrNmzYK9vT0A4Pr168jNzUXnzp2V9WvXrg13d3dERESgS5cuGomxMOHh4YiIiFAp+0dij9+k7ZErGGLgkef4MCMM9eXxKnW8vb3h4+OjtbiIiKhqCwsLw8cff4wWLVpAFEUsWLAA/fr1Q0REhLJzJDIyUuWaa9euYciQIejXr5+ybOXKlVi1ahVWrVoFNzc3LF68GP3798elS5dgaWmp089E6hNSUlJEdSouX74ce/bswV9//QWJRIK2bdti0KBB6N27t0ovWmls2bIFP//8M06cOAFjY2MEBASgSZMmWLJkCQBg9+7dMDMzQ926dREdHY358+dDoVAgJCQEJiYm2LVrF8aMGYOEhASVqcG9e/eGi4tLkdubRUVFlSne4lxOMcAXtwyRK+TnyqYGIpY3yUZLa0UxVxIRUXlkamqq7Eh4neO2GjqNI/b/nr/V9RkZGXBzc8PmzZvRrVu3Qut8+eWXuHDhgnLZMlEU0bRpU4wcORITJkwAAGRmZuKdd97BnDlzMGzYsLeKiUoWHx+vnNfwOjc3t2KvU7vHbuLEiZg4cSLu3buH4OBg7N27F+PHj8fkyZPh5+eHAQMGICAgQO0sPioqCvPmzcORI0cKvDf3ysCBA5X/7eHhgWbNmsHT0xPHjh1Dnz59iry3KIrFrgFTUqOU1tmYbEwKT0SuoJojZykETLprhh1dbeHrZKLRZ1KeqKgojf95UtHY3rrDttatwto7NTW1XOyQ8LYxpKSkQKFQwN7evtB7paenY9++fZg2bZry/MOHDxEXF4du3bopy0xNTdGuXTtcvXoVgYGBZY4nKyurXLRreVetWjXUqVOn1Nep/Y7dK66urpg+fTouXLiAs2fPYty4cYiKisKnn34Kd3d3te9z8eJFJCYmwsfHB7a2trC1tcW5c+ewYcMG2NraIju74DtqTk5OqFmzJh48eAAAcHBwgFwuR2Jiokq9hISEQn/L0pZxocnIlBfe8ZkpFzEuNFlnsRAREb1u+vTp8PT0ROvWrQs9HxwcjOzsbHzwwQfKstjYWAAo8G+pvb094uLitBcsvbWy7TD7P56enpBIJDAwMMD69euRnp6u9rUBAQFo3ry5Stm4cePg4uKCSZMmFdqLl5iYiJiYGDg6OgIAmjVrBiMjI5w+fRrvvfcegLyFkiMjI+Ht7f0Wn6x0VnWwweATiYUmd2YSAas6lG2omoiI6G3MmDEDFy5cwNGjR4tcKWLLli0ICAiAnZ1dgXNvjn6VNCJG+lemxO7BgwfYvXs39uzZg8jISBgaGqJTp04qQ6cleTUD53Xm5uawsbFBkyZNkJ6ejm+//RZ9+vSBo6MjoqOjMW/ePNjb26NXr14AACsrK3z00UeYPXs27O3tlcudeHh4wM/PrywfrUx8nUywo6st+h+JhVxQ/R/nOx8rDsMSEVUiqZ+k6DsEtQQFBWHPnj04cOAA6tWrV2idmzdv4tq1a5g9e7ZK+asOlLi4ONSuXVtZrusRMSo9tRO7x48f448//sDu3btx69YtCIKAdu3aYcyYMejbt+9bLXlSGIlEgjt37mD79u1ITU2Fo6MjOnTogE2bNqm8x7dgwQJIJBKMGDECWVlZ8PX1xdq1a3W+hp2vkwmGZoRiq7QjxNd+m4mIy8FQN6lOYyEioqpt2rRp2LNnDw4ePIiGDRsWWW/Lli1wdnYu0BlSt25dODo64vTp02jRogWAvHfjwsPDMW/ePG2GTm+pVMudAECrVq2wYMEC9O/fX5nRa8qhQ4eU/21mZoY9e/aUeI2pqSmWLFminEmrTw3k8fDNuoMzZvkLLe+4/xIzW1SDgxkXSyYiIu2bPHkyduzYgW3btsHa2lr5vpxUKoWFhYWy3suXL7Fr1y588cUXBYZXBUHA2LFjsXTpUri5ucHV1RXfffcdpFIpBg0apNPPQ6WjdmI3Z84cDBgwAM7OztqMp8LzzbmL6yb1kGqQ10uXLQc2/J2BGc2r6TkyIiKqCjZs2AAA6Nu3r0r5tGnTEBQUpDzes2cPMjIyMHTo0ELvM378eGRmZmLKlClISUmBl5cX9uzZwzXsyjm117Gjkr1aNy/c2A3HzJopy21NDPDX+zVgZsgXTjWNS0LoFttbd9jWulXUcidWVlZ6iqjy4nIn6inr969Uy52kp6dj0aJF6NKlC9zc3ODm5oYuXbpg8eLFSEtLK/XDK6sWOf/ARMxVHidmK7Dj/ks9RkRERERVgdqJXWxsLHx9ffHtt98iOTkZXl5eaNGiBVJSUrBw4UL4+flxbZv/MYEMXjkPVMpW3U6HQmTnKBEREWmP2ond3Llz8ezZM2zZsgVXr17F9u3bsWPHDly5cgW//PILnj59irlz52oz1grFOzsKr4+8RqXKcOJJwUWXiYiIiDRF7cTuxIkTCAwMLHQrr969e2PUqFE4fvy4RoOryKzETPSvb6ZS9uNfHK4mIiIi7VE7sUtLSyt2zzJnZ2e+Z/eGcR4WKsehz3NwIzFHT9EQERFRZad2YtegQQMcPHgQYiHviYmiiIMHD6JBgwYaDa6ia2ZnjHY1VLdGW3Vb/W3XiIiIiEpD7cQuMDAQZ8+excCBA/Hnn3/i0aNHePToEU6ePIlBgwYhNDQUY8aM0WasFdJnb/Ta7XmQiacZcj1FQ0RERJWZ2gsUDx8+HPHx8fjuu+8QEhKics7IyAgzZszAsGHDNB1fhde9jilcqxni3gsZAEAmAuvvpuPrllwbiYiosgkPD0dERESpr/P29oaPj48WIqKqRu3EDgCmTJmCESNG4NSpU4iOjgaQ925d586dYWdnp5UAKzoDQcCnHhaYFJ6/afSmyAxMbmoJCyMD/iVARFSJ+Pj4FPi7+dXi9a9MmDBBlyFRFaNWYpeVlYVVq1bBy8sLfn5+eP/997UdV6UyxNUM86++QFK2AgCQmiNiW9RLjGliobG/BJggEhERadejR4/QtGlTnD59Gs2bN9d3OIVS6x07U1NTLFmyRNlLR6VjbmiAkY2kKmVrbqdDrtDcgsU+Pj6YMGGCys+b3jw/YcIEJnVERDrwj8Qeyy3/hX8k9lp/1tixY2FtbV3gx9/fHzk5OXBxccGSJUsKvXbDhg1wcnJCamqq1uNcv3492rZtizp16qBOnTro2rUrjh07plLnhx9+gJubG1xdXfHDDz+onLtx4wZatmyJzMxMrcf6Su3atREZGQlPT0+dPbO01J484eHhgYcPH2oxlMptVCMpjF9r7UfpchyMztJfQEREpBP/SOzxm7Q9Ug2k+E3aHmdjtL9YvZ+fHyIjI1V+du3aBWNjY7z//vv49ddfC13lYtu2bejTp49G9sj99ddfERAQUOT5mjVrYu7cuThz5gxOnz4NX19fDB06FH/99RcA4K+//sKCBQuwYcMGbNy4Ed988w1u374NAJDL5Rg/fjy+++47mJmZFfkMTZNIJHB0dIShYaneZNMptRO72bNnY/Pmzfjzzz+1GU+l5WguwXsu5iplq7n0CRFRhWO96WmpfrZY+CFXyEsEcgVD9DmaUKrry8LExASOjo4qPzY2NgCAYcOG4eHDhwgNDVW55tatW7h+/bpyImRqaioCAwPh6uoKR0dHNG3aFKtXr36LllMVEBCArl27okGDBnB1dcWsWbNgYWGBS5cuAQCioqLg4eGBjh07omPHjvDw8EBUVBQAYPXq1WjcuDH8/PzUetaiRYvwzjvvwMHBAQ0bNsTo0aMB5G2+ULt2bchkeRMc79+/D2tra0yaNEl57X/+8x/069cPQN5QrLW1Na5duwYACA0NhbW1Nc6cOYMuXbrAyckJfn5+uH79usrzt27dinfeeQdOTk4YPHgwNmzYAGtr67I3XjHUTjnXrFkDGxsbvPfee3B2dka9evVgamqqUkcQBPz+++8aD7KyGOdhgV+jXiqPI+JycCkuB60cjIu5ioiISHMaN26Mli1bYtu2bfD19VWWb926FS4uLmjXrh0AYP78+bhz5w527NgBOzs7REdHIzExUSsxyeVy7N27FxkZGWjdujUAoEmTJrh37x4eP34MURRx7949NG7cGI8ePcL69esLrNBRlH379uHHH3/Ehg0b0KRJEyQkJCiTRx8fH2RlZeHatWto1aoVwsLCYGtrq5L0hoWFoWvXrsU+Y+7cufj6669Ro0YNTJ8+HYGBgYiIiIAgCLh48SK++OILzJkzB7169cK5c+cwb968sjWUGtRO7G7evAlBEODk5ITc3Fxl1vw6QRAKuZJeaWJjhC61TPDn0/xu+B9vp2GLg60eoyIiosrm5MmTqFWrlkrZJ598otzTfdiwYZg2bRpSU1NhZWWF7Oxs7Nq1C+PHj1fWf/z4Md599114eXkBAOrWrVvsM8+fP4/33ntPeSyTyZCbm6sSx6RJkzBu3Djl8e3bt9GtWzdkZWVBKpVi27Zt8PDwAAC4u7tj9uzZ6N+/PwBgzpw5cHd3x8CBAzFr1iycP38eCxYsgCiK+Oqrr9CrV69C43r8+DEcHR3RuXNnGBkZoU6dOsqJDxYWFmjatClCQ0OVid2oUaOwYsUKPH/+HNWqVcPVq1eV7VaUr776SpkkT506FT169MCzZ89Qq1YtrFu3Dp07d1a+++7q6oqrV69iy5Ytxd6zrNRO7O7cuaOVAKqacR4WKondgUdZeJgmQz3L8jteT0REFUvbtm2xcuVKlbLX35sbMGAAZsyYgd27d2PkyJE4dOgQ0tLS8MEHHyjrfPzxx/j3v/+NGzduoFOnTujRowfat29f5DObN2+u0tN14MAB7N+/H+vXr1eWvRoOfsXNzQ2hoaFITU3F/v37MXbsWBw8eBBNmjQBAIwcORIjR45U1t+xYweAvHcIvby8cOLECSgUCnTv3h3e3t6wty84OaVfv35Yu3YtmjZtis6dO8Pf3x89e/aEiYkJAKB9+/YICwvDpEmTcO7cOYwZMwZnz55V9t4ZGRkpk9uivEpGAaBGjRoAgPj4eNSqVQv//e9/0aNHD5X6Xl5e+k/sSDM61TRBExtD3EnOG89XiMDaO+n41ls7Y+1ERKRZKSNqlVzpf87GZGPgkefKd+wAwEwiYEdXW/g6mWgjPACAubl5sdt8WlhYoF+/fti2bRtGjhyJrVu3olu3bnB0dFTW6dq1K27duoUTJ07gzJkzGDx4MPr27Vvke3ZmZmYqz7Szs4OpqWmBOLKy8icOGhsbK883b94cV69exerVq/Hjjz8WuH9SUhK++eYbHDhwAJcuXYKLiwvc3d0BAC4uLrh8+TJ69uxZ4LratWvj8uXLOHPmDEJCQjBz5kwsWrQIJ0+ehFQqRfv27bFhwwb8/fffSE9PR7NmzdC+fXuEhobCzs4OrVu3hpGRUZFtCUDl/KvRy1eTU0RR1OmIptqTJ14JDQ3F7NmzMWLECIwYMQKzZ8/G2bNntRFbpSQIAsa9sc3Ytv++RMr/1rgjIqLKw9fJBB9mhMFIzPtl3kiUaT2pU9ewYcNw9epVHD16FGfOnCl09yhbW1sMGTIEa9aswQ8//IDff/8d2dnam9WrUCiQk5NT6LkZM2YgMDAQdevWhUKhQG5urvJcTk4O5PKit+s0NTVF9+7dsXDhQpw6dQp3795Vrv3q4+OD7OxsrFy5Em3atIFEIlEmdmFhYcX2UqrD3d0dV69eVSl781iT1O6xy8jIwMiRI3HixAmIoghLS0sAQFpaGn788Ud06dIFmzZtgoWFRQl3okENzDHvygvEZuYlc+kyEb/8NwNfeFrqOTIiItK0+vJ4fJgRhr3mrdDv5SX4Og3V+jOzs7MRGxurUiaRSFR2iWrdujUaNWqEMWPGwNHRscAEgW+++QZNmzZF48aNIZPJcODAAdSrV085hPmmnJwcJCcnK4/9/f3h7++vEodUKlUuFfL111+jW7duqFWrFtLT0xEcHIywsDDs3LmzwL1DQkIQGRmJVatWAQBatGiBe/fu4ciRI1AoFLh3716Rw6W//vor5HI5vLy8IJVK8ccff8DIyEjZU/jqPbudO3fi66+/VrbN06dP8ejRoxLfryvJ6NGj0aNHD3z//fcICAjAuXPncPDgwbe6Z3HU7rGbOXMmjh8/jokTJyIyMhLR0dGIjo5GZGQkJkyYgJMnT2LWrFlaC7QyMZEIGNVYNQFedycDuRpcsJiIiMqP+vJ4TEw7jPryeJ08LyQkBO7u7io/r8+AfeX//u//kJKSgg8//BASiUTlnImJCebPn4/27duje/fuSE9Px/bt24t8ZkRERIFnvvnz+iLDsbGxCAwMRKtWrdC3b19cvXoVwcHBBRLMzMxMTJ48GStWrFDGWLNmTSxbtgyTJk3Cl19+ieXLl8PJyanQuKysrLB161b07NkTbdu2xf79+7F161bUq1dPWadDhw6Qy+XK3jlTU1O0bNkSJiYmJb5fV5LWrVtj5cqVWLduHdq1a4dDhw5h/PjxBVYW0RQhJSVFrWyiXr166NOnD77//vtCz3/++ec4cOBAlV7EuDRbgSVlyeGxMxaZ8vzmX+9rg/dczDW2r2BV2J8wKioKbm5u+g6jymB76w7bWrcKa+9XM0bfVlX4u7g0srKytJbUVBRBQUE4c+YMzp8/X2Sdsn7/1B6KVSgUaNq0aZHnmzZtiv3795c6gKqquqkEH7qZY+PfGcqyH2+nY1AD3a2gTUREmqXOvt1vJnoA9+2u7L7//nv4+fnBwsICISEh2LRpk9ZGOdVO7Pz9/XH8+HF8/PHHhZ4/ceIE/P39NRZYVfBpEwv8/HcGXvXZ3UjMRdjzwl8aJSKi8s/Hx4cJGhVw7do1/PDDD3jx4gXq1q2L2bNnY+zYsVp5ltqJXVBQEIYPH44PPvgAo0ePRv369SEIAu7fv49169bh6dOn2Lx5s8qLk0DBNWson4uVIXo6m+Lwa3vGrrqdjjZ6jImIiIg0a9OmTTp7ltqJ3astPu7cuYNjx46pnHu1VsurOq9LSkp6m/gqvXEeFiqJ3dHHWXA1sICdgvvIEhERUemondh9+eWX2oyjymrraIzmdka4lpC/Hk+4cUP0ztLeGjdERERUOamd2M2cOVObcVRZrxYs/uRM/hD2DeN66Jz9F6Qi37cjItInXe8aQATkj4SWRal3nnglMzMTmZmZZX4w5etbzwy1pfnrB8kECS4bu+gxIiIikkqlSElJeat/ZIlKSxRFpKSkQCqVlun6Uu0V+/DhQ+X+aomJiQCA6tWro2vXrpg6dSrq169fpiCqOiMDAaObSDHr0gtl2UVjV7TNjoQRuNUYEZE+GBoawtLSEi9evCi5MqntxYsXqFatmr7DKNcsLS2VO3SUltpXXbt2DX379sXLly/h5+cHFxcXiKKIBw8eYNeuXTh06BD27duH5s2blymQqm5YQykWX09DWm7eb4YZBqa4ZeSMFrkP9RsYEVEVZmhoqJFFiilfXFwc6tSpo+8wKi21E7vp06fD3NwcJ0+eRMOGDVXORUZGok+fPggKCsLRo0c1HmRVYGVsgI8ammP17fwFiw+aecFakVHMVURERET51H7H7ubNmxg1alSBpA4A3N3dMWrUKNy4cUOjwVU1Y5pYwOC1d3QVggF+lXbA2Zhs/QVFREREFYbaiZ2Dg0Ox471GRkZwcHAocyBLly6FtbU1pkyZoiwTRRELFy5Eo0aNUKNGDQQEBODu3bsq16WkpCAwMBDOzs5wdnZGYGAgUlJSyhyHPjlbGKKtg7FKmVyQYPCJBCZ3REREVCK1E7uxY8di48aNePbsWYFzT548wYYNG8q8PcalS5ewZcsWeHh4qJSvXLkSq1atwqJFi3Dq1CnY29ujf//+SEtLU9b55JNPcPPmTezatQvBwcG4efMmRo8eXaY49O1sTDYuJRRc4iRTDgw+kcjkjoiIiIql9jt2MpkMlpaWaNmyJXr16qWypdihQ4fQoEEDyGQy/Pjjj8prBEHAuHHjir1vamoqRo0ahR9++AGLFy9WlouiiDVr1mDChAno27cvAGDNmjVwc3NDcHAwRowYgcjISJw8eRJHjx6Ft7c3AGD58uXo2bMnoqKi4ObmVqrG0LdxocnIlhd+LlMuYlxoMm69X0O3QREREVGFoXZiN2vWLOV/79q1q8D527dvq9QB1EvsXiVuHTt2VEnsHj16hNjYWHTu3FlZZmZmhrZt2yIiIgIjRozAxYsXYWFhoUzqAKBNmzaQSqWIiIiocIndqg42GHwiEZnygmsmCQCWt7XWfVBERERUYaid2F29qvktrrZs2YIHDx5g3bp1Bc7FxsYCAOzt7VXK7e3tERMTAyBvyrStra3KquCCIMDOzg5xcXFFPjcqKkoT4ZeotM9xArCssQG+uGWIXEH1j0YEsOOv56ibmVvotdqIp6KorJ+rvGJ76w7bWrfY3rrDti67kjqt1E7s1Fl8uDSLDkZFRWHevHk4cuQIjI2Ni6z35lYub27vUthWLyVtAaOrnryyPMcNwIULv+I3afsCyd2uGCP0buSIPvXMdBZPeVcRh9wrMra37rCtdYvtrTtsa+0q27LGr5HJZDh27Bh27tyJ48ePK3vTSnLx4kUkJibCx8dHWSaXy3H+/Hn8/PPPuHDhAoC8XrnatWsr6yQkJCh78RwcHJCQkKCSyImiiMTExAI9fZoWHh6OiIiIYuusWLGiQJm3t7fKZy5MfXk8PswIwx/mraEQBaRL8hO5z88lo5mdEZwt3vqPjoiIiCqZMmcHFy5cwM6dO7F3714kJyfD0tIS3bt3V/v6gICAArtUjBs3Di4uLpg0aRJcXV3h6OiI06dPo0WLFgCArKwshIeHY968eQCA1q1bIz09HRcvXlS+Z3fx4kVkZGSovHenDT4+PkUmaJr4baS+PB6T0g7hqcQGm6v5I/d/O4ul5oj4JCQZh/5lByMDbkxNRERE+UqV2EVFRWHHjh3YtWsXHj9+DADo3bs3RowYgXbt2sHIyEjte1lbW8PaWnUygLm5OWxsbNCkSRMAeUusLF26FG5ubnB1dcV3330HqVSKQYMGAchbGNnf3x8TJ07EypUrIYoiJk6ciO7du1eabt5a8mTM8aqGma/vIxufg4XXXmC2l3a2uVGnN7Iw6vRGEhERkfaUmNjFx8cjODgYO3fuxI0bN2BpaYlevXqhTZs2+OKLLzB48GD4+flpJbjx48cjMzMTU6ZMQUpKCry8vLBnzx5YWloq66xfvx7Tpk3DgAEDAAA9e/ZUmV1bGXzqYYGzMdk4/iR/HbvlN9PRoYYJOtUy1fjzCuuNfHNYecKECRp/LhEREb2dYhO7QYMG4cyZMzA0NES3bt0wadIkdO/eHcbGxoiOjtZ4MIcOHVI5FgQBQUFBCAoKKvIaGxsb/PTTTxqPpTwxEASs7mCDDvviEPMyb0xWBDA6NBlhfR3gYCbRb4BERERULhS788Sff/6JWrVqYceOHdiyZQt69+5d7AxW0h47Uwl+8q2O19+qi8tUYMzZZCjEguveERERUdVTbGL35ZdfQhAE9OvXDy1atMA333xTYK9W0p0OTiaY0sxSpezUs2w2YMGMAAAgAElEQVR8fytdTxERERFReVJsYjdz5kxcu3YNhw8fhp+fHzZu3Ih27dqhbdu2WL16dbFrxZF2TG1qCR9H1V7T/1x9gYtx3EeWiIioqis2sXulTZs2WLZsGSIjI/HLL7/A1dUVmzdvhiiKmD9/PpYsWYJbt25pO1YCYGggYEPH6rAxyU+q5SLw8ZlkpGQr9BgZERER6Ztaid0rRkZG6NWrF3755RdERkZixYoVsLGxwcKFC9GxY0e8++672oqTXlNLKsHq9jYqZY/T5fjiXDJEvm9HRERUZZUqsXudlZUV/v3vf+PQoUO4ceMGvvrqK0ilUk3GRsXo6WyGMU1U23v/oyxsinypp4iIiIhI38qc2L2uTp06+PLLLxEeHq6J25Ga5ra0QlNb1UWhgy6m4K+kXD1FRERERPqkkcSO9MNEIuDnjtVhYZj/vl22HBgZkoSMXL5vR0REVNUwsavgXKwMsayt6tZs/02VYWpEqp4iIiIiIn1hYlcJvO9ijqFu5iplv0a9xE0jZz1FRERERPrAxK6SWOxtBTcr1R3iDpq1QKIBJ7QQERFVFUzsKgmpkQE2+VWHyWvbxuYIRgg294GMf8xERERVQqn/xb98+TKWLVuGoKAg3L9/HwDw8uVLXL9+Henp3NpKn96pboQFra1UymIkNlhcrQ/+kdjrKSoiIiLSFbUTu9zcXAwfPhzdunXDf/7zH6xbtw5PnjwBAOV+suvWrdNaoKSeke5S9K5rqlKWIxhhm7QDzsZw2zEiIqLKTO3E7ttvv8XBgwexcOFCXLhwQWWHAzMzM/Tr1w9HjhzRSpCkPkEQ8EM7G9iZqv7RygUJBhxLwPZ7GXqKjIiIiLRN7cRu586dGD58OEaPHg17+4LDeg0bNsQ///yj0eCobG4m5SItp+A6djIRGBOaAv8DcQh5lsXtx4iIiCoZtRO72NjYYveCNTExQUYGe4PKg3GhycguZn3iywm56HcsEW33xuGX/2YgU8YEj4iIqDJQO7FzdHTEo0ePijx/7do1ODtz3bTyYFUHG5hJhBLr3U2R4YtzKfDY+Rz/uZKKZxlyHURHRERE2qJ2Yte7d29s2rQJDx48UJYJQl7ycOLECezYsQP9+/fXfIRUar5OJtjR1RZGokylvKhULylbgaU30/HurucYdSYJV+NztB8kERERaZzaid20adPg5OQEX19fjBkzBoIgYOXKlejRowcGDx4MT09PTJgwQZuxUin4Opngw4wwZXJnJMqwr7stjv3LDv3qmcGgkCxPJgK7HmSi88F4dD8Uj73/ZEKm4DAtERFRRaF2YmdlZYWTJ0/i888/x5MnT2BkZISzZ88iMTERU6ZMwaFDh2BmZqbNWKmU6svj8WFGGKwUGfgwIwy+NU3h7WiCzZ2q4/ogR3zxjgWsjAvvx4uIy8HwkCQ0C47F97fSkAkj/COxx3LLf3FNPCIionLKsOQq+czMzDBt2jRMmzZNW/GQhtWXx2Ni2uEC5c4WhpjXygpTm1li+72XWHsnA/deyArUe5Ihx+zLLyCp1hsiBCgEA/wmbY+BMdnwdTLRxUcgIiIiNandY7d9+3akpaVpMxbSAwsjA3zS2AIXBzhgV1dbdK5ZeLImFyRQCHlfl1zBEINPJHLBYyIionJG7cRu7NixaNiwIYYNG4Z9+/YhKytLm3GRjhkIArrWNsWe7nYI7+eA4Q3NYSopun6mXGRyR0REVM6ondgdP34c//73v3H58mUMHz4cbm5uCAwMxNGjR5Gbm6vNGEnHGtsYYUU7G9x5v0aR7+ABecnduNBkHUZGRERExVH7HbtWrVqhVatWWLhwIc6dO4c9e/bgwIED2LVrF6ysrNCrVy8MHDgQnTp10ma8VITw8HBEREQUW2fFihUFyry9veHj41No/eqmEmztbIvBJxKQWcgSd2YSAas62JQpXiIiItK8Uk2eAPLWrmvfvj3at2+PJUuW4MyZM9izZw/27duH33//HYmJidqIk0rg4+NTZIL2NvLWxLND3yNxEIX8Dl4jA2BHV1tOoCAiIipH1B6KLUxSUhLu3buH+/fvczuxSszXyQTv5qruOtK5pgmTOiIionKm1D12KSkp2L9/P3bv3o1z585BLpejadOmmDt3LgYMGKCNGKkceCf3CW4Y11ceP31ZzGa0REREpBdqJ3bbt2/Hnj17EBISgtzcXLi7u2Pq1KkYNGgQGjRooM0YqRyoJU9SOb6TnIuMXAWkRm/V6UtEREQapHZiN3bsWDg7O+Ozzz7DgAED8M4772gzLipnzMUcVJenIUliCQBQiMD1xFy0q8HhWCIiovJC7cTuxIkTaNmypTZjoXKuljxJmdgBwNX4HCZ2RERE5Yja42hM6qj2G8OxlxNy9BQJERERFabIHrulS5dCEARMnDgRgiBg6dKlJd5MEARMmjRJrQevX78emzZtwuPHjwEAjRo1wuTJk9G9e3cAeUO/v//+u8o1LVu2xMmTJ5XH2dnZmDlzJnbv3o2srCz4+vpi6dKlqFWrlloxUOnUkqsuZXMlngtTExERlSdFJnbz58+HIAj47LPPYGxsjPnz55d4s9IkdjVr1sTcuXPh4uIChUKB33//HUOHDkVISIjy/T0/Pz+sW7dOeY2xsbHKPYKCgnD48GFs3LgRNjY2+OqrrzB48GCcOXMGEkkx+2FRmdSQp0IiyiEX8tr2SYYcz1/KUcOcbU1ERFQeFJnYJSQkAIAyQXp1rCkBAQEqx7NmzcLGjRtx6dIlZWJnYmICR0fHQq9PTU3F1q1bsWrVKuVuF+vWrYOnpydCQkLQpUsXjcarLdrYMUJbDKFADXkKnhraKssux+egV10zncZBREREhSsysXuzx0ubPWByuRx79+5FRkYGWrdurSwPDw+Hq6srrKys0K5dO8yaNQv29vYAgOvXryM3NxedO3dW1q9duzbc3d0RERFRYRI7be0YoS215Ukqid0VJnZERETlhtqzYu3t7bF27VoMHDiw0PN79+7FqFGjEB8fr/bDb9++jW7duiErKwtSqRTbtm2Dh4cHAMDf3x+9e/dG3bp1ER0djfnz56NPnz4ICQmBiYkJ4uLiIJFIYGtrq3JPe3t7xMXFFfvcqKgotWMsK108Qx/y3rNzUx6HRqciyqr49ta2ytrW5RXbW3fY1rrF9tYdtnXZubm5FXte7cROJpNBoSh6t4GSzhfGzc0NoaGhSE1Nxf79+zF27FgcPHgQTZo0UUkgPTw80KxZM3h6euLYsWPo06dPkfcURRGCIJT4XG2KiorS+jP05c2ZsX9nGKKBSx1IDIpvc22pzG1dHrG9dYdtrVtsb91hW2tXqbYNKC5hunr1KqysrEr1cGNjYzRo0ADNmzfHnDlz4OnpidWrVxda18nJCTVr1sSDBw8AAA4ODpDL5UhMVJ2pmZCQoByuJc2zUWTAXJGtPE6XiYhMlekxIiIiInql2B67devW4aefflIez5w5EwsXLixQLzU1FUlJSXjvvffeKhiFQoGcnMLXRktMTERMTIxyMkWzZs1gZGSE06dPK5/79OlTREZGwtvb+63ioKIJyFuoOMrASVl2OT4HTWyM9BcUERERASghsbOyskKdOnUAAA8ePED16tXh4OCgUkcQBJibm6N58+YYM2aM2g/++uuv0a1bN9SqVQvp6ekIDg5GWFgYdu7cifT0dHz77bfo06cPHB0dER0djXnz5sHe3h69evVSxvbRRx9h9uzZsLe3Vy534uHhAT8/v1I2A72upJm6teSJiDLKT+w2n76KpMNX9DJTl4iIiPIVm9gNGTIEQ4YMAQD07NkT06ZN01jSFBsbi8DAQMTFxaFatWrw8PBAcHAwunTpgszMTNy5cwfbt29HamoqHB0d0aFDB2zatAmWlvlbWi1YsAASiQQjRoxQLlC8du1armH3lkqaqev5NAshx/OHwLMdG2JCvw66CI2IiIiKofbkiSNHjmj0wWvWrCnynJmZGfbs2VPiPUxNTbFkyRIsWbJEk6FRCVrYqS4UfTdFhvRcBSyMSvXKJhEREWlYkYldTEwMgLxJC68fl+RVfaq8bEwM4FJNgvsv5AAAhQhcT8xF+xomeo6MiIioaisysWvSpAkEQcDz589hbGysPC5JUlJSiXWo4vOyN8b9F5nK4yvxOUzsiIiI9KzIxG7lypUAACMjI5VjIgBoaWeMnfdVEzsiIiLSryITu2HDhhV7TFVbS3vV9+yuxOfqKRIiIiJ65a3fdo+Pj8e9e/c0EQtVIO9UN4LJa5OPn76UI+alXH8BERERkfqJ3ZYtW/Dpp5+qlE2dOhXu7u5o3bo1/Pz8kJycrPEAqXwylgh4t7rqosSXORxLRESkV2ondps3b4apqanyOCwsDOvXr0f//v0xY8YMREVF4bvvvtNKkFQ+eRUYjmViR0REpE9qr2P38OFDfPjhh8rjP/74AzVr1sT69ethYGCA9PR07Nu3D998841WAqXyJ+89uwzlMXvsiIiI9EvtHrucnBwYG+f30Jw+fRr+/v4wMMi7hYuLC54/f675CKncenMCxfWEXMgVop6iISIiIrUTu7p16yI0NBQAcP36dfzzzz/o3Lmz8nxcXBwsLCw0HyGVW3UtJLA1yf8KpctE/J0i02NEREREVZvaid3w4cOxe/du+Pr6YsCAAXByckK3bt2U5y9evAh3d3etBEnlkyAIaGmvOoHiSgKHY4mIiPRF7cQuMDAQy5YtQ82aNeHv74/g4GCYmZkBAJKTk/H06VMMGjRIa4FS+fTmBAq+Z0dERKQ/ak+eAIARI0ZgxIgRBcptbGwQFhamsaCo4njzPTsmdkRERPpTqsTulcjISERHRwMAnJ2dOQRbhbWwU03s/k6RIT1XAQujt177moiIiEqpVInd0aNHERQUhEePHqmU16tXDwsXLkT37t01GhyVf9YmBnCtZoh7L/ImTShE4FpCLjo4meg5MiIioqpH7W6VU6dOYejQocjNzUVQUBA2b96MTZs2ISgoCDk5ORg6dChCQkK0GCqVV15vTqDgcCwREZFeqN1jt3jxYjRs2BDHjh1DtWrVVM6NHj0a3bp1w6JFi+Dn56fpGKmca2lvjB33M5XHfM+OiIhIP9Tusbt16xaGDh1aIKkDgGrVquH//u//cPPmTY0GRxXDmxMornLJEyIiIr1QO7GTSCTIysoq8nxmZiYkEolGgqKKxcPGCCav/dE/e6nAswy5/gIiIiKqotRO7Hx8fLB+/Xo8fPiwwLmHDx9i48aN8PHx0WRsVEEYSwQ0rc5lT4iIiPRN7XfsZs+ejR49esDb2xu9evWCq6srACAqKgqHDx+GsbEx5syZo7VAqXzzsjfCxdeSuSvxOehTz0yPEREREVU9aid2Hh4eOHnyJObOnYvDhw8rh2VNTU3RpUsXzJ49m+vZVWF579llKI8v8z07IiIinSvVOnbu7u747bffIJfLERsbCwBwcHCAoWGZ1jmmSuTNrcWuJ+RCrhAhMRD0FBEREVHVo1ZGdv36dTx69Ag2NjZo06YNjI2NUbNmTW3HRhVIXQsJ7EwNkJClAABkyETcTZHhnepGJVxJREREmlJsYpeWloYPPvgA58+fV5bVrFkTu3btQuPGjbUeHFUcgiDAy94Yxx7nz5y+Ep/DxI6IiEiHip0Vu2jRIpw7dw49evTAggUL8MknnyA+Ph6TJ0/WVXxUgbS0U03iODOWiIhIt4rtsTt48CACAgKwbds2ZVmjRo0wefJkxMXFwcHBQesBUsXx5kLF3FqMiIhIt4rtsXv27Bn8/f1Vyvz9/SGKIqKjo7UaGFU8ze1UE7u7KTKk5Sr0FA0REVHVU2xil5ubC6lUqlJmYWEBAMjIyCjsEqrCrE0M0NAqvxNYBHAtIVd/AREREVUxJc6KffnyJZKTk5XHr/47PT1dpfwVGxsbDYZHFU0LOyP8N1WmPL4SnwNfJxM9RkRERFR1lJjYTZw4ERMnTixQ/tFHHxVaPykp6e2jogqrpb0xtt/PVB5zAgUREZHuFJvYffnll7qKgyqJwiZQiKIIQeBCxURERNpWbGI3c+ZMXcVBlYRHdSOYSoAsed7x80wFnr1UoJZUot/AiIiIqoBiJ08QlZaRgYCmtqq9dhyOJSIi0g29JXbr169H27ZtUadOHdSpUwddu3bFsWPHlOdFUcTChQvRqFEj1KhRAwEBAbh7967KPVJSUhAYGAhnZ2c4OzsjMDAQKSkpuv4o9AYve9WFirmeHRERkW7oLbGrWbMm5s6dizNnzuD06dPw9fXF0KFD8ddffwEAVq5ciVWrVmHRokU4deoU7O3t0b9/f6SlpSnv8cknn+DmzZvYtWsXgoODcfPmTYwePVpfH4n+p6Ude+yIiIj0QW+JXUBAALp27YoGDRrA1dUVs2bNgoWFBS5dugRRFLFmzRpMmDABffv2RZMmTbBmzRqkp6cjODgYABAZGYmTJ09ixYoV8Pb2RuvWrbF8+XIcO3YMUVFR+vpYBMDrjQkU1xNzIVOIeoqGiIio6ihxuRNdkMvl2Lt3LzIyMtC6dWs8evQIsbGx6Ny5s7KOmZkZ2rZti4iICIwYMQIXL16EhYUFvL29lXXatGkDqVSKiIgIuLm5Ffk8XSR+VTm5FEWgupEZknLzZsK+lImY+eNm1FCkqnW9m5sbGjZsqPbzqnJb6wPbW3fY1rrF9tYdtnXZFZffAKVI7GJiYmBjYwNTU9NCz2dnZyMpKQlOTk5qB3f79m1069YNWVlZkEql2LZtGzw8PBAREQEAsLe3V6lvb2+PmJgYAEBcXBxsbW1VltEQBAF2dnaIi4sr9rklNcrbioqK0vozyrvW0Yk4+jhLedyo+/sY7i7FihUrVOpNmDDhrZ7DttYttrfusK11i+2tO2xr7VJ7KNbDwwMHDhwo8vyhQ4fg4eFRqoe7ubkhNDQUJ0+exMcff4yxY8fizp07yvNvrn325npoha2NxjXTyoc317Pje3ZERETap3ZiJ4rFvyMlk8lKnVAZGxujQYMGaN68OebMmQNPT0+sXr0ajo6OAFCg5y0hIUHZi+fg4ICEhASVuERRRGJiYoGePtK9lpwZS0REpHOlmjxRVOKWkZGBU6dOwc7O7q2CUSgUyMnJQd26deHo6IjTp08rz2VlZSE8PFz5Tl3r1q2Rnp6OixcvKutcvHgRGRkZKu/dkX40tzPG69+Wv1NkeJGj0Fs8REREVUGx79gtXrwYS5YsAZCX1I0ZMwZjx44tUE8uz9tmYNSoUWo/+Ouvv0a3bt1Qq1Yt5WzXsLAw7Ny5E4IgYOzYsVi6dCnc3Nzg6uqK7777DlKpFIMGDQIAuLu7w9/fHxMnTsTKlSshiiImTpyI7t27c+y+HLAyNkBDK0NEpsoAACKAawm5+g2KiIiokis2sfP09MQHH3wAURSxbds2+Pj4oH79+ip1BEGAubk5mjdvjoEDB6r94NjYWAQGBiIuLg7VqlWDh4cHgoOD0aVLFwDA+PHjkZmZiSlTpiAlJQVeXl7Ys2cPLC0tlfdYv349pk2bhgEDBgAAevbsicWLF6sdA2mXl72xMrEDgCsJOdzqhIiISIuKTex69uyJnj17Asib9Tpq1Ci0atVKIw9es2ZNsecFQUBQUBCCgoKKrGNjY4OffvpJI/GQ5nnZG+G3e/nHl+Nz0Fp/4RAREVV6ai93wgSKSsvrjR0orsTnoBUAzlkmIiLSjlKNjD158gSTJk1Cy5YtUbduXZw7dw4AkJiYiKlTp+LGjRtaCZIqJo/qRjCV5B/HZiqQKpjpLyAiIqJKTu3ELioqCh07dkRwcDBq1aqFtLQ0yGR570/Z2tri/Pnz2Lhxo9YCpYrHyEBAM1vVXrunkup6ioaIiKjyUzuxmzNnDszMzHDx4kX8/PPPBda16969O8LDwzUeIFVsb+4b+9TQVk+REBERVX5qJ3ZhYWEYNWoUatSoUeh6ds7Oznj27JlGg6OK782Fip+wx46IiEhr1E7sZDKZylIjb0pOToZEIinyPFVNb/bYxUhsIOf0CSIiIq1QO7Fr1KgRwsLCCj0niiIOHTqEpk2baiwwqhzqSCVwMMv/muUKhogzqKbHiIiIiCovtRO7sWPH4o8//sCyZcuQmpoKIC+he/DgAQIDA3HlyhWMGzdOa4FSxSQIQoFlT/ieHRERkXaovY7de++9h4cPH2LBggX45ptvAAADBw6EKIowMDDA3Llz0aNHD60FShVXS3tjHHmcpTx+IqmOlnigx4iIiIgqJ7UTOwCYMmUK3n//fezfvx/379+HQqFA/fr10a9fvwJbjRG98uYECi55QkREpB2lSuwAoG7duvj888+1EQtVUs3tjCEAeLVATrxBNWTBEKaQFXcZERERlRL3ZCetq2ZsAHfr136HEAQ8Y68dERGRxhXbY+fl5VWqmwmCgMuXL79VQFQ5edkb4++U/B66J4bV0UAep8eIiIiIKp9iE7vatWsXuhjxm54/f47IyEi16lLV1NLOGL9GvVQe8z07IiIizSs2sdu3b1+xF8fExGD58uW4cOECDA0N8eGHH2o0OKo8vArsQGELsYi6REREVDalnjwB5PXQLV++HL/88gtkMhmGDBmCyZMno27dupqOjyqJJjZGMJMIyJTnpXMZBqZIFcz1HBUREVHlUqrEjgkdlZWhgYBmdkYIj81Rll01rqe/gIiIiCohISUlpcQRMSZ0pWO1wVrfIZRLk4XJWGowQnlsKObiuCIQnXBRj1ERERFpRuonKfoOofgeOyZ0pElS8aXKsUwwQi+D1Tio+JTJHRERkQYU22Pn5OSE7OxseHp6YtKkSWoldM2aNdNogBURe+wKOo3WCDBYg0zBtMA5czGTyR0REVV45aHHrtjEzsbGJr9iCUuZiKIIQRCQlJSkuegqKCZ2BdUzOI5HQq0iz9cVn+KhopsOIyIiItKs8pDYFTsUu3LlSl3FUalc7ngJbm5u+g6jXPkhJhuDTyQqZ8W+6YPmjZDaXP3/IVasWKFyPGHChDLHpsl7VXZRUVH8busI21q32N66w7bWrmITu2HDhukqDqrkfJ1MsKOrLQYeeY5coeDX7rsbafCsboSAumZ6iI6IiKhyKNM6dkRl4etkgg8zwvCbtH1ecieKwP+G+GUiMDwkCVs7V0ePOkzuSDvCw8MRERFR6uu8vb3h4+OjhYiIiDSLiR3pVH15PD7MCMNe81bwzInGOdPGyh0ochXAsFNJ+K2LLfxrF5xkQfS2fHx8CiRoHIonosrEQN8BUNVTXx6PiWmH4Z/9F75vpzrRJEcBDD2ViJBnWXqKjoiIqOJiYkd69VFDKVa0VU3usuXAByeTcDYmW09RERERVUxM7EjvhrtLsaSNlUpZplzEkJOJOPecyR0REZG6mNhRuTCqsQUWtlZN7l7KRLx/IhERsUzuiIiI1FHqyRMvX77E06dPkZycDFEsuCaZt7e3RgKjqmeshwVkChGzLr9QlmXIRAw6kYg/utuhpb2xHqMjIiIq/9RO7FJTUzF9+nTs3r0bMpmswHnuPEGa8LmnJWQiMPdKfnKXlitiwPEE7Otuh+Z2TO6IiIiKonZiN3HiROzbtw8jR45E+/btYW3NbbNIOya+a4lchYgF19KUZS9yRPQ/loB9PezQ1JbJHZG2cK0/oopN7cTuxIkTCAwMxMKFC7UZDxEAYGqzashVAEtu5Cd3KTki+h9LxIEednqMjKhy41p/RBWb2pMnDA0NNbq327Jly9CpUyfUqVMHLi4uGDx4MO7cuaNSZ+zYsbC2tlb58ff3V6mTnZ2NKVOmoEGDBqhZsyaGDBmCp0+faixO0p8ZzS0x0dNCpSwpW4G+xxIQZ2Cpp6iIiIjKL7V77Pr06YM///wTI0eO1MiDw8LC8PHHH6NFixYQRRELFixAv379EBERARsbG2U9Pz8/rFu3TnlsbKw6DBcUFITDhw9j48aNsLGxwVdffYXBgwfjzJkzkEgkGomVykadIZ03ewKA/CEdQRAw2yuv5+7H2+nK8wlZCmyR+mF4RgjsFWkFrici/avMQ7qa/GyVuZ1IP4pM7JKTk1WOJ06ciBEjRuCzzz7Dxx9/jDp16hSaOL2elBVnz549Ksfr1q2Ds7MzLly4gJ49eyrLTUxM4OjoWOg9UlNTsXXrVqxatQqdOnVS3sfT0xMhISHo0qWLWrGQdhQ2pFNagiDgP62qQSaKWHsnQ1meYWCKjdJOMIICA16W/i9FItKuyjykq8nPVpnbifSjyMSuQYMGEP63Qfsroiji+vXr+O2334q8YVlnxaanp0OhUBSYlBEeHg5XV1dYWVmhXbt2mDVrFuzt7QEA169fR25uLjp37qysX7t2bbi7uyMiIoKJXSUhCAIWtraCTAFs+Ds/ucsyMEEWgF+l7TEwJhu+Tib6C5IqtH8k9thr3gr9Xl7SdyhUgfF7ROVBkYndl19+qcs4MH36dHh6eqJ169bKMn9/f/Tu3Rt169ZFdHQ05s+fjz59+iAkJAQmJiaIi4uDRCKBra2tyr3s7e0RFxdX5LOioqK09jl0+YyqZpQtkOBojL2xql9bmWCI947HY0WTbLS0Vrz1c/hnV7zK1j5/S5ywS+oDuSDBb9L2aHPpvka+R5pQXttaU3GVt8/3NvH8I7HHNmkHyAUJftXw96i8tZMmVMbPpCslzXcoMrGbOXOmxoMpyowZM3DhwgUcPXpUZXh34MCByv/28PBAs2bN4OnpiWPHjqFPnz5F3u/VmnpF0eQkkMJERUVp/RlV1QiLLBw4ngj5G2tjZysETLprhh1dbd+6545/dkWrbN/tk0+ysF1qBvzv74tcwRCT7hpp5Hv0tspzW2sqrvL0+d6mvc/GZGOb1ARyIe/fL5lgiPF3DBHczU4j36Py1E6aUJ6/25WB2rNix48fjytXrhR5/tq1axg/fnypAwgKCsLu3buxf/9+1KtXr9i6TsOAYZgAACAASURBVE5OqFmzJh48eAAAcHBwgFwuR2Jiokq9hIQE5XAtVS6fhaUUSOpeyZSLGBeaXPhJojecjcnGB38mKpO6VzLlIgafSMTZGG5lRyU7G5ONwScSlEndKzkKoP+xBByOztRTZFRVqZ3Y/fLLL8qEqjD//PMPtm7dWqqHT5s2DcHBwdi/fz8aNmxYYv3ExETExMQoJ1M0a9YMRkZGOH36tLLO06dPERkZya3NKqlVHWxgJim8N9ZEkneeSB3jQpORW8RIGX9JIHWNC01Gprzwc3IR+OhUEk49zdJtUFSlqZ3YlSQpKQkmJup3OU+ePBm//fYbNmzYAGtra8TGxiI2Nhbp6XnLWqSnp2PmzJm4ePEiHj16hNDQUAwZMgT29vbo1asXAMDKygofffQRZs+ejZCQENy4cQOjR4+Gh4cH/Pz8NPXRqBzxdTLBjq62MBILbmvXvoaJ3ofPqOIY1tC8yHNmEoG/JJBaVrQrfhcmuQgMOJ6ISedTkF7UbxJEGlTsOnbh4eE4f/688vjw4cOIjo4uUC8lJQXBwcHw8PBQ+8EbNmwAAPTt21elfNq0aQgKCoJEIsGdO3ewfft2pKamwtHRER06dMCmTZtgaZm/OO2CBQsgkUgwYsQIZGVlwdfXF2vXruUadpWYr5MJPswIU76o/Ep4bA5ScxSwMtbY7ytUiZ1+VvRQ6/ftrPlLAqnlWUYR3XVv+DkyA6eeZWFVexu0q8HvFmlPsYndmTNnsGjRIgB5S07s3bsXe/fuLbRu/fr1sWDBArUfnJKSUux5MzOzAmvdFcbU1BRLlizBkiVL1H42VXz15fH4MCMU26S+EIW8RO6lTETwg5f4uJFFCVdTVXclPgfnY3OKPH83JVeH0VBFJVeI+P6v9ALlhqIMfRtY4I+HWVC89k7wwzQ5eh1JwKceFpjZohrMDIue5EdUVsUmduPGjcOwYcMgiiLeeecdLF68GAEBASp1BEGAubk5rKystBoo0Ztc5PHwzb6LM6b5PcWbI19ipLu02FnRVLFoY2X+H9/4x9hQlEEm5P91uPW/LzG9WTUYF/E+JxEAHIrOQlRq/mshgqiAhZiFAS8vYqXfUATGZmNsaDIepOX36okAVt1Ox4knWVjbwQYt7I0LuTNR2RWb2FlaWiqHPa9evQoHBwdIpVKdBEakjuY5/+CsSROI/0vkbiXl4npiLprb8S/LykLTK/M/TJNh3yPVmYoDXl7EPvNWyBaMAADxWQocjs5Cv/pmZYxa97g1lW6JoogVt1S3NHw3Nxr9M/MXJ/Z2NEFoXwfMvfICP93NUKn731QZuh6Kx8R3LTG1qSV/iSCNUXuv2Pr162szDqIysRYz4Sp7jigjJ2XZlsgMJnZUpDW301WGxxzkqWgse4p/chxwycRVWf5zZEaFSuy4NZVunY3JwdUE1SH7dtmRBepJjQywuI01ApzNMC4sGU9eeydPLgLf3UjD0cd5vXfvVDfSetxU+RWZ2PXv3x+CIGDXrl2QSCT/z959hzdVtn8A/54kTZqmI90t0LK6GAUEBFr23iB7OUARRXxVFF5AcKFQEGWoiCjy8hNBoYBSUaZsKGULCJQyShmleyVNmiY5vz8KaU/StEmbWe7PdfXSnHOSPD2cJvd5xn1jxIgR1b4YwzAmzYsjxJLaqm5zArtttxX4rIMX3F1oEQXhyivR4ueUYs62mJJkMADaq25xAruj6SW4VaBGUy+T73/JU2SVXm9dROlDBGgLjR7fvZ4IJ58LwPzTBdiodw1eyS1Fzz8yMe8ZT7zVkuYIk9ox+s2nUCigUCjAsqzusVKprPJHoaBEjMT2ItTpCBKXX8oyNYsdd+haJIb+lyyHXF3eXRck5iG69B4AIFBbiBB1Nuf4DTe4w2eEAMDFbBUO6q2q7lJyvdrneQp5+LqLN7b08UWgmPv1W6oFFp4rxIC/spDNc8cdvj9WeAzCHT4l2yfmMXorumfPniofE+Io+GAxKdwNX14qnxD/f8lyvBhB80FJuRINi7VXuYsmXmvuDuZReW6xdqrbuCfw0z3elFKM+c94wtWJVy9SYXrLW3WZex3FBAoRWpBj5GhD/UNckfhcAP6bVIBtt7k3oWezSnHevR8AQPu4fvGo9BJKv0NMRmMMpE54IULCCezOZZficm4pomnOCnks/nYxMhTlQZxEwGBKpAQbDpYf06L0Hg4LOyJfVdarl1uixR93FRjT1HgyY0d2h++PTZIuUDMCpw4QHGlhyK0Cw8U3M6M9cPWGea/j48rHuu4+GBKqwLuJ+cgtKb82tRXyc5YyAozbn+MQ9YuJczA5sBs4cCA6d+6MmJgYdOjQgZMkmBB7a+QhQM96Ik7S2Z+S5VgWU3VWePJ0YFkWq/VSnLwQ4QapiDsc5gItJoS5Yc3V8iHY9clypwzs/n6gxE8V8jyWMgKM2peN5TFSPB/u5lQpgRxpYcjXV4o4i2+aewvQt4EIV2v4es81FiM2SIi3T+Rj973KS489qV9MwR0xhcmBnVAoxHfffYcvv/wSfD4fLVu2RGxsLGJiYhAbGwtfX19rtpOQar0UIeEEdltuF+OTZz3hJnDcRRSO1BNRl/39oATX8svzjfEYYHrzyiepT46UcAK7xAwVrueXIkrqPL2/Rx4qMXZ/ji6oe6JUC/znRD4+PFOAviGu6BEsQo96rqgneToq9dT27+1RsQabb3IXPsyM9qh1kBwg5mNzbx80/SUduSVspcc8qV98eWxQrd6L1H0mB3Y7d+6ERqPB+fPncfLkSZw8eRKbN2/GmjVrwDAMwsPD0blzZyxfvtya7SXEqEGhrvBz5SFbWTakUahi8fsdBSaGO+5cO0fqiajLvtbrrXuukRgNPSr/+IuUuqBzkBAnHpVXpvjfdTmWdnKe3t9JB3OhqTw+AADkqVhsvaXA1ltlQ4qRXgJ0rydCj3oidAkSwbOOluWr7d/bd1dlUFUo9xrqzscIC6XEYRgGG3r6Yuz+bCgrqVJG9YuJqcz66+Xz+Xj22Wfx9ttvY8uWLbh16xa+/fZbhIWF4caNG9iwYYOVmklI9YR8BhPDuENmP90oNnI0eVr8k6PCkXTuCsb/VJNSYkok92bg11vFUKiriJQcyNdXiiArNa+tyQVqfH9Njol/56Lx5nT0/zMLcRcKkZhRgtLH445P+yrNApUW669zV0n/p6U7BDzLDWl3CxZha18/gOX++wl5oGFYYjKzFk9oNBpcuHBB12OXlJSEgoICBAUFYeTIkTQ0ROzuxQg3Tu3GU5kqXMsrRTNvyw6j0RCq89CfW9c5SFhtAuuhDcXwFRUg5/GE9gIVi9/uFDt07y8AxN8qxgdnjOdS4zGAkAGUWqOHQMMCSZkqJGWqsPRiEdwFDKSSnnjI94aW4WOTpAsGpinQP8S1RkOQzrpKd/11OQorBMx+rjxMCrf83MtuwSK0KL2Hf4Whum2xgUIK6ojJTA7shg8fjrNnz0KhUKBRo0aIjY3FZ599hs6dO6NRo0ZWbCIhpgvzckGXICGOVxhG++mGHHEdLTuMRkOozuG+TI3tejkNq+utAwARn8GkcO5Nwv+S5brAzlKBvSVvEA4/VOKN43mcbQJWDYCBmuHDhVVj+4AgdAoQ4myWCofTS3DkYQnOZqmqHLaVqVnIKqSAUTMCjP87FzwAvq48+Ih48K7w4yPiwceVB2/h4/9W2J7CD8RWSSxKLbRK11ZBokLNYo1eqpzXm7tbbf5uB9VNTmB3MacUai1r0d5BUneZHNgdPXoUPB4PI0aMwIgRIxAbGwsfHx9rto2QGpkcKeEEdr/eKsZH7bycOhcZqZnvrso5QUuElwD9Gria9NzJkRJOYHcmqzyFjqUCe0u9zj85Kjz/dy5KK/TEufCACYUnwIDVBT/dgicBAGKDRIgNEuH9Z8qGGE88KsHhh2U/NyoUta+KFmU1dbOq6v7T595N97+ljADD92SjhbcA9d0FcBcwcHdhIHFh4O7Ce/yYB4kLA4mAgYcLA4kLr+wYAYNrgmDscOtksSCxKr/cLEZmhVQ57gIGU6Os13vbQJMLsbYECl7Z75OvYnE6U4XYIOq1I9UzObDbvn27bgh26tSpUKlUiIyMRGxsrO4nODi4+hcixMqGhIrhLcpH3uPVZXklrFPnIiM1U6DS4v/0KkfMaOEOnonDh008BehRT4TDFVZab0iW40sHS6GTWqTGmP05kOnNAVzT1Rv3EzIBADOL/jL6fC8hD4NCxRgUWrYI4IFcg8MPlTjysATbbitgRthmNhbAlTw1ruSZFkxySLro/teaud7UWhZfXeGWD5sSJTFIlWNJfLAIVz/CJWFD3bY995QU2BGTmHxl9urVCwsWLMBff/2FtLQ07Nq1C6NHj8bdu3cxc+ZMtGjRAm3btrVmWwkxiauAwXi9II5KQz19fkqWo6jCnCh/Vx7GmRnc6y+i2HqrGLJSa4Y65slRajBqXzanNwkAPn3WE6Ob1OxGpr6Ej0nhEnzf3Qe/9/eFq5NkQnmS6+2o3kKZ2tqZqkBqUfkyVSEPeKOF9eu5Rqgfch7vNZLjjhB9Nao8IRQK4evrCx8fH0ilUkgkEhQVFSE1NdXCzSOkZl7Sy0V24pEKNwtKEeblPLnISM2Vall8d5UbzL/aTGL2cPygUFcEinm6ihVFpWV1iB2hXJ28VItxB3Jwq5CbG2NGC3f8p6VlEsh3q+eKrX39MGr3I5Qy5V8XYj6Djb180MLHBblKLXJLtMir8JNbUr4tt0SLBzI10uTWD4gtneuNZVms1CsfNq6pG4LdrB/tNi3NAI/VQvs4F2FygRp3CtVo7OkcBaMsOX/UEee0OjKTr5BLly7hxIkTOHnyJE6dOoWcnBywLIuQkBB0795dNxxLiCOIkrqgU4AQpzIrLqIoxsJnvezYKmIrv91R4EFxecAj5jN4pQZzolx4DJ7Xq0O8/rr96xCrtSxePpyLs1mlnO2jm4jx6bOeFn2vbsEiTJQfx2ZJF5QyAriwamzpG6Qb8jQ1yDmaXmIQIIr4wIJnPNHUSwBZKQt5KQtZqbZswUYpC3mpFnI1i6LH/y9Ts8hSaHDfSJDIAFjayXJ/4wcfluBybvk5ZgC8FW393joAEKMUoZpspAoCdNv23FNiug16Cy3BkgvMHG1Oq6MzObDr3r07ACAyMhJDhgzRBXL169e3WuMIqY2XIiWcwG7zzWIsaOsJIZ8WUdiCve6OWZY1SEg8KdwNvjUcU3wxQoLll2R4Mqh7MacUF7JV1aZMsRaWZfHOyXzsvc8dcuwWLMLqLt4mzyE0R2NNFibKjxsswjBHZQFifIUA0RxH00swcvcjqBnuVxgLYOnFIsQGiiwyB27FJe7cuqENXRFuw17/iNKHnMBu733nCeyI/Zgc2P3000/o3LkzrYQlTmN4I1fMSWJQ+Lige7ZSi7/SlHjOQpniSdXsdXd8NN2wl6U2c6IaegjQp74I+x+UB1L/S5bbLbBbfKEIP6dwE2+39HHBz718ILLiTUtjTVaVizBMfY3aBohAWZA4SX4cmyRdDIK7f3JKMXJfNn7r7wevWlTQOJOp4qyuB4B3om1bIz1SnY59aKN7fOJRCQpV2jpbGYRYhsmB3dChQ63ZDkIszk3Aw7gmbvihQrb4DTfkdTawe1rmj1RHv7duSENXNKnlvKTJkRJOYLf9tgKfPutVq8ChJtZfl2PZP9xepBB3Prb19XWaL3tLBIhPXmeS/Dh+c3sWYlaFDH55ua3z2aUYsy8H2/v7wsOlZudl5WXuee4eLEJbf9sG875aGXw1RcjhlwWUpVrg0MMSDG9UNz/DiGU4xyxMQmroxUgJJ7A7/LAEqUVqNDJSJ9SZPS3zR6pyNa8UBx6YVz7MFP1DXFHPjYeHxWVzu+RqFvG3ijG1me2GxXbdVWDWqXzONh8RDzv6+SLIBpP5HVFjTRbeLfoLKvBxKGI8EjPKe9hOZ6kwdn8O4vv6wt3M4C45vxR/pnFXoc5sZZ8h0Aj1QyTyI3WPd6cpKLAjVXKOWzxCaijaxwXt/LhzYjZS6pM66xu93rqOAUJ0CKh97i8Bj8ELegsm/pcsB8vapn7sqYwSTD2SC22FtxPzGWzp42vTOV+OSggNtvb1RccAbo9aYoYK4w/koFht3orcr/Suo9a+Luhup5JeEaXpnMf775dAo3WOusXEPiiwI3XeS3q5yH5OKdYVNid1R3qxBvG3uXPP3rRAb90TL0ZIULGi0795aoNVqdZwPb8U4w/kQFkhqwmPAdb38MazAfaZ5+eIPFx4iO/ra3Ajd/yRChMO5EKhNu1v/r5Mja23uNfRzGiPGtXFtYRQTTY8heXvnVOixdksVRXPIE87CuxInTeysRjuFfKXZSi0lOyzDvr+qoxTUquJBx+DQkwrH2aK+hI++uuVI1ufbN3e3wJGjNH7cpCv4gYlK2OlGBhKw3H6PIU8bO/nhza+3ODuSHoJnj+YA6UJwd23lVxHQxta7joyFx8s+tbnvv/e+/T5RYyjwI7Uee4uPIxuwv0S/D8rfyE7kjt8f6zwGIQ7fH97N8Vqikq1BkHWjJbu4Fu4aLp+JYrf7hQjv8TyiXfv8P2x3GMw/ifpgftybgLiec942D2PniOTinj4rb8fon24wd3fD0rw0qEclGiMB3fFjBD/l8ztrXs72sPi15G5+uvdoOxJo8COGGdyYJeZmYl//vmHsy0lJQWzZs3C1KlTsXv3bos3jhBLmaz3hXzgQQnuyWpQn9LJ3OH7Y7OkCwp4EmyWdLF4uSVH8fONYhRU6NXyEfEwIczytYF71xchxL18oYJSU1Yg3pLu8P2xSdIFhTw35PO5Q8mTI9zw39a2TbnhjLxFPPze3xfNvbmLpPbeL8GUw7lGp2KcFjaFvEKvXpCYh/FWuI7M1beBK2cawNV8Ne4W1f3PL1IzJgd2c+bMwdy5c3WP8/LyMGjQIGzYsAF79uzBpEmTsG/fPqs0kpDaauMnRKsKd/AsgI0plv1CdjR/pSmwUdJVl+n/SaH0uhbcacBgzVXuZPdXoiRwE1h+QILPY/CSXm/ZBgsuojiaXlJpbjagrLzZFzFSu831cja+rnzs7O+HKCn3XP6VpsQrlQR3KvCRJAznbHujhbtVcwOaylvEM1gYso+GY4kRJud8OHPmDCZPnqx7vGXLFuTl5eHw4cOIiIjAsGHDsGrVKvTr188a7SSk1iZHSvBuYnm6iE03ijGnjvV+sCyL449U+PKfQhxOVwEMNw3Gk0LpW/r6Gs3472z58K651EearHy4UsQvqwtrLc+Hu2HJhUI86dhJLlBz0mzU1NH0EozZl11pUMcD8HKkBAI7Dwk6G39xWXA3ZE82UgrKe7gS7irx2tE8fN+tQu47YWMoeOV/E55CxqCn354GhrhyrrM995R41YbpdojzMDmwy87ORlBQeWHlvXv3IiYmBi1btgQAjB49GosXL7Z8CwmxkNFNxFhwpgDFj7+RHxRrDHKeOav0Yg02pxTj5xQ57hRpqjy2ukLpzpQPjwVwUhjJ2Ta+qRsCxNbL6xbkxsegUFck3C3vMflfshwtavGa+SVaTDiQA2PT9bQAZp7Mt1hx+6dJoBsfCQP8MGR3Fm4Vlv9t7LijgIABogCwYJAoiuA8b2qUxKGSPvcPccWHZwt1j4+ll0BWqtXl6HO2GzJn5ujn2uTATiqVIjMzEwCgUCiQlJSE2bNn6/YzDIOSkrrxJUnqJk8hDyMbiznlmDYky9HRjm2qjVIti733lNiYUoz995UwNYOLmM9gdVfv6g90Anf5fngo4JY5nGGDWppTIiWcwG5nqgKNGCEkrHk9dyzL4vdUBeYmFXDmdumrS/9m9hDsxkfCAH8M3p2F1Ao3PltvK9BG3B6N1Fko4JX3zon4wOvNHas3LMJLgEYefF37VY+rUAxtWLYwzJluyJydo59rk29HOnTogPXr12P37t1YsGABlEolBg4cqNt/8+ZNTo8eIY5If37UvvtKFDL2S2VQEzcLSvHRmQK02PoIzx/Mxd57VQR1lcz9WtrRq0aF1x3RSRG3t25AiCsipNZP2Nu9ngiNPcp7BVVa4KJLI7NeI02mxvgDOZhyOA8ZCuMra8V8psqhc2Ka+pKynruKi18A4KKwMRLE7Tjbng+XWLXXtyYYhsEAvdWxlLaJVMbkwO7jjz8Gj8fDxIkTsX79ekydOhVRUVEAAI1Gg4SEBHTu3NlqDSXEEtr7u6B5hcnUGha4IGxsxxZVTj9FibxUi80pcgz8Kwvtd2Ri1RUZMo0EA0IeMKqxGL/398Uk+TGD4O7XW8U2q5hgTRdcGuKGSz3ONkuUDzMFjzGcf3VO2ASmJD5Ra1ms/leGmN8ysfe+4SiHp6YYfLasV8aFVVNQZ0Gh7gL8McAPDSTcoE1bYS4qA9tdR+bSD+z23VdCWwf+lollmTwU26RJE5w9exZXr16Fp6cnmjRpotsnl8uxePFitG7d2iqNJMRSGIbBS5ESzEkq0G07L2yMriXXHCap45MUJaWMAJskXZFxIBsnH6lQWFr1B3hzbwFejJBgbBMxfFzLvqguajLQU3kFh8TRuuNOZqiw444Co5rYP41DTd3h+yNB3J6zra2fC2IDbVeJYWKYGz47X6hLZpvL90AqPwBNNJlGn3MxW4W3T+bjnxzDihUuPGBmKw+4HNmO+3xf/O72LJ4rPoNuwZOs9Ss8lRp5CJAwwA+Dd2chvdgwFOcxQJpM45D1pGMDRfBwYVD0+LMgU6HFhexStPOnCiSknFnfZUKhEG3atOEEdQDg6emJ4cOHo1GjRia/1vLly9GzZ0+EhISgadOmGDduHK5evco5hmVZxMXFISoqCkFBQRg8eDCuXbvGOSY/Px/Tpk1DaGgoQkNDMW3aNOTncwtlE1LRuKZucK1ww17Ak+C2INB+DargaHqJLqgDADXDx557JUaDOg8XBlMi3XBwiD9ODA/A683ddUHdE91U1xGmV2/ygzMFkJdaPrGuLZSlBOkKluF+fPWpL7JpKhB/MR/DGnITX58VNqn0WHmpFgtOF6DXrqxKg7qYQCGODQ/A+894wgVaNNZkYWbRX2isybJK2592TTwF+KidZ6X7NCwcNi2QkM+gV31u7+0eGo4lesy6JSkqKsKPP/6Io0ePIisrCytXrkS7du2Ql5eHTZs2YdCgQQZBnzHHjx/HK6+8grZt24JlWSxevBjPPfcckpKS4O1dNkl41apVWL16NVavXo3w8HB8/vnnGDFiBM6cOQMPj7I0FVOnTsX9+/cRHx8PhmHw1ltv4bXXXsOWLVvMPBXkaSEV8TC8kRhbbil0284JmyBMnWHHVpUFLOP25+iCuqrEBArxQrgbhjcSQ+JS9f0ZA2CA8iK+FQRC+zgYelisxfJLRfignZclmm4ze9IUeP5gLtSM4fynr6/I0CXY1abDlpMjJdh+p/w6uu5SHzKlCO5seVCw754S753Kxz2Z4WplTyGDhe298GKEG3gOkp/OlBV/+hPFAcMVf5Z6HWtZdL7I6L7qVo7b04AQMXamlgdze+4pMb9t5UEqeTqZHNg9evQIgwYNQlpaGho1aoTbt29DJitLCurt7Y3169fj/v37WLJkiUmvt2PHDs7jtWvXIjQ0FKdOncLAgQPBsizWrFmDd955B8OHDwcArFmzBuHh4di2bRumTJmC5ORkHDhwAHv27EHHjmVrG1esWIGBAwciJSUF4eHhBu9LCFC2iKJiYJcsqAcZw/1CtrUZx/KgqKLcEQ9lc3+ej3BDuJd5CwT8tDJ0Ut3ASVGUbtvXV2R4PlyCxp6ON+Skj2VZ7LijwKtH8ozOY1NoYPMv4y5BQoR7CXQ50rQMDxeEjdG15DoyFRrMSyrgBH4VjWgkRlxHLwS5WWaSvqUCqcpW/NWEpV7HWlZ39ca4/TmV/s058irkvg1EYFCW6gcALueW4oFcg/oSx1rsQezH5E/0Dz/8EHl5eTh06BDq1auHsLAwzv7BgwfjwIEDNW6ITCaDVquFVCoFANy9excZGRno1auX7hixWIzY2FgkJSVhypQpOH36NNzd3XVBHQB06tQJEokESUlJRgO7lJSUGrfTVLZ4D1LO3PPtxwKNxK5IVZT1YGkZHr5xH4BxxSct9m9n7uu835iHN6+IoIFhz40Lw2JF8xJ0lBYDmUCK8WlcRnVXXsMNjwhkq8p+Z5UWeOvQAyxvbn5yXVueo9RiBp/fEuJMQdVfXK48Fu83lte6beY+f4iPACsKyuc4HRS1QDGE+DI+HUUaw3/LIJEWc5qq0MWnGEUPcmC838i89vj5+WHw4MHmNN3s93Bk5v4OwQCWN+PhrcsCTi+5K4/F8mZKBMvSUJvTYslzqv9aLT1EuFxU/vew8VwaRgVXX2LM0f6drXmO6srrVKa6TiuTA7u///4br732GqKjo5Gbm2uwv3Hjxnjw4IH5LXxs7ty5iI6ORocOHQAAGRllw2L+/tzC5f7+/khPL5svlJmZCV9fX868GoZh4Ofnp8u5Vxlr9+RRb6Ht1eR8T1UVYcGZ8oSfSp4QmyVdMMo9yCLDeea2ic0vhfaK4XVblu7Cr9ZtEkGNRZ188drRPN22Y7kCpIoD0beBeSlfLHV9V/U6xWotvvinCF9fkaG66YCWOkfVtakyb4Vq8W1aOkoej7SyDA+JrpGA3sgrjwGmN3fHvGc8dEllrdGep1VNzlM4gFOnNunmtbqwamztZ5+/f3Nea4SiCJfPlX92XSjxwNxwP5u2yRKseY7qyuvUhMmfLnK5vMo8dcXFxdBoqs54b8z777+PU6dOYePGjeDzuXfl+pOhWZY1COT06R9DSGUmhLlBoHeZ2LOe6ifnCqE/KGTpdBdjm4gNak7OTcqHqoohYFtjWRZ/3lWg42+ZWH7JMKhz4QHRqrsQsGU9FPZOCeIt4iGmmtW4rXxccHCIPxZ18DIrqCPW11iTTYLYPgAAIABJREFUhYny4/DSyjFRftwpUsv017sRO5JegmK1cy6Gqg39tFCkjMmfME2aNMGFCxeM7j948CCaN29udgPmzZuH7du3IyEhgbOqNjCwbJWifs9bdna2rhcvICAA2dnZnJxcLMsiJyfHoKePEH3/5qkNAimgvJ6qLYO7Uxkl+DONu7rNTau0+BcNwzBY2tGLM9h7q1CDNVdlFnuP2kgtKkvaO+lgbqWLDXrUE+HkcwEYpTiNSQ7yZXw0vQSJj4wPZ78c6YaDQ/3Rxo9SUjgqZ1uF3NxbwEm0rNQARx463ipea3qSFqqAJ8FmSReHWMXsKIGmyYHdiy++iF9++QXbtm3TBVIMw0CpVOLjjz/G4cOHMWXKFLPefM6cOdi2bRsSEhIQEcGt09ewYUMEBgbi0KFDum1KpRKJiYm6OXUdOnSATCbD6dOndcecPn0acrmcM++OkMrMOJYHYx1VT1bF2QLLsvioQg1IAGigzsHsoj+s8kXTxk+IyZHcHHbLLhYhvbhmPe6WUKJh8fnFQnT6LaPSpL3Bbjys7+6N3/r56haOOMqX8YxjeUZrvALA/vslEPBoBIFYDsMwGKDXa/c0pT05ml6CjZKuurmR9hxpeeIO3x+bHCTQNDmwe/311zFu3Di8+uqraNu2LQDg1VdfRUhICFatWoVXXnkFEydONPmNZ82ahc2bN2PdunWQSqXIyMhARkaGbqUtwzCYPn06Vq5ciYSEBFy9ehVvvPEGJBIJRo8eDQCIjIxEnz59MHPmTJw5cwanT5/GzJkz0b9/f4ebS0Acz+qu3jBWNciVD5utivszTYmkTG6PT1/lpUqWUFjOgraekArL30GmZvHR2YIqnmE9Bx8oEft7BhZfKIJSL7bkM2W1X0+PDMTIJm4OOcWi7DqqvF2OvLqSOLcBoYblxepCRZnqHE0vwah92ZxqIcCTkZZsuwRUv98pxk+SblA7SKBp1mSPr7/+Grt27cLYsWPRs2dPNGvWDM8//zwSEhKwbNkys9543bp1KCoqwvDhwxEZGan7+frrr3XHvP3223jjjTcwe/Zs9OzZE48ePcKOHTt0OewA4IcffkDLli0xcuRIjBo1Ci1btsTatWvNagt5OnULFmFLXz/dXK2KOgQIbTK8p9ayWHiO21sXUfoQDTXZVn1fX1e+Qe6rrbcUOJVh/Q+iJ8MVVwQN8NKhHIzcl4NbhYa9hZ0ChDgyLACLOnjBw4HnpZVdR75w0buOqMYrsabOgSJIKkwSfqTQVpr8uq55+XCu0cVUCg3w6hHDxZ3WomVZzEvKx+TDeQYJ0+0xpecJsxNYde7c2SI1YU2pDsEwDObNm4d58+YZPcbb2xvff/99rdtDnk7dgkWYJD+OjZJuuuS9AHA0XYWDD5ToVd+81aLm2pRSjBsF5QEBjwH6KC9b9T2fmBIpwYZkOf7NK3//2acKcHioP/hWGjqsWC5tm1snINVw+MjPlYdP2ntiQpjjJO2tTrdgESbKj3NWV27pa5nVlYRUxlXAoGc9EXalcZMV1+W5nGezVChUVb1IJEuhxWfnCjG7jQdERnrSLeFqXineOZGP01nG59faK9G1ybfB/v7+2L59u9H9v//+Oy1YIE6psSYLk+THwGO5vUbvJuZDobbe0Ia8VIu4C9zeuolhbgjQFhp5hmUJeAyWdpJytl3OLcVPN4qt8n5PSoHpcobpBW0MgFeiJDg7MhCTwiVOE9Q94YyrK4lz6x+iNxx7v+7Os7tTWLawqpq4DloAX1wqQveETJytIuiqKYWaxafnCtBtZ2aVQR1gv6kYJgd2arUaWq3xM1rdfkIcWVNNJl6RHwIqzFFJLdLgi3+sF2StuSrHI0X534wrH5j3jG1LA3UJEmFUY26900/PFyKvqtUANXDkoRKj9mVXWgoMAMI8+fh7iD++jJFCKnLcYdfqOMqCDvJ06Ke3gOJCdqldF0FZS45Sg9H7s5Gt5H4u8R/fjDOs4efV9Xw1+v2ZhfmnCyyWCubIwxJ0/j0DX16SweCeX29+oz2nYpj1CVrVxOXz58/Dy8u56k4SUlF9TR46qG5ytq26LMO1PMvPW8lWarDqMrfmwPTm7nYpC7TwWS+4VZirk1uixaLzlgtosxQajDuQU2WSYaUGaOtfd4eQCLGGQDc+2vlxywvur2O9dgo1i4l/5xrMw+2ivIbn5cfgpZXjRflRbO7tgyAxN6TRssDqf2Xo/Hsmjj+q+Vy3HKUG04/lYfjebNwuMgycB4a4YnTxKd08W3vn1qwysFu7di3atWuHdu3aAQAWLFige1zxJywsDN999x369u1rk0YTYi29lFcQ7Fb+Z6FmgZkn86G18GqzL/4pQlFp+Wt6ixi8He1RxTOsp76Ej/dacd97fbIcl3NrH9AefqhEl52ZBqtdKxLzGXxLK0cJqRH94djdaXUnsNOyLF47mmuQNWBMEzF6l1zh9JAPChXj1IhAPB/uZvA6d4o0GLI7G7MS81FUXRmbCliWxa83i9FhRyZ+uWk4RSVIzMNPPX2wubcPWqrvO8xUjCoDOy8vL4SEhCAkJAQA4OPjo3v85Cc0NBQdO3bE+++/jy+//NImjSbEWlyhxpKO3HlnpzJV+DnFcvPOUovU+PG6nLPtvVYedh2CfLOlOxp7lPcWalngv6fya5w+oVTL4uOzBRixNwcZCuMfpLRylJDaGRBiWIXCmnODbemDM4VIuMsNVLsECfFNF+9K00FJRTx808UbO/r5chI4P7Huuhwxv2Xi4IPqg987hWqM2JeD14/lIUdvagoDYGqUBEkjAzGskVg3mukoUzGqXBU7fvx4jB8/HgAwcOBAzJkzBz169LBFuwixm2ENXdE/xBV7KyT8/OBMAQaEuCLAWOI7M3x2vpAzLBnizserzdxr/bq1IeIziOvohfEHylMFJGaosP2OAqObGN4BVyW1SI1XDufiXLZhj5+/pgB5PAnUtHKUEIuI9nFBfTc+HjyeW1esZnH8UYnZ9Z8dzXdXZVj9L7ciTpRUgJ97+Va72rVXfVecfC4AC88W4ge9m+j7cg1G7svBpHA3LHrWcPpYqZbFN1dkWHqxsNKRhmZSAVbGStEx0HE/t0zuIti9ezcFdeSpwDAMlnXizjsrULFYcLr2CXwvZquw7baCs21BW0+rLss3Vf8Gruhbn/th9eGZAsjMGLrYdrsYXXdmGgR1DIDZrT3wumy/w5QCI6QuYBjGYDjW2atQ/HFXgXlJ3M/bIDEP8X19TR7Z8HDhYVmMFH8O9EMTD8Mb8k0pxej0WwauC+rpcmsmCZuie0ImPjlnGNSJ+MAHbT1xZFiAQwd1gJmLJ7RaLX755RdMmTIFvXv3Ru/evTFlyhT8+uuvtCKW1Cmh7gLMe4Y772zrbQUOmdCFX5WP9ZIRt/RxwZgmYiNH2xbDlPXaVcwF/LBYi+WXiow/6TFZqRYzjudh6pE8ztxBAKjnxkPCAD/Mb+sJPliHGa4gpK4wSHvixFUoTmeW4NUjuZw63u6CsikbIe5mp95F5yARjj8XgP+0dId+es5HCi1+lXTGT5JuKOBJsNv1GVzNM0xY3y1YhJPDA/Feaw8IHeAmvDomB3ZFRUUYOHAgZsyYgf3790OhUEChUGD//v144403MGjQIF05MELqgunN3dHSh7virDa57Q4+UOKwXqHuT9p7OlS+tjAvF8xowR0W/uaKDDk8idHn/JOjQo+ELGyqZB7ioFBXHB8egK7UM0eI1XQLFnHK2t2Xa3ClkgDF0d0qUGP8gVxObxmfATb09EFr35qvmncT8PDps17YN9gfUVLD4FBXNULvs9hHxMO3XaTY2d8XTb3MDyrtxeTAbtGiRThz5gwWLlyIW7du4eTJkzh58iRu3bqFTz/9FGfOnMGiRYus2VZCbErAY7AyVsqZpHunSIMvTejB0qdlWXx0lttb1z1YhF71HC/gea+1BydtgEoL7HVtY3Acy7JY868MfXdl4WYh90tExAeWdfLCpl4+8HG1fQoXQp4mYgGD7nqfJXudbDg2W6nBmP3ZyNVbqLAiVoo+Fpov2N6/rEzhrNYe1QY/PeoJcXpkACaGSxyyRnVVTA7s/vjjD0yePBlvvvkmRKLyC0gkEmHGjBl46aWXkJCQYJVGEmIv7f2FmBrF7a1adbkI1/PNSwUSf1thkD7kk/aeDvmB4eHCw0K9ScU3XOrhhqC8LE62UoPxB3Iw73SBQSb4SC8B/h4SgFebuTvk70dIXaS/OnbPPYWRIx1PsVqLCQdyDHLEzW7tgRcjjI8W1ISIz2BBW0/4i6sOf24VaODnpDelJgd22dnZaNGihdH9LVq0QHa2dQuXE2IPC9p5cnqwSrXm5bZTqll8ppfwd1RjsUPXdBzTRIxOAdz2/eHaDis8BuGkMBxdfs/E3vuGCT9finDDwaH+BkPYhBDr0q9CcS6rFDLG8UYE9Gm0LKYdycOZLO6N7/imYrz/jPVye/7Q3QfGkhzYqxSYpZgc2DVo0ABHjhwxuv/IkSNo0KCBRRpFiCPxEvIMaqomZpie2+7HZDnuycrvRF14wAftbFs6zFwMw2BpJy/OMHQR3w0FPAn2ubbmlEIDAE8hg//18Maqzt6QuDhvSTBCnFU9CR+tfctvqFgAKYJg+zXIBCzL4v3TBdill1S5e7AIX3X2tmqPf7dgEbb09dNVi3iiLuTWNPkTeNKkSfjjjz/wn//8Bzdu3IBGo4FGo8GNGzfw1ltvYdeuXXj++eet2VZC7GZYQ1f0a2CYCiRLUXVdxvwSrUG92ZcjJWjk4fgTcVv7CjElspJhEL0P2w7+QhwbFoARjc3Ld0cIsSz94dgbLo4d2H17VY6117h55ppLBfipl49NVp92CxZhovy4w5QCsxSTv13eeecd3LlzBz///DM2bdoEHq8sJtRqtWBZFi+88ALeeecdqzWUEHsqy20nxbHfMqHQlA3B5qtYLDhTgLXdfIw+b9XlIuSVlA/ZergwmN3GPqXDaqJ3fSHWJ8uN7h/bRIzVXb3hop9HwIISExORlJRU5TErV6402NaxY0fExMRYq1mEOJwBIa5YerF8cdctQSDU4EEAx0tH9q+gPrbp5Qat58bD1r6+8BLarte/sSYLE+XH8bvbs3iu+Ay6BU+y2Xtbi8mBHY/Hw9dff41p06Zh7969SEtLAwCEhoaif//+iI6OtlojydPNUb7YG3qU5bb7sMLq1i23FJgYpkT3eoarth7INVhzlZsC6O1oD6eakDs3qbDK/YkZKqsGdQAQExNjsX9HR7mWCLGG1r4uCBTzdGX8VIwLUgX+CFNnmPwapvyNVMbUv5E7fH9sc+sIBSPk5KrzcGGwpa8fGtQgV11tPcmtWVdUeQavXbuGZs2acbZFR0dTEEdsqqov9pSUFISHh9usLdNbuGPLrWL8WyFH1MyT+Tj5XKDBsUsucLOXB4l5mN7csiu8rG11V2+M25+NykacnXGCsSWDRGI7FJCbhve4CsVPN8rn/94QBJsV2FX2N6J/bms6OneH749Nki5QM9zQQ8AAP/X0QTQturKIKgO72NhYREdHY+zYsRg9ejSCgoKqOpyQOs+Fx2BlrDf6/Zmlu9u8/Ti3XcWQLZPngU03uYsr5j7j6XQLC55MMB65+xHnw7guTDAmzqMuB+SWDlr7N9AL7FzqYaDyIuydeOhoekmlQR0ArOosRc/6zl3b1pFUGdhNnz4dv/32Gz744AN8/PHH6Nq1K8aOHYuhQ4fC3d2+RcsJsZdnA4R4OUqCHysUl155uQjTeB7w15bNbzng2graCuMMEV4CPB/unIsLugWLMEl+HJslXVDKCB5PMA6ioI44HUfs+bN00NqjnggiPlDyuJc9nydBFs8TAdqqp1VY09H0Eozbn1NpUCdgUKNSYcS4Ks/m4sWLsWjRIhw5cgRbt27Frl27cPjwYbz33nsYNGgQxo4di969e4PPd545Q4RYwgdtPbHrrkI3l6VUC+wSt8Nk+WGk8f1ww6Ue5/gP23lCYOW5aNZUFycYOwJHDDTqMkea1mEtEhceugWJsP9BeZ7JZJdgBJTYL7CbcSxPt+hMn5ot2395LI0IWkq1YTLDMOjRowd69OiBFStWYPfu3di6dSv++OMP7NixAz4+Phg5ciTGjh2L9u3b26LNhNidVMTDko5emHI4T7ftrsAfF1wa4bywCefYjgFCDA51/mGGujbB2BE8DYEGsb0Boa6cwO6wqAUaqHPt1p7VXb0xcm82Kiuz7YxzdR2dWRN+RCIRnnvuOWzevBnJyclYvnw5IiIisG7dOvTr1w/t2rWzVjsJcTjPNRKjb33ucOQucVvcF/hytjlq6TBCSN2kX4VCw/CxSdIFR9MNq8XYQhtfFwgrGdijubrWUeOZ3FKpFJMnT8Ynn3yCAQMGgGVZ3Llzx5JtI8ShMQyDZTFSiCsk0tQy3E+vQaGu6BRIH1qEENsJcRegkTv3613NCDBuf45dgrv/JctRzC3wAEEdSQbsiGo0YzElJQXx8fHYtm0bUlNTdcO148aNs3T7CHFojTwEmNPGAx+fq3z+Sl0YgiWEcDn63Mij6SW4LzdMSqzQsBi3P8emAZVSzWL1v9x8niJWhfHykybP1XX08+1oTA7sHj16hO3btyM+Ph6XLl0Cy7Jo2bIlFi5ciDFjxiAw0DCPFyFPg9a+LmAAVDY1eFZiAULcBUY/ROkDixDn4+jpV2Ycy6t0PhtQFtzZcrHCpptyZFaoLS1kS/F20V9wY0tNfg1HP9+OpsrArrCwEAkJCYiPj8eJEyeg0WhQv359vP322xg3bhyioqJs1U5CHNZbJ/IrDeqA6j9E6QOLEGJpVScWh80WK6i1LL66zO2ta6+6bVZQR8xXZWAXEREBlUoFd3d3TJgwAWPHjkXXrl1t1TZCnELZh2hOpcv5acUXIcTWniQWH7E7Axq9eb/vtfKw2TDsjjsK3JWVR5d8VoNOJTds8t5PsyoDu549e2LcuHEYOHAgRCKa4EhIZco+RH0xavcjlFJ1BkKIA+gWLMLz8mP4SdINLFO+kGLrbQXeaeVh9byaWpbFyktFnG1tVKnwZJVWfd+qPC1TX6oM7H755RdbtYMQp9YtWISJVJ2BEOJAGmuyMERxDn+I2wOPUy7dKFBj441iTImybt3qPfeUuJpfvhSWxwCdVclWfc/qPC1TX5yrcCUhDuxJdQYvrRwT5ccpqCOE2F270lS0KU3lbIu7WAhZqeGqWUthWRYr9HrrRjYWw0crN/IMYkkU2BFiQU+qMzTWZNm7KYQQAgDoqfwXAra89yxTocXXV2RVPKN2jj9S4UwWd4HEO9EeVns/wkWVdwkhxExPy1wdUjd4sQrElKTgmGsz3bZvrsgwJVKCIDfL13rX763r30CElj4uOGDxdyKVocCOEELM9LTM1SF1R+eS67gmbYFsZdkQrFzNYsmFQqzsbNlV+xezVTj4kFvdYmYr6q2zJbsOxZ44cQLjx49Hs2bNIJVKsWnTJs7+6dOnQyqVcn769OnDOaakpASzZ89GkyZNUK9ePYwfPx4PHjyw5a9BCCGEODRXqDGnDTfA+imlGNfzLZtTbrleb11soJDKKtqYXQM7uVyO5s2bY8mSJRCLxZUe06NHDyQnJ+t+4uPjOfvnzZuHP/74Az/++CP++usvFBUVYdy4cdBoKsnMSAghhDylJkdK0NSzfOhVywIfn628HGJN3MgvxR93uelM3qXeOpszOhTr7e0NhjEvzw3DMMjJyTH5+H79+qFfv34AgDfeeKPSY0QikdFyZQUFBdi4cSNWr16Nnj17AgDWrl2L6OhoHD58GL179zar/YQQQkhd5cJj8FE7L7x4KFe3bc89JY4/KkGXoNr3qq26IuNU4Wnl44Le9am3ztaMBnb//e9/zQ7srCExMRFhYWHw8vJC586d8cEHH8Df3x8AcPHiRZSWlqJXr1664xs0aIDIyEgkJSVRYEcIIYRUMLShKzoGCJGUqdJt++BMAf4e4g9eLb7z78nU2HKzmLNtZit3h4gjnjZGA7t58+bZsh2V6tOnD4YOHYqGDRsiLS0Nn332GYYNG4bDhw9DJBIhMzMTfD4fvr6+nOf5+/sjMzPT6OumpKRYu+k2eQ9SxtLn2lKv54jXgKP9bo54jhwJnR/bcubzfePGjWrb/2Sldgu+L5LcyztELmSXYk3iHfTzN20KU2Xv88UtF6hZF93jUFctmpU+QFVNcubzXR1r/m7h4eFV7nfoVbGjRo3S/X+LFi3Qpk0bREdHY+/evRg2bJjR57EsW+VdQnUnpbZSUlKs/h6kjDXOtaVezxGvAUf73RzxHDkK+hyxLWc/3+a2PftgDhIqzIdb+8ANUzsGQsSvvodN/72ylRokJGYAFQZiZ7XzQVRE1dUtnPl8V8eev5vZgV16ejr++ecfFBQUQKs1zFw9YcIEizSsMsHBwahXrx5u374NAAgICIBGo0FOTg78/Px0x2VnZyM2NtZq7SCEEEKc2UftvPBXmhLqx7FYmkyDddflmNHC3ezX+u6qHApNeVBXz42H8U3dLNVUYiaTAzuVSoU333wT27dvh1arBcMwYNmyf8iKvWPWDOxycnKQnp6uW0zRpk0buLi44NChQxgzZgwA4MGDB0hOTkbHjh2t1g7ivCixLCGEAE29BJgSJcEP18rLfC27WIhJYW6QikxPmFGo0uKHa9wqFjNaekBoQs8fsQ6TA7vFixdj+/btmDdvHmJiYjBkyBCsWbMGQUFB+Oabb5CVlYXvvvvOrDeXyWS63jetVov79+/j0qVL8Pb2hre3N5YsWYJhw4YhMDAQaWlpWLhwIfz9/TFkyBAAgJeXF1544QV8+OGH8Pf3h7e3N+bPn48WLVqgR48eZrWFPB0osSwhhJSZ08YDv94sRlFpWSdNvorFl5eK8OmzXia/xoZkOQpU5b113iIGL0VQb509mRyWb9++HePGjcOsWbPQrFlZWZLg4GD06NED8fHxcHNzw/r168168wsXLqBbt27o1q0bFAoF4uLi0K1bNyxevBh8Ph9Xr17FxIkT0b59e0yfPh1hYWHYt28fPDzK8+IsXrwYQ4YMwZQpUzBgwABIJBL8+uuv4PMtXyaFEEIIqSv8XPkGNVzXXpXhbpHayDO4lGoWq//l9ta93twd7i5Uht6eTO6xy8zM1A1vCgRlT1MqyyZeMgyD4cOHY8WKFVi2bJnJb961a1fk5+cb3b9jx45qX8PV1RXLli0z630JIYQQAkxvIcGP12V4WFw2Z16lBRadL8T33X2qfe7mm8XIUJTPtXcXMJjWzPw5esSyTA6rfX19dUGYh4cHxGIxUlNTdftLS0shl8uNPJsQQgghjsZNwMP8tp6cbVtvK3AxW2XkGWXUWharLnPLh02OlMDbjPl5xDpM/heIjo7GmTNnAJT10HXu3BnffvstEhMTceLECXz//feIjo62WkMJIYQQYnnjm7qhuTd3AO+DMwW6BZKV+e2OAndl5XnvhDxgRkvqrXMEJgd2L730EliW1Q2/fvrpp5DL5Rg8eDCGDBmC4uJiLFq0yGoNJYQQQojl8XmMwYKJY49U2H+/pNLjtSyLFZe4vXUTwtwQ7EZz2x2ByXPsBg0ahEGDBukeR0VF4fz58zh27Bj4fD46deoEqVRqlUYSQgghxHp613dFz3oiHHpYHsx9dLag0lqve+8pcTW/fIEFjwHe1luEQezHpB47pVKJpUuX4uDBg5ztnp6eGDx4MAYMGEBBHSGEEOLEPmnviYrZ567lq7FJr/4rC2DFJe5K2BGNxGji6dCFrJ4qJgV2rq6uWLFiBe7fv2/t9hBCCCHEDlr5CjGuqZizbfH5QqhQPsR6l++H01nchRXvtKLeOkdi1uKJJ8mECSGEEFL3zG/rCVGFqXKPFFokiiJ0j4+JmnGO79dAhGgfF1s1j5jA5L7TDz/8EC+99BJiYmLQv39/a7aJEEIIIXYQ4i7A9ObuWHm5fLj1hCgS7VS3UciIccsliHP8TCO9dVS+0X5MDuy++uorSKVSTJgwAfXq1UOjRo0gFnO7bBmGwdatWy3eSEIIIYTYxsxWHvjpRjFySx4nLWZccFjUHMU87kKKmEAhYgINF1cAVZdvTElJQXh4uGUbTXRMDuyuX78OhmHQoEEDAEBaWprBMQxDRX/J04HuRgkhdZWXkIfZrT0w73SBbts5YROw4H7Hv0tz6xySyYHd5cuXrdkOQpxKVXejhBDi7F6JkuD7azLcKSpLQswy3Cn50T4u6FNJKhRif1T7gxBCCCEcQj6Dj9p5Gd0/M9qdRukclNmJZ44cOYJ9+/bphmJDQ0PRr18/dO/e3eKNI4QQQoh9DG/kiggvPm4UaDjbGQA+VBPWYZkc2KlUKrzyyiv4888/wbIsvLy8wLIsCgsLsWbNGgwePBjr16+HiwsteyaEEEKc3bFHKtwt0hhsZwFM+DsXW/r6olswDcc6GpND7s8//xy7du3C66+/juvXryM1NRV3795FcnIypk+fjl27dmHZsmXWbCshhBBCbGTGsTw8XhhrQKFhMeNYnm0bRExico9dfHw8xowZg8WLF3O2BwQEYNGiRcjKysKWLVvw/vvvW7yRhJDq0UpdQoglre7qjXH7c6DQsAb7xHwGq7t626FVpDomB3aPHj1Cp06djO7v2LEjdu7caZFGEULMRyt1CSGW1C1YhC19fTFq9yOUMuXhgpjP0DCsAzN5KDYwMBDnzp0zuv/8+fMICAiwSKMIIYQQYn/dgkWYKD8OF1YNAHBh1RTUOTiTA7uRI0fil19+QVxcHAoLC3XbCwsLsWTJEvzyyy8YPXq0VRpJCCGEEPtorMnCRPlxeGnlmCg/TkGdgzN5KHbu3Lm4cuUKPv/8c3zxxRcIDAwEAGRkZECr1aJPnz6YO3eu1RpKCCGEEPtorMnCzKK/7N0MYgKTAztXV1ds27bFHEyfAAAWpUlEQVQNe/bs4eSxGzBgAPr374/+/ftbrZGEEEIIIaR6ZicoHjBgAAYMGGCNthBCCCGEkFowObDz8fHB2rVrMWbMmEr379ixA1OnTkVubq7FGkcIcV6UfoUQQmzP5MCOZQ3z2FSk1WqpbhwhRIfSrxBCiO2ZNRRbVeB29uxZSKXSWjeIEEIIIcRROfpoRJWB3Zo1a/Ddd9/pHs+bNw+ffvqpwXEFBQUoLCzEuHHjLN9CQgghhBAH4eijEVUGdr6+vggPDwcApKWlITAwEEFBQZxjGIaBm5sbnnnmGUybNs16LSWEEEIIIVWqMrAbO3Ysxo4dCwAYMmQIZs2ahR49etiiXYQQQgghxEwmz7HbtWuXNdtBCCGEEEJqyeSSYhs3bsQLL7xgdP+LL76IzZs3W6RRhBBCCCHEfCYHdj/++KOujFhlgoKCsG7dOos0ihBCCCGEmM/kwO7WrVto0aKF0f3NmjXDzZs3LdIoQgghhBBiPpMDO4ZhkJOTY3R/bm4utFqtRRpFCCGEEELMZ3Jg17p1a8THx0OpVBrsUygUiI+PR6tWrcx68xMnTmD8+PFo1qwZpFIpNm3axNnPsizi4uIQFRWFoKAgDB48GNeuXeMck5+fj2nTpiE0NBShoaGYNm0a8vPzzWoHIYQQQkhdYHJg9+677yIlJQX9+/fHzp07kZKSgps3b2Lnzp0YOHAgUlJS8O6775r15nK5HM2bN8eSJUsgFosN9q9atQqrV6/G0qVLcfDgQfj7+2PEiBEoKirSHTN16lRcunQJ8fHx2LZtGy5duoTXXnvNrHYQQgghhNQFJqc76dmzJ7799lv897//xZQpU3TbWZaFh4cHvv76a/Tp08esN+/Xrx/69esHAHjjjTc4+1iWxZo1a/DOO+9g+PDhAMoqYYSHh2Pbtm2YMmUKkpOTceDAAezZswcdO3YEAKxYsUIXaD5JrkwIIYQQ8jQwq1bs+PHjMXjwYBw8eBCpqalgWRaNGzdGr1694OHhYdGG3b17FxkZGejVq5dum1gsRmxsLJKSkjBlyhScPn0a7u7uuqAOADp16gSJRIKkpCQK7AghhBDyVDErsAMADw8PXQ+aNWVkZAAA/P39Odv9/f2Rnp4OAMjMzISvry8YhtHtZxgGfn5+yMzMNPraKSkpVmix7d+DlKFzbXt0zm2DzrNt0fk2jSXOE53rmquu08qswE6j0WD79u04evQosrKy8MEHH6Bly5bIz8/HoUOHEBMTY1BLtrYqBm1A2RCtfiCnT/8YfdbuyaNhYNuhc20fdM6tj65t26Lzbbranic619Zl8uKJgoIC9OvXD6+99hp27tyJ/fv369KfeHh4YP78+fj+++8t1rAnyZD1e96ys7N1vXgBAQHIzs4Gy7K6/SzLIicnx6CnjxBCCCGkrjO5x+6TTz7B9evXER8fj2eeeQZhYWG6fXw+H0OHDsX+/fvx4YcfWqRhDRs2RGBgIA4dOoS2bdsCAJRKJRITE7Fw4UIAQIcOHSCTyXD69GndPLvTp09DLpdz5t0RQkyXmJiIpKSkKo9ZuXKlwbaOHTsiJibGWs0ihBBiApMDuz///BPTpk1Dnz59kJuba7C/adOm2LJli1lvLpPJcPv2bQCAVqvF/fv3cenSJXh7eyMkJATTp0/Hl19+ifDwcISFheGLL76ARCLB6NGjAQCRkZHo06cPZs6ciVWrVoFlWcycORP9+/enbl5CaigmJsZogEZDKIQQ4thMDuzy8/PRuHFjo/tZloVKpTLrzS9cuIChQ4fqHsfFxSEuLg4TJkzAmjVr8Pbbb0OhUGD27NnIz89Hu3btsGPHDs4K3B9++AFz5szByJEjAQADBw7E559/blY7CCGEEELqApMDu9DQUFy9etXo/hMnTnCGZ03RtWvXKqtEMAyDefPmYd68eUaP8fb2tujcPkIIIeRpRVMxnJ/Jgd2YMWOwcuVKDB06FM2aNQNQviJ17dq12LVrFxYvXmydVhJCCCHE6qqaikGcg8mB3cyZM3H27FkMGzYMYWFhYBgGc+fORW5uLjIyMjB48GAq5UUIIYQQYkcmB3YuLi7YunUr4uPj8fvvv4NhGKjVarRu3RojR47E2LFjq8wdRwghhBBCrMvsyhNjxozBmDFjrNEWQgghhBBSCyYnKCaEEEIIIY7NaI/djBkzzH4xhmHwzTff1KpBhBBCCCGkZowGdkePHjV7zhzNsSOEEEIIsR+jgd3ly5dt2Q5CCCGEEFJLNMeOEEIIIaSOqDKw27dvHx49esTZVlxcDJZlDY69ceMGza8jhBBCCLGjKgO78ePH49ixY7rHubm5aNCgAY4ePWpw7MWLF/Hhhx9avoWEEEIIIcQkVQZ2lfXMVbaNEEIIIYTYH82xI4QQQgipIyiwI4QQQgipIyiws4Lw8HB7N+GpQefatuh82w6da9ui8207dK6tq9pasampqTh37hwAoLCwEACQkpICd3d3znF37tyxQvMIIYQQQoipmPz8fKOrIby9vQ2qSbAsW2mFiSfbc3NzLd9KQgghhBBSrSp77FavXm2rdhBCCCGEkFqqsseOEEIIIYQ4D1o8QQghhBBSR1BgRwghhBBSR1BgZ0Hr1q1Dq1atEBgYiO7du+PkyZP2blKdFBcXB6lUyvmJiIiwd7PqjBMnTmD8+PFo1qwZpFIpNm3axNnPsizi4uIQFRWFoKAgDB48GNeuXbNTa51bded6+vTpBtd6nz597NRa57Z8+XL07NkTISEhaNq0KcaNG4erV69yjqFr23JMOd90fVsHBXYWsmPHDsydOxfvvfcejh49ig4dOmDMmDG4d++evZtWJ4WHhyM5OVn3Q0G05cjlcjRv3hxLliyBWCw22L9q1SqsXr0aS5cuxcGDB+Hv748RI0agqKjIDq11btWdawDo0aMH51qPj4+3cSvrhuPHj+OVV17B3r17kZCQAIFAgOeeew55eXm6Y+jathxTzjdA17c10OIJC+nduzdatGiBr776Sretbdu2GD58OD766CM7tqzuiYuLQ0JCAhITE+3dlDqvfv36+PzzzzFp0iQAZT0aUVFRePXVVzFr1iwAgEKhQHh4OD799FNMmTLFns11avrnGijr0cjNzcWWLVvs2LK6SSaTITQ0FJs2bcLAgQPp2rYy/fMN0PVtLdRjZwEqlQoXL15Er169ONt79eqFpKQkO7WqbktNTUWzZs3QqlUrvPzyy0hNTbV3k54Kd+/eRUZGBudaF4vFiI2NpWvdShITExEWFoZ27drhrbfeQlZWlr2bVCfIZDJotVpIpVIAdG1bm/75foKub8urtvIEqV5OTg40Gg38/f052/39/ZGZmWmnVtVd7du3x7fffovw8HBkZ2dj2bJl6NevH06dOgUfHx97N69Oy8jIAIBKr/X09HR7NKlO69OnD4YOHYqGDRsiLS0Nn332GYYNG4bDhw9DJBLZu3lObe7cuYiOjkaHDh0A0LVtbfrnG6Dr21oosLMgU6t0kNrp27cv53H79u3Rpk0bbN68GW+++aadWvV0oWvdNkaNGqX7/xYtWqBNmzaIjo7G3r17MWzYMDu2zLm9//77OHXqFPbs2QM+n8/ZR9e25Rk733R9WwcNxVqAr68v+Hy+Qe9cdna2wd0fsTx3d3dERUXh9u3b9m5KnRcYGAgAdK3bSXBwMOrVq0fXei3MmzcP27dvR0JCAho1aqTbTte2dRg735Wh69syKLCzAKFQiDZt2uDQoUOc7YcOHULHjh3t1Kqnh1KpREpKiu6DmVhPw4YNERgYyLnWlUolEhMT6Vq3gZycHKSnp9O1XkNz5szBtm3bkJCQYJAiia5ty6vqfFeGrm/L4M+dO/djezeiLvDw8EBcXByCgoLg6uqKZcuW4eTJk/jmm2/g5eVl7+bVKQsWLIBQKIRWq8XNmzcxe/Zs3L59GytWrKBzbQEymQzXr19HRkYGNm7ciObNm8PT0xMqlQpeXl7QaDRYsWIFwsLCoNFoMH/+fGRkZGDlypU0L8ZMVZ1rPp+PhQsXwt3dHWq1GpcvX8Z//vMfaDQaLFu2jM61mWbNmoVff/0VGzZsQIMGDSCXyyGXywGU3ZwzDEPXtgVVd75lMhld31ZC6U4saN26dVi1ahUyMjLQrFkzLF68GJ07d7Z3s+qcl19+GSdPnkROTg78/PzQvn17zJ8/H1FRUfZuWp1w7NgxDB061GD7hAkTsGbNGrAsiyVLlmDDhg3Iz89Hu3bt8MUXX6B58+Z2aK1zq+pcL1++HJMmTcKlS5dQUFCAwMBAdO3aFfPnz0eDBg3s0Frnpr8a84k5c+Zg3rx5AEDXtgVVd74VCgVd31ZCgR0hhBBCSB1Bc+wIIYQQQuoICuwIIYQQQuoICuwIIYQQQuoICuwIIYQQQuoICuwIIYQQQuoICuwIIYQQQuoICuwIIXVWXFwcpFKprsC7NUyfPh3R0dFWe31CCDEHBXaEELNt2rQJUqkUUqkUR48erfSYXr16QSqV4tlnn7VqW2QyGeLi4nDs2DGrvo81XL16FXFxcbh7965FX9eZzwkhpHYosCOE1Jirqyvi4+MNtt+6dQvnz5+Hq6ur1dsgl8uxdOlSHD9+3OrvVZmvvvoKZ8+erdFzr127hqVLlyItLc2ibbL3OSH/3969xUR1dQEc/w+UKl6GUckwYHVAGPGCUmc0miAJ1mawQaAVRmJQuQVvD1KrxAsm2tibNROwgRegoigardHiFW/Rl9EYRUlMtNHYtIREVNQBx1AUmO+h4cRTBBmQ+n1865fMA+vss/c6+4Gs7L3PjBDvjxR2Qohes1qtVFZW0tLSooofPHgQvV7PtGnT3lNm/x4fH5//m9+1bGtr4+XLl+87DSFEN6SwE0L0WlJSEi6Xi6qqKlX88OHDLFiwAC+vzv9i2tvbKSgowGKxoNfrmThxIrm5uTQ2NqraxcXFMWPGDO7fv09SUhJBQUGYTCa+/vpr2tvbAfjzzz8JDw8HYPv27cr28MqVK1V9uVwu1qxZQ0hICKNHjyYtLY2nT5+q2tTU1GCz2QgNDcVgMBAZGcny5cuVHy7vypvO2Ol0OtasWcO5c+eIjo4mICAAs9nM4cOHlTYVFRVkZWUBEB8fr+ReUVGhtDl16hRz584lMDAQo9FIamoqd+/e7TafnsxJfX09OTk5TJgwAb1ej9lsZufOnbjdblU/Op2O/Px8SktLMZvN6PV6rl69qrq2Z88epk2bRmBgIPHx8fzxxx8AFBYWMmXKFAwGA0lJSdTX13ebtxDi3fjgfScghPjfFRQURFRUFL/88guJiYkAXL9+nd9//52FCxdy69atTvesXbuWsrIyPvvsM1asWMGdO3f4+eefqa6u5syZM/j4+Chtm5qaSExMZN68ecTFxXH+/Hny8/MxGo2kp6fj7+/Pjh07yM3NZf78+cTHxwMQEhKiGjMrK4uAgADy8vK4f/8+xcXF+Pj4UFpaCkBDQwNffPEFo0aNIicnB51OR11dHadPn+bFixcMHTrU47m5du0aJ0+eJCMjgyVLllBeXs6yZcuYMmUK4eHhREVFkZ2dTUlJCWvXrmX8+PEAzJw5E/i7OM7OziYiIoK8vDyampooLi7GarVy6dIlgoOD3zju2+bk8ePHfPrpp7S2tpKWlobBYODKlSts2bKFBw8e8MMPP6j6O3ToEC6Xi/T0dIYNG4bBYFCuHT16lObmZjIzM3G5XOzcuZPU1FSSkpI4duwYq1ator6+nsLCQr766iv279/v8TwKITwjhZ0Qok9sNhvr1q3D6XSi0+k4ePAgoaGhmM3mTm1v375NWVkZCxcupLi4WImbTCY2btzIgQMHWLp0qRJ/+PAhP/30kxLLzMxk9uzZ7Nmzh/T0dIYOHUpCQgK5ublMnjyZlJSUN+Y4fvx41Xhut5uSkhLsdjt+fn5cvXqVZ8+eceTIEdX28aZNm3o9L7/99hsOh0NZPfv888+JiIhg3759bNu2jeDgYGbNmkVJSQkxMTFER0cr97569Yq8vDzCwsKoqqpSCsu4uDjmzJnDd999p3qe171tTr755htaWlpwOBzo9XoAMjIyMBgMFBYWsnLlSoxGo9K+traW6upqVUHX8bJHXV0dN27cQKfTAeDl5cX333/PX3/9xeXLl5UtapfLxa5du2hoaMDf37/XcyqEeDvZihVC9EliYiIajYbKykpaW1v59ddfsdlsb2x75swZAFavXq2KZ2ZmotVqlesdBg8eTGpqqioWFRWlbPf1VMeW5+t9tLW1UVdXB8Dw4cMBqKqq4tWrVx713ZXo6GilqAPQ6/WYTKYe5V5TU8PDhw/JyspSrRZGRkYSExPD2bNnVdumPeV2u6msrCQ2NhZvb2+ePHmifObOnUt7ezsOh0N1T1xcnKqoe11CQoJS1AFMnz4dgOTkZNW5Q4vFgtvtfudv/wohOpPCTgjRJ35+flitVg4dOsTFixd5/Phxl4VdbW0tGo0Gk8mkig8aNAij0djp7dCgoCC8vb1VMZ1Ox7NnzzzKccyYMZ36AJR+oqOjiY+PZ/v27YwbN46UlBR2796Ny+XyaJzuxuwYtye5d8xDx/bs68LDw3E6nTQ1NXmcU0NDA06nk3379hEaGqr6dGylNzQ0qO7passX4KOPPlL9rdVqARg9evQb406n0+OchRCeka1YIUSf2Ww20tLSgL9XZ0JDQz3uw+12o9FoVLF/FnW91VU/HateGo2GvXv3Ul1dTVVVFZcuXeLLL7/Ebrdz4cIFZcvyXY7ZW325v+Olk+TkZBYvXvzGNuPGjVP97evr22V/XT1jfz27EOLtpLATQvRZbGwsWq0Wh8PR6fD968aOHYvb7ebevXtEREQo8ZcvX1JbW6s6Z9ZT/ywG+8JisWCxWMjLy+PcuXPYbDbKy8tZt27dOxvjdV3lPnbsWADu3r3LJ598orp27949dDqdsgrmSb/+/v5otVpaW1uJiYnpXdJCiP9qshUrhOizQYMGYbfbWb9+PcnJyV22s1qtABQVFaniZWVlNDU1ERsb6/HYQ4YMAfq2zed0OjutJkVGRva537fpKvePP/6YgIAAdu3aRXNzsxK/desWFy9exGq1dlvQdtWvt7c3CQkJnDhxgpqamk73NTY2vrMzhkKI90NW7IQQ70R3BV2HyZMnk5GRoRRyc+bM4c6dO5SVlWE2m1m0aJHH4w4bNgyTycSRI0cICwtj5MiRGI1G5SB/T+zfv5/S0lLmz59PSEgIzc3NVFRU4O3trZw96w+RkZF4eXmRn59PY2Mjvr6+WCwWgoOD+fbbb8nOziY2NpaUlBTl6060Wu1b39btbk62bt2Kw+Fg3rx5LFmyhEmTJvH8+XNu377N8ePHuXHjBgEBAf32zEKI/iWFnRDiX2W32zEajZSXl3P27FlGjRpFVlYWmzdvVn2HnSeKiorYuHEjmzdvpqWlhUWLFnlU2EVFRXHz5k2OHj3Ko0ePGD58OFOnTuXHH3/s19+6DQwMpKCggIKCAnJycmhra6OoqIjg4GCSk5Px9fXFbrezbds2PvzwQ2bPns3WrVu7faGhQ1dz4u/vz4ULF9ixYwcnT55k9+7d+Pn5ERYWxoYNGxgxYkS/Pa8Qov9pnE6nnGYVQgghhBgA5IydEEIIIcQAIYWdEEIIIcQAIYWdEEIIIcQAIYWdEEIIIcQAIYWdEEIIIcQAIYWdEEIIIcQAIYWdEEIIIcQAIYWdEEIIIcQAIYWdEEIIIcQA8R8/FOS4o2vpiwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
@@ -276,8 +278,8 @@
" N = len(dates)\n",
" err = [[EV(states, date) - EV(states, date, -swing) for date in dates],\n",
" [EV(states, date, swing) - EV(states, date) for date in dates]]\n",
- " plt.errorbar(range(N), [EV(states, date) for date in dates],\n",
- " yerr=err, ecolor='grey', capsize=7, label='EVs')\n",
+ " plt.errorbar(range(N), [EV(states, date) for date in dates], fmt='D-',\n",
+ " yerr=err, ecolor='grey', capsize=7, label='EVs ±3% swing')\n",
" plt.plot(range(N), [270] * N, color='darkorange', label=\"270\")\n",
" labels('Months into term', 'Electoral Votes with Net Positive Approval')\n",
" \n",
@@ -290,7 +292,7 @@
"source": [
"# Margin and country-wide net approval by month\n",
"\n",
- "The next plot gives the swing margin needed to reach 270 for each month, along with the country-wide net approval."
+ "The next plot gives the swing margin needed to reach 270 for each month, along with the country-wide net approval. Trump has been in negative territory on all metrics since his fourth month in office. We see that the state-by-state margin roughly correlates with the country-wide net approval, but not exactly."
]
},
{
@@ -300,7 +302,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAGTCAYAAABUPgTYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlYVGX7B/DvmZUdZFcBSUQFF9wVA5c0LDPN3FNzySwzW36ZWZl7Wqn1Vpaatr4ub2i4laa55r4i5gIigqCyb8M+yzm/P8iBM8MywMycmfH+XBfX5TlzltvDwNw8y/0wBQUFHAghhBBCiE0RCR0AIYQQQggxPkryCCGEEEJsECV5hBBCCCE2iJI8QgghhBAbREkeIYQQQogNoiSPEEIIIcQGUZJHCCGEEGKDKMkzscTERKFDeGTRsxcOPXvh0LMXBj134dCzrx0leYQQQgghNoiSPEIIIYQQG0RJHiGEEEKIDaIkjxBCCCHEBkmEDoAQQggxN7VajZKSEqNdz87ODoWFhUa7HjGcrT97R0dHSCSNS9coySOEEPJIUavVKCoqgpubGxiGMco15XI57OzsjHIt0jC2/Ow5jkNBQQGcnZ0blehRdy0hhJBHSklJiVETPEJMhWEYuLm5NbrVmZI8QgghjxxK8Ii1aMp7lZI8QgghhBAbREkeIYQQQogNsqok79SpUxg/fjxCQkLg5uaGLVu28F7nOA4rV65E+/bt4evri2eeeQY3b94UKFpCCCGEEOFYVZJXUlKC0NBQfPLJJ7C3t9d7/csvv8Q333yDTz/9FEeOHIGXlxdGjhyJoqIiAaKtwnGcoPcnhBBCyKPHqpK8qKgoLFy4ECNGjIBIxA+d4zisW7cOb731FkaMGIHQ0FCsW7cOxcXF2LFjh0ARA4dyxBi5Pwtlakr0CCGENN6sWbPg5uaGVatW8fafOHECbm5uyM3NbdC1xo0bZ+wQiYWxmTp5d+/eRWZmJp544gntPnt7e/Tt2xfnzp3DtGnTajwvMTHR6LGIlOXwOn8Y2XfvY1jmfYzVVGCc6nN8GqKEhCZ0mZUpvr/EMPTshUPPvm52dnaQy+VGv255ebnRr1mdRqOBnZ0dvvzyS0yYMAGenp4AAKVSqb2/oTFoNBpoNBqTx6xLqVRCJpMZ/brm/n+Ym0KhQFZWlt7+4ODgOs+zmSQvMzMTAODl5cXb7+XlhfT09FrPq+8BNYpaDfvVb6MFq9buupZZhg2ePviiL9VmMpfExETTfH9JvejZC4eeff0KCwtrLJ7rusnNvHHMKGjQ8WKxGJGRkbh//z6++uorfPbZZwCgTZrs7Oy0/6/4+HgsXLgQp0+fhp2dHfr3748VK1bAx8cHK1euRHR0NADA19cXALB3715ERkby7nf37l2EhYXpxeHv749//vmn3vsAlS2GeXl5CA8Px3fffQelUonbt2+joKAA8+fPx/79+1FRUYHevXvjk08+QUhISIOeCVCZ4NlqMeSHXFxc4O/v3+DzrKq71hC6CRTHceZPqiQSaFq04u3qVJyGn26V4rM4YccHEkIIsV4ikQiLFy/Gjz/+iOTk5BqPycjIwNChQxESEoLDhw9j165dKC4uxoQJE8CyLObMmYORI0diwIABSEhIQEJCAnr37q13HT8/P+3rCQkJuHTpEvz9/REREWHQfR46deoUrl+/jh07dmD37t0AKpO/S5cuYevWrTh8+DDs7e0xevRolJWVmeCpPbpspiXv4V8NWVlZ8PPz0+7PycnRa90zByYgCLiXpN3uVJKK481CsTK2CM0dxHixraPZYyKEEGL9oqKi0Lt3byxbtgw//PCD3uvff/89OnbsiCVLlmj3bdiwAYGBgYiNjUX37t21XdYPPztrIhaLta+zLIs33ngDPj4++OKLLwy+D1C57NjatWu1XeRJSUnYv38//vjjDzz++OPa8zp16oTt27fjxRdfbOITIg/ZTEteq1at4OPjg6NHj2r3lZeX48yZMzX+hWJqrH9r3nan4jTtv98+XYA/0+ivFUIIIY2zdOlS7Nq1C7GxsXqvxcXF4fTp02jZsqX2q0OHDgBQa+tffRYtWoTr169jy5Yt2q5RQ+8TEhLCGwOZkJAAkUiEXr16afe5uroiNDQU8fHxjYqP1MyqWvKKi4tx584dAJV/Vdy7dw9Xr15Fs2bN4O/vj1mzZmHNmjUIDg5GmzZtsHr1ajg6OmL06NFmj1U3yQsrTdX+W8MB047mY89TYvT0Nv4AVEIIIQ3X0DFy1Zl7XFi3bt0wfPhwLFq0CO+++y7vNZZlERUVheXLl+ud15iera1bt+LHH3/E/v37eS1/ht7H0ZHfc1VXWTEas25cVpXkxcbG4tlnn9Vur1y5EitXrsSECROwbt06vPnmmygrK8O7776LgoICdO/eHTExMXB2djZ7rKx/EG+7S9l9SMBC/W/jaZmGw7hDuTjwjCeCXaVmj48QQoh1W7hwIXr37o3Dhw/z9oeFhWHnzp3w9/eHVFrz54tMJoNGo6n3HufOncM777yDTZs2oVOnTg2+T03at28PlmVx/vx5bXetQqHAjRs38MILLxh8HVI/q+qujYyMREFBgd7XunXrAFT+BfD+++8jISEBmZmZ2LdvH0JDQwWJlXN1B+fsqt2WqCqwoR2/izavgsXzB3ORUVr/DxohhBBSXevWrTF16lSsX7+et3/GjBlQKBSYNm0aLl68iJSUFBw7dgxvvvmmdnGAgIAA3Lx5E4mJicjNzYVKpdK7fmZmJiZNmoSXXnoJPXr0QGZmJjIzM5GTk2PwfWoSFBSEoUOH4u2338bp06dx/fp1zJw5E87OzhgzZowRnxCxqiTPqjAMNDqteWOl6Zgbxm9VTCvWYPRfuVAoWRBCCCENMW/ePEgk/E655s2b48CBAxCJRBg1ahT69OmDuXPnQiaTacfGTZkyBW3btsXAgQMRFBSEs2fP6l371q1byM7Oxtq1a9GuXTvt18CBAw2+T22+/fZbdOvWDRMmTMCgQYNQVlaGHTt21LiaFWk8pqCggJZiMBHZlrWQHaxabUM5YgoqRk7FnFMF2JxYyju2f3M5tj/pAZmYxiMYC9ULEw49e+HQs69fYWEhXF1d6z+wAR6FWm2W6lF49o19z1JLngnpTr4QpSWBYRh80dcNUX78v3KOp1fgtZP5YGmdW0IIIYQYASV5JqSf5FXODJaKGPw4wB3dPfkDVXfcKcPCCwqzxUcIIYQQ20VJngmxLQLBVZsOLsp+AJRVdtM6SkX49UkPBLmIeeesvV6MtddoVQxCCCGENA0leaYkt0OFO7+auOh+VYFITzsxfovyhLc9/9uw4IICO+7wx+wRQgghhDQEJXkmVubdkrf9sMv2oUBnCbY/6QEnCX/CxawT+Tj+oNzk8RFCCCHENlGSZ2Jl3n68bVFakt4xYR4y/PcJd1TP81QsMOlIHq7mKk0dIiGEEEJsECV5Jlauk+SJdVryHhrY0g7fRjbj7StScRjzVy7uFqlNFh8hhBBCbBMleSam1117LwmopUzK2CAHLO3hwtuXWcZi9F+5yC2nVTEIIYQQYjhK8kxM6eYBzs5Bu82UloDJy6r1+DkdnfBqKH8x58RCNcYfykWpmlbFIIQQQohhJPUfQpqEEYH1aw3x7WvaXaK0O9B4+NR8OMNgRS9XZJay2JlStdbthWwVxv6Vi3CfupeKMSgkBujkLsXT/naQiGiFDUIIIYY7ceIEnn32WSQlJcHDw0PocEgdKMkzA9a/hiSvS3itx4sYBuv7NUNOuQYnMqomXpzMUOJkhvEmYrR3k2BpD1c86ScHw1CyRwghlmzWrFnYtm0bJk+ejK+//pr32sKFC/HVV19hyJAh+PXXX00aR+/evZGQkAB3d3eT3oc0HXXXmoHGP4i3XdMMW11yMYPNgzzQoZnp8vD4AjXGHsrFyIO5uJanMtl9CCGEGIefnx927tyJkpIS7T61Wo1ff/0Vfn5+dZxZP6XSsEYEmUwGHx8fahywAtSSZwas/2O8bd1aebVxlYmwI8oTQ/7IRmqx6SZeHHtQgcjdWZgU7IAPu7nA10Fc/0mEEGJj3H68b9b7FUxrWf9BOjp06ID09HTs3LkTkyZNAgAcOHAAcrkcffv2RX5+PgDg8uXLWLZsGeLi4qBSqdChQwcsXboUvXr10l7Lzc0Nq1atwvHjx3HkyBFMnz4dy5cvx4EDB/Dhhx8iLS0N3bp1w4wZM/DSSy8hLi4OrVq10uuu3bJlC+bNm4etW7di/vz5uHv3Lrp164a1a9ciMDDQKM+KNA4leWbA+umsYZuRCigrAFn94+uaO4hx7FkvbL9ThgKlcSZeJBWqsf1OGarP8eUA/DexFDHJZXijkxNe7+AERyk19BJCiKWZPHkytmzZok3yNm/ejIkTJyIlJUV7TFFREcaNG4dPPvkEDMNg48aNGDNmDC5fvswbR/fpp59i4cKFWL58OQAgLS0NkydPxowZMzBt2jTcuHEDH374Yb0xVVRU4PPPP8fatWshl8sxa9Ys/N///R9iYmKM+58nDUJJnjk4OIH19IEoJxMAwLAsROmpYFsFG3S6u50Yr4Q6GTWk2R2V+OiCAn+nV/D2l6g5rIwtwk8JJVjQzQXjgxwgpskZhBBiMcaMGYOPPvoISUlJcHJywuHDh/HZZ59hxYoV2mP69+/PO+ezzz7Dnj17cOjQIYwbN067f+TIkXjxxRe120uWLEFgYCA+/vhjMAyD4OBg3L59G8uWLaszJrVajdWrVyM4uPJzbc6cOZg9ezZYloVIRA0GQqEnbyasn+64PMO6bE0lzEOG3UM88L/B7mjrqp/rp5eymH2yAAP2ZuP4g4oarkAIIUQIbm5uGDZsGDZv3oxt27YhIiIC/v7+vGOys7Px1ltvoXv37ggICICfnx+ys7Nx79493nFdu3blbd+6dQtdu3bljbfr0aNHvTHJ5XJtggcAvr6+UKlUKCwsbMx/kRgJteSZCevfGrhyWrttyOQLU2MYBk/522NQSzv8nFCClbFFyK3gdwn/k6fCiAM5GOJvh2U9XNDWTSpQtIQQYlqNGSP3UHl5Oezs7IwYTd0mTZqEWbNmwdHRER988IHe67NmzUJWVhZWrFiBgIAAyOVyDB8+XG9yhaMjvy4rx3GNmlAhkfDTiYfXYFmq7yokaskzE1Zvhq2wLXnVSUUMZoQ44fJoH7zVyQnyGuZdHEgrR/iuLMw9U4AcWn2DEEIE1b9/f0ilUuTm5uKZZ57Re/3s2bOYOXMmhgwZgpCQEDg5OSEzM7Pe67Zr1w6xsbG8fZcuXTJa3MS8KMkzE42/zuSLe8K35OlylYmwuIcrzo/0wajH7PVe13DApvgSdNuRif9cLUK5uubl2QghhJgWwzA4deoU4uLiIJfrT+ILCgpCdHQ04uPjcfnyZUyfPh0ymaze606bNg3JyclYsGABEhMTsWfPHvz444/aexLrQkmemXA+LcFJq7o6RYX5YArzBIyodq2cJfh+gDsODfNCH2/9XwoKFYfFlxTouTMTO+6UgqtlLV5CCCGm4+zsDBcXlxpfW7t2LUpKSjBgwABMnz4dkyZNQkBAQL3XDAgIwC+//IL9+/cjIiIC69atw3vvvQcAZu2OJsbBFBQU0Ce0CSUmJmoHo9ovnAnx3Vva18rmrYamQ/0DWoXEcRz23C3H4ouFSC6quZu2l5cMPz/hjuYWVl+v+rMn5kXPXjj07OtXWFgIV1dXo17T3GPyzGndunVYuXIlUlJSLHKmrC0/+4ca+561vO+WDWN1u2zTkgWKxHAMw2BEoD3OjvTBx71c4SrTb64/n63Eoos0g4oQQmzBxo0bcenSJaSkpGDHjh1YtWoVJkyYYJEJHqkbza41I/3JF5Y3Lq82cjGD2R2cMCHIHp/FFWHTzRJUH5J39H5Fo2dlEUIIsRx37tzB559/jry8PLRo0QLTp0/HvHnzhA6LNAIleWak35JnOTNsDeVuJ8Ynvd3wcnsn9NuThZJ/M73schZ3izUIdKa3FCGEWLOVK1di5cqVQodBjIDaXs1IL8l7kAxo1AJF0zRBrhJ08+TXzDuXZdji1oQQQggxPUryzIhzaQbWtZl2m1GpwGSad0FsY+qlM/P2AiV5hBBCiMWgJM/MdJc3E1vRuDxdPXWSvPOU5BFCCCEWg5I8M7OFcXkP9fTiJ3nX81UoVtESNoQQQogloCTPzCx5ebOG8rATo41L1UQLDQdczlEJGBEhhBBCHqIkz8z0WvIscHmzhtDtsqVxeYQQQohloCTPzNgWrcBVKygpyskESosFjKhpeul02Z7PpiSPEEKI+c2aNQvjxo2r85hx48Zh1qxZZopIeJTkmZtUBtaXv36g6J71dtnWNMOW1rIlhBDTyMrKwnvvvYcuXbrA29sbISEhGD16NA4ePGj2WAxJqszpk08+wYYNG0x+n1mzZsHNzQ2rVq3i7T9x4gTc3NyQm5vboGuZ8hlSkicAW5p80d5NAmdp1SoXeRUskhTWWfuPEEIs2d27d9G/f38cOXIEixYtwqlTp7Br1y5ERUXh//7v/4QOr1YqlXnGaru6usLNzc0s97Kzs8NXX32FnJwcs9yvsWh5AgGw/kHAuSPabXHaHVhrWiQWMejuJcOxBxXafeezlGjjKq3jLEIIsTxOUwY0/txGnFP887EGHT937lxwHIejR4/Cyanqju3atcPYsWO122lpaZg/fz6OHz8OABgwYAA+/fRTtGzZEkDlihZ79uzBmTNntOds2bIF8+bNw/3793nHzJ07F8uWLUNOTg769euHr7/+Gh4eHli5ciW2bdsGANrEau/evQgICEBYWBg2bdqEn3/+GRcuXMCiRYuwYsUKrF27FiNGjNDe8+jRoxgzZgxu3LgBb29vvf/voEGD8Oyzz+Ktt94CALz88svYvn07EhIS4OPjg9LSUrRq1Qq//fYb+vXrh1mzZiEvLw+//vorAKC0tBTvvPMO9uzZAwcHB7z66qt691Aqlfj444+xfft2FBQUoF27dliwYAEGDRpU5/ciMjIS9+/fx2effYbPPvus1uPi4+OxcOFCnD59GnZ2dujfvz9WrFgBHx+fWp9hZGRknfduCGrJE4AtteQBNXTZ0rg8Qggxqvz8fBw6dAgvv/wyL8F76GGSwHEcJk6ciOzsbOzZswd79+5FRkYGJk6c2OChNKmpqYiJicHmzZsRExODq1evYtmyZQCAOXPmYOTIkRgwYAASEhKQkJCA3r17a89dsmQJZsyYgbNnz2L48OEYNWoUNm/ezLv+5s2bMWTIkBoTPACIiIjAiRMntNunTp2Ch4cHTp48CQA4d+4cpFIpunbtWuP5H330EY4dO4ZffvkFu3fvxtWrV3H69GneMbNnz8apU6ewceNGnD59GhMmTMD48ePxzz//1PlsRCIRFi9ejB9//BHJyck1HpORkYGhQ4ciJCQEhw8fxq5du1BcXIwJEyaAZdl6n6ExUEueAPTKqNy7A7AsILLOnFt38gUtb0YIIcZ1584dcByHtm3b1nncsWPHcO3aNcTGxqJVq1YAgE2bNqFr1644fvw4BgwYYPA91Wo1vv32W7i6ugIApk6dii1btgAAnJycYGdnB7lcDh8fH71zZ86cyWu1mzJlCgYPHowHDx6gRYsWKCgowB9//IGffvqp1vtHRERg06ZNUKvVuHv3LhQKBV555RWcOHECo0aNwsmTJ9GrVy9Ipfo9R8XFxfjvf/+LtWvXalvlvvnmG4SGhmqPSU5Oxo4dO3D16lX4+/tr4z527Bh++uknrFmzps7nExUVhd69e2PZsmX44Ycf9F7//vvv0bFjRyxZskS7b8OGDQgMDERsbCy6d+9e5zM0BuvMKqwc5+4FzsFRu82Ul4LJzRQwoqbpoZPk3cxXQ6GkosiEEGIshrbCJSQkoHnz5toEDwACAwPRvHlzxMfHN+ie/v7+2gQPAHx9fQ0eg6bbuta1a1eEhoZquye3b98ONzc3PPnkkwCA0aNHo2XLlmjZsiX69OkDAAgPD0dFRQUuX76MkydPIjw8HP3799e25J08eRIRERE13j85ORlKpRK9evXS7nNyckKHDh2023FxceA4Dn369NHeu2XLljh48GCtrXO6li5dil27diE2Nlbvtbi4OJw+fZp37Yf3N/T6TUUteUJgGLB+QRDfuqrdJUpLgsaruYBBNZ6bXIR2rhIkFFaOLOQAXM5RYkALO2EDI4SQBmjoGLnqysvLYWdnut95QUFBYBgGt27dqvM4juPAMEyNrz3cLxKJ9JJGtVp/ZLhuCxnDMGBZw/6Ad3R01Nv34osvYt26dXjnnXewefNmvPDCCxCLxQCAr776CuXl5QAAiaQyNXFyckJYWBhOnDiB+Ph4REZGolevXkhLS0NSUhIuX77MayWrzpCkmGVZMAyDI0eO6P1fDf1eduvWDcOHD8eiRYvw7rvv6l0/KioKy5cv1zvPy8vLoOs3FbXkCURj4+PyaB1bQggxnmbNmmHQoEHYuHEjiov1a6sWFBQAANq3b48HDx7g7t272tdSUlKQnp6O9u3bAwA8PT2RlZXFS4TqG4NWE5lMBo1GY/DxY8eORXp6Or777jvExcVh4sSJ2tdatGiB1q1bo3Xr1ggIqCoz9nBc3qlTpxAREQE7Ozt0794dq1evhlQqRffu3Wu8V+vWrSGVSnHhwgXtvpKSEty4cUO73blzZ3Ach8zMTO29H361aNHC4P/XwoULcebMGRw+fJi3PywsDPHx8fD399e7vrOzM4CGP8OGoiRPILa0vBmgv/IFJXmEEGJcq1evBsdxGDhwIHbt2oXExETcunUL33//vbbbcsCAAejYsSNmzpyJK1euIDY2Fi+//DLCwsLQr18/AJWJU35+PtasWYPk5GTtxISGCggIwM2bN5GYmIjc3Nx6S6W4urpixIgRWLBgAfr27YugoKA6j38Y64kTJ1BcXIywsDDtvujo6FrH4wGVrYCTJ0/G4sWLcfToUdy8eROvv/46ryWyTZs2GDt2LF577TXs3r0bKSkpiI2Nxddff409e/YY/Bxat26NqVOnYv369bz9M2bMgEKhwLRp03Dx4kWkpKTg2LFjePPNN1FUVASg4c+woWwqyVu5ciXc3Nx4X/UNUhWK7gxbsZUvb1bTDFuWiiITQojRBAYGaidPLFq0CI8//jiGDx+O/fv344svvgBQ2aW6ZcsWeHh4YNiwYXj22Wfh7e2NLVu2aLtr27Vrh88//xw//fQTHn/8cRw7dqxRdfamTJmCtm3bYuDAgQgKCsLZs2frPWfy5MlQKpWYPHmyQfcIDw8HwzAIDw/Xdu1GRkZCo9HUOh7voWXLliEiIgKTJk3Cs88+i5CQEPTt25d3zDfffIOJEydi4cKF6NmzJ8aNG4dTp07xWhMNMW/ePG0380PNmzfHgQMHIBKJMGrUKPTp0wdz586FTCaDXC4H0Lhn2BBMQUGBzXwSr1y5EjExMfj999+1+8RiMTw9PQWLKTExEcHBwfovlJfC6ZWh2k2OEaFkwz5Abp3j2FiOw2Nb01GorHo7nRvpjXZuwtXLq/XZE5OjZy8cevb1Kyws5E0oMAZTj8mzFTExMXjrrbcQHx8PBwcHo1zzUXj2jX3P2lRLHlA5YNPHx0f7JWSCVyc7B7BeVX3+DMdC9CBFuHiaSMQw6EmlVAghhNSgtLQU8fHxWLNmDaZMmWK0BI/UzeZm16akpCAkJARSqRQ9evTAwoULERgYWOvxiYmJJo+ptns85u4Nt+wH2u3si2eQpxabPB5TaS2WAKhK9A7fzkE486D2E8zAHN9fUjN69sKhZ1+3h7XJjO3h7FCib82aNfjyyy/Rq1cvvPHGG0Z/Vrb+7BUKBbKysvT219dqb1PdtX/99ReKi4sRHByMnJwcrFq1ComJiTh79izc3d0FiamurhNZzI+Q7f5Zu62MGgXlxDnmCs3ojt4vx8iDVQszt3eT4OxI0xR4NAR1WwmHnr1w6NnXj7prbcuj8Owb+561qZa8h0UVH+rRowe6dOmCrVu34vXXXxcoqtrplVG5Z57iiKbS3UsGBpV18gAgvkCNggoWbnKbGxVACCGEWDyb/vR1cnJC+/btceeOZZYn0S2jIk69DVjxjFQXmQghzfh/N1ykdWwJIYQQQdh0kldeXo7ExESTrQnXVJx3c3CyqiZmplgBpjBPwIiaTncd2/OU5BFCLJChy4QRIrSmvFdtKslbsGABTp48iZSUFFy8eBFTpkxBaWkpJkyYIHRoNROJwbYM5O9Ks+56ebpFkS/QDFtCiIVxdHREQUEBJXrE4nEch4KCghqXiTOETY3Je/DgAWbMmIHc3Fx4enqiR48e+Ouvvxpc1NCcWP/WECdXLRotSrsDTadedZxh2XrrJHkXs5XQsBzEoprXUiSEEHOTSCRwdnaGQqEw2jUVCgVcXFyMdj1iOFt/9s7OznqFlg1lU0neDz/8IHQIDaa/vJl1t+QFuUjgLhchr6Jy6ZgiFYf4AjU6uAtXFJkQQnRJJBKjzrDNysqCv7+/0a5HDEfPvnY21V1rjXSXNxPds8xJIoZiGAY9vfgJ3QUal0cIIYSYHSV5AtMro3L/LqBWCxSNcfTy5hcZPU/j8gghhBCzoyRPaE6uYJtVLb3GaNQQZaQKGFDT6U6+oCSPEEIIMT9K8iwA66fTmpdm3V223TylqD7P4rZCjbxyjXABEUIIIY8gSvIsgK1NvnCSitChme64PJVA0RBCCCGPJkryLIDe5Asrb8kD9EupUL08QgghxLwoybMAei15Vj7DFtAfl3cuq0KgSAghhJBHEyV5FoBt7g9OXFWyUJSXDRQbr0inEHSXN7uco4KaperyhBBCiLlQkmcJJFKwLVrxdll7a16gsxhedlVvrxI1hxv5NC6PEEIIMRdK8iwE6/cYb1ts5ePyGIahUiqEEEKIgCjJsxC2NsMW0O+yPU8rXxBCCCFmQ0mehbDFGba6LXk0w5YQQggxH0ryLIT+DNtkgGUFisY4unpKIalWFDm5SIPsMiqKTAghhJgDJXkWgnPzAOfkot1mlOVgsh8IGFHTOUhE6OTBL4pM4/IIIYQQ86Akz1IwDDRzxUIRAAAgAElEQVR64/JsoMtWZ1zeBRqXRwghhJgFJXkWRHcNW7ENTL7QXfmCWvIIIYQQ86Akz4I8CpMvYnNUUFFRZEIIIcTkKMmzILZYRsXfUQxf+6q3WZmGw7U8KopMCCGEmBoleRaEbRkIjqmajspkpwPlpQJG1HRUFJkQQggRBiV5lkRuB87HT7vJcBxE91OEi8dIeunWy6PJF4QQQojJUZJnYWxxXJ7uyhfnqCWPEEIIMTlK8iyMxk83ybP+cXlhHjJIq73T0oo1yCilosiEEEKIKVGSZ2F0W/LENtCSZydhEEZFkQkhhBCzoiTPwtQ4w5az/pIjNC6PEEIIMS9K8iwM5+kLzs5eu82UFoPJzxYwIuPo5SXnbVNLHiGEEGJalORZGpFIb+ULW5h8oVtG5UquEkqN9bdQEkIIIZaKkjwLpD/D1vonX7R0FMPPUazdrtAAV6koMiGEEGIylORZIFtsyQOAnlRKhRBCCDEbSvIskMYGlzcD9LtsL1CSRwghhJgMJXkWiPV7jLctSk8FVNafEOnNsKUkjxBCCDEZSvIskaMzWA8f7SbDspWJnpXr7C6FvGpYHu6XanCvWC1cQIQQQogNoyTPQtni8mYyMYOuHlQvjxBCCDEHSvIsVI1FkW2A7rg8qpdHCCGEmAYleRZKb1yeDbTkAbTyBSGEEGIulORZKFudYdtLp4xKXK4K5WoqikwIIYQYGyV5Forz9QMnkWq3RYV5gKJAwIiMw8dBjACnqtkXKrZy9QtCCCGEGBcleZZKLAHbMpC/656NdtnSuDxCCCHE6CjJs2C2uLwZoN9le57G5RFCCCFGR0meBdOfYWubLXnns5TgOBqXRwghhBgTJXkWTH8NW9toyevgLoW9mNFuZ5axSC3WCBgRIYQQYnsMTvKmTp2KP//8ExoNfRibi1537f0UQGP9K0RIRQy6eUl5+6iUCiGEEGJcBid5Z86cwQsvvIB27dph3rx5uHz5sinjIgA4V3ewLs2024xKCSbzvoARGY/uuLxzNPmCEEIIMSqDk7ybN29i+/bteOKJJ7B161YMHjwYPXr0wOrVq5Gaalnrqm7atAmdO3eGj48P+vfvj9OnTwsdUqPptebdSxYoEuPSXfmCZtgSQgghxsUUFBQ0eMR7aWkp9u7di+joaBw/fhwsy6JPnz4YP348RowYAVdXV1PEapCYmBjMnDkTa9asQZ8+fbBp0yZs3boVZ8+ehb+/v9njcd3k1qTz2TstwN331m4z/hkQBWY0NSzBZcEdPuIT2m0Jp0Ih2wcOKBcwKkIIIcQ4CmcIX9u2UUledVlZWZg/fz527twJhmEgl8sxdOhQzJ49G926dTNWnAYbNGgQOnTogK+++kq7r1u3bhgxYgQWLVpk9nianORlNgN3q1XVDvdCiDvYRmtesGgfbjNV/7fjmhfRD5cEjIgQQggxDktI8iSNPTElJQXR0dGIjo5GUlISvL29MWbMGMhkMmzbtg07d+7EihUr8Oqrrxoz3joplUpcuXIFc+bM4e1/4okncO7cuRrPSUxMNGlMPZp4PuNYDl4WrnAExwKMDcyLDueu8JK800xX9OMoySOEEGL9TJ1fAEBwcHCdrzcoySsoKEBMTAx+/fVXXLhwATKZDE8//TRWrFiBQYMGQSyuXK7q/fffx8yZM/H555+bNcnLzc2FRqOBl5cXb7+XlxeysrJqPKe+B9Rkx5t4vmMZIFED6n+/VWoJoHAE3EqaHJrQwhGH/2KEdvsMEwZQuTxCCCE2wOT5hQEMTvImTpyIQ4cOQalUomfPnlizZg1GjhwJNzf97kipVIqhQ4di165dRg3WUAzD8LY5jtPbZy4X+19o8jdazq6A9PRB7Xa53wIox89qamiC65irBPZka7dP2w9Gwfh8o32vEhMTLeKH7FFEz1449OyFQc9dOPTsa2dwp19cXBzmzJmDixcv4uDBg5g2bVqNCd5DAwcOxN69e40SpKE8PDwgFov1Wu1ycnL0WvesiaZLOG9bcsV6ZwtXF9pMCidJVUKXU84ipYjqMBJCCCHGYHCSd+3aNSxYsABBQUH1HwzA09MTERERjQ6sMWQyGbp06YKjR4/y9h89ehS9e/c2ayzGpO7UE9y/XeEAIEpPA5NxT8CIjEMiYtCN6uURQgghJmFwkufu7o4dO3bU+npMTAzc3d2NElRTzJ49G1u3bsUvv/yChIQEvPfee8jIyMC0adOEDq3xHJygaRfG2yW5ckagYIxLtygyrXxBCCGEGIfBY/I4jqtzEXmWZQUb91bd888/j7y8PKxatQqZmZkICQlBdHQ0AgIChA6tSTRh4ZDcqFplRBx3BqqnxggYkXH00imKfJ5a8gghhBCjaNDs2rqSuIsXL9Y5Rs+cZsyYgRkzZggdhlGpu4ZDvu0b7bY4IQ4oLQYcnASMqul0V764nq9CkYqFs9QGasQQQgghAqozyVu3bh3Wr1+v3X7//fexbNkyveMKCwuhUCgwbtw440dIAACcjx/Y5v4QpacBABiNBpJ/LkDde6DAkTVNM7kIwa4SJBaqAQAsB1zOVqF/C7nAkRFCCCHWrc4kz8PDQzstOTU1FT4+PvD19eUdwzAMHBwc0LVrV8ycOdN0kRKou/SFLP1X7bb4yhmrT/IAoKeXTJvkAcCeu2WI8JVBLBK++58QQgixVnUmeWPHjsXYsWMBAMOGDcO7776L/v37myUwok/dJRyy/VVJnuTqWVSwGkAkruMsy9fbW4att0u129/Hl+BMZgWW93TFEy3tBIyMEEIIsV4GD3z6/fffKcETGNumI7hqY/CYYgVEt28IGJFx9G8hh26b3Y18NZ4/mIvRB3NwM18lSFyEEEKINau1JS8trXLsl7+/P2+7Pg+PJyYgkUDduTekZw9X7bpyBsq2nQQMqukCnSX4rI8rPrpQiHKdWsiH7lfgyIMsvBjsgA+6ucDb3rpbLQkhhBBzqTXJ69y5MxiGQUZGBmQymXa7Pnl5eUYNkPBpuoTzkjzxldPAWOsfC/lyiBOe9rfD0ssKRCeV8V5jOeCnW6XYcacMb3V2xmsdHOEgodm3hBBCSF1qTfLWrl0LhmEglUp520RY6k69wIlEYFgWACC+nwImOx2cV3OBI2s6PycJvuvnjlmhSnx4vhCnM/k184rVHJZfVuDH+BJ81N0FY4PsIaL3JCGEEFKjWpO8iRMn1rlNBOLkAja4U2WdvH9JrpyB6snnBQzKuLp6yvDH057Yl1qOhRcLkaTg9+HeL9Xg1RP5WH+jGMt7uSLCl8qtEEIIIboM6vMqKytDly5deDXziHDUXcJ522IbWeKsOoZh8Ewre5x5zgef9HZFM7l+i92VXBWG7c/BC4dzcbuQJmcQQggh1RmU5Nnb20OhUEAmk9V/MDE5vSQv/gpQVlrL0dZNJmbwaqgTYkf5Yk5HJ8hqeMfuSy1Hn51ZmHe2ALm6MzcIIYSQR5TBo9ejoqJw8OBBU8ZCDMQ1DwDr3UK7zahVEF+/JGBEpucmF2FZT1ecf94HIwPt9V5Xc8B3N0vQ9bdMfPVPESo0ta+zTAghhDwKDE7y3n77baSmpmLq1Kk4fvw4UlNTkZ2drfdFzIBh9FrzJFdOCxSMeQU6S/DjQHccGOqJnl5SvdcVSg4LLyrQMyYTB7PF4DhK9gghhDya6lzxoro+ffoAAG7evIk9e/bUehyVUDEPTZe+wMHftNviuLMAywKiR6O0SG8fOQ4+44VdKWVYfFGBu8X8btrUYg0+TJBjV142Pu7lil7eNDmDEELIo8XgJG/evHlUQsWCaNp1BmfnAKa8ciyeSJEPUXI82KBQgSMzH4ZhMPIxBwwNsMd3N4qx6moRFEp+y92FbBWi/sjBc4H2WNzDBYHOBr/lCSGEEKtm8Cfe+++/b8o4SENJpNB06gnJheNVu66cgfIRSvIekosZzOnkjBeCHfDplSL8EF8CtU4v7a6UMuxLLcPMECfMDXOGm/zRaPEkhBDy6KJPOium7tKXt22LpVQawsNOjM/6uOHMSG8MDbDTe13JAmuvF6Pbb5nYcKMYKpbG6xFCCLFdDe67On/+PK5cuYLCwkKw/6668BDDMJg3b57RgiN1U3fuDY5hwPw7uUCcehtMbhY4D2+BIxNWsKsUWwd54H8XkrAu3RlxufwaenkVLN47V4jvbhZjSQ9XPBNgR0MRCCGE2ByDk7zCwkKMHz8e586dA8dxYBhGO3Px4b8pyTMzFzewQR0gvn1Nu0scdwbqJ0YIGJTl6O7G4mgPL0QnlWHZJQXul/InZyQpNJh0JA+P+8rwcU9XdPGkOpCEEEJsh8HdtYsXL0ZsbCzWr1+P2NhYcByHmJgYXLp0CS+++CI6d+6MW7dumTJWUgP9UiqPdpetLhHDYHwbB1wY5Y0F3VzgKNFvsTuVocSAvdl45e883CtWCxAlIYQQYnwGJ3l//vknXnzxRYwdOxYuLi6VJ4tEaN26Nf7zn/+gefPm+OCDD0wWKKmZRnf1ixuXgYpygaKxXA4SEeaGOePyKB9MaesAUQ29s78mlaFHTCaWX1KgSMXqH0AIIYRYEYOTvLy8PHTs2BEAIJVWFqEtKSnRvv7kk0/i0KFDRg6P1If1ewysp492m1EpKxM9UiMfBzG+fLwZTo7wxqCW+rXzyjXA6qtF6P5bJn5KKIGaJmcQQgixUgYned7e3sjKygIAODs7w9nZGYmJidrX8/PzodHQuqFmxzBQh+l02cY+GqtfNEVoMyl+i/LEb1EeCHXTH5qaVcbirdMFiNydhUP3qGWUEEKI9TE4yevRowdOnTql3R48eDC+/vpr/Prrr9i2bRu+/fZb9OrVyyRBkrrpddnGnQFoOS+DDGpphxMjvPFlXzd42+v/ONwsUGP0X7kY+1cO8iuoC5cQQoj1MDjJmzlzJoKDg1FeXtmqsWzZMri7u+PVV1/Fa6+9Bnd3d3zyyScmC5TUTtO+Czh5VV04UUEuRHcT6ziDVCcWMZjSzhGXRvlgbpgz7MX6A/YO3qvAyliFANERQgghjWNwCZXw8HCEh1e1GLVs2RLnzp3DtWvXIBaL0bZtW0gktGSUIGRyaDr0gOTySe0ucexpsIFtBQzK+jhLRVjQzQXT2jli2aVC/C+pjPf6n2nl+KyPQMERQgghDdSkFS8YhkGnTp0QGhpKCZ7A1F35q19I4qiUSmO1dBRjfT93HHvWC3Jx1f7UYg1SiqjECiGEEOtQa2aWlpbWqAv6+/s3OhjSeJrOvXnb4uQEMPk54Jp5ChSR9eviKUNPLxlOZii1+06kVyDQmf6gIYQQYvlq/bTq3Llzo5Z6ysvLa1JApHE4Nw9oHmsPcXK8dp847izUA4YJGJX169dcrpfkTW7rKGBEhBBCiGFqTfLWrl1L63laGXXXvrwkTxJ3hpK8JopsLgdii7TbJzIqtEv4EUIIIZas1iRv4sSJ5oyDGIGmSzgQ84N2W3ztEqCsAGT6RX+JYbp7yuAgYVCqrixJk17K4rZCjWBXqcCREUIIIXVr0sQLYlnYgDZgq43BY5TlEN+8ImBE1k8mZtDHW8bbdyJdWcvRhBBCiOUweAT5p59+Wu8xDMNg3rx5TQqINAHDQNMlHKKje7W7xHFnoAnrXcdJpD79mstx5EGFdvvv9ApMb0/j8gghhFg2g5O8ugodMwyjHadESZ6w1F3CIa2W5EliT0M5+U2AxpA1WmRzfnf3yYwKsBwHET1Tq6FmOcTlqlCsMs6qJVIRg26eMthJ6D1ACLFcBid5+fn5evtYlkVqaio2bNiAc+fOYceOHUYNjjScJrQ7OJkcjLKy5UmUlwVR2h2wAUECR2a9wjykcJEyUKgqx+XllLO4ma9GB3cal2cNilQshu7LwT95KqNe19NOhCPPeiHAiUrqEEIsU5PG5IlEIgQGBmLlypVo1aoV5s+fb6y4SGPJ5NCEduPtEl85LVAwtkEiYhDuy2/NO5FRUcvRxNJsuFFi9AQPqEz2V1ympe4IIZbLaBMvIiMjceDAAWNdjjSBuks4b1tyhVa/aKpIX/7ki7/TKcmzBhUaDhtvFpvs+r/fLUep2jhdwIQQYmxG62dITEwEx3HGuhxpAk0YP8kT3bkJRpEPzqWZQBFZv3464/JOZVRAw3IQi2hMliXbfqcUmWVVSZi9mEFPndnSDXUlR6ntui9Wc9ifWo5RrR2adE1CCDEFg5O8U6dO1bi/sLAQJ06cwMaNG/Hcc88ZLTDSeJy7FzStgiG+mwgAYDiucvWLyKcFjsx6dXSXopmcQX5F5Yd7oZLDP3kqdPFsWsJATIfjOHx7jd+KN6WdAz7p7dak6354vhDfXK+6bnRSKSV5hBCLZHCSN2zYsBqr/HMcB7FYjFGjRhlUZoWYh6ZLuDbJAyq7bCnJazwRwyDCV469d8u1+06kV1CSZ8GOPqjAjQK1dlvEAK+GOjX5umOD7HlJ3uH7Fcgp18DTTtzkaxNCiDEZnOTt3btXbx/DMHBzc0NAQACcnZ2NGhhpGnWXvpDt/kW7Lb52AVCrAAnNCG2sSN0kL6MCczrR+95SVU/EAGB4K3sEOjd9hEpndynauUqQUFiZQKo5YGdyGV4OaXoCSQghxmTwb7yIiAhTxkGMjA1sC9a1GUSFlaVvmPIyiOPjoOnYQ+DIrFe/FvxxeaczlFCxHKQ0Ls/i3MhX4fB9/uSY2R2Mk4QxDIOxQQ5YVm1mbXRSKSV5hBCL0+DZtUVFRdi3bx82bNiADRs2YN++fVAoqIyAxRGJ9CZgiGmWbZO0c5XA277qR6ZYzeFKjvFLc5Cm+1anFa+3t6zJEy6qG93anrd9IVuFZIW6lqMJIUQYDUryvvjiC7Rv3x6TJk3C/PnzMX/+fEycOBHt27fHmjVrTBWjwZ555hm4ubnxvqZPny50WILRL6VyGqAZ0I3GMAwiderlUSkVy5NZqkF0Uilv32tGasV7qJWzBOE+/KQx+k5pLUcTQogwDO6u/fLLL7F06VJERERgxowZaNOmDTiOQ1JSEjZt2oSPP/4YEokEb775pinjrdfEiROxcOFC7badnZ2A0QhL06E7OIkUjLqytUmUnQ7mwV1wLQOFDcyKRTaX47fkMu32iYwKvBNG4/Isycb4Eiirla4LdBZjWIDxfw+Mbe2AM5lK7XZ0UinmhTnXOEHN2vxxtwx77pZBqTHO9WRiYEALO4xpbQ8JDW8wC6WGQ/SdUlzNVWHUY/bo7SOv/yRicwxO8jZu3IiBAwciJiaGt79jx44YPnw4Ro4ciY0bNwqe5Dk4OMDHx0fQGCyGnQM0IV0h+ee8dpfkyhmoKMlrNN16eWczK1Ch4SAX0weXJShVs/ghvoS3b1aok0nqGT73mD3mnSvAw+VwkxQaxOao0M3Lumdc/xhfgrfPFBj9ur8mleHLf4qwtIcrnvST20QybIk4jsOeu+VYfLEQyUWVWfp3N0uwPrIZxrehUj+PGqagoMCg/rsWLVpg6dKlmDFjRo2vb9q0CQsXLsSDBw+MGmBDPPPMM7h58yYAwNvbG4MHD8Z7771X58zfxMTEWl+zBZ4Xj8L/z63a7WL/Nkic8p6AEVk3jgOGXbBDlrJqpMOGTuXo5kqrHliC39Il+CSpKslyFnP4vVcZHExU3WTuDRmO51X9rTyuuQpzg6x3nOaxXDHeuykDC9MmYL3cNHjrMSWCHWn4iDFdLxLhP8lSXFHov+HFDIf/hFagTzP6XWVLgoOD63zd4Ja8sLAwxMfH1/r6zZs30aVLF8MjM4ExY8bA398fvr6+iI+Px5IlS3Dt2jXs2rWr1nPqe0BNlZiYaPJ71IVp5gxUS/Ic791BcHNvwMlVsJjMxVTP/omMPPwvqarL9o7YC+OCXYx+H2smxPue5TjsuJoFoGoCxEuhzghr72eye06XluH40Tzt9pF8Ob4JaiVol2Rjn/3ZzAp8dCYH5kgBzheIMTHWHpOCHfBhNxf4mioLNyMhf9enFqux7JIC2++U1XqMhmPwfoI9fn/a0+bqewr9OWvJDE7yVq1ahVGjRsHf3x8vvfQSnJwqBzIXFxdj06ZN+OOPP/Dbb78ZPcDly5dj9erVdR6zd+9eREZGYurUqdp9HTp0QGBgIAYNGoQrV64InoAKhfP0hcavNcT37gAAGI6FJO4c1I9HCRyZ9YpsLucleSfSK/B+VwEDIgCAA2nluF1thquEgcnLmgzxs4OLlNEuc5ZdzuLYgwoM9rOuscAJBSqMP5SL8mpj8EQMsLSHC1oYIQE7dL8C226Xonq7HQfgv4mliEkuwxudnPB6Byc4So22nPojQaFk8cXVInx7oxgVNYyfFDGVvQ8Pn3uxmsOYv3Lx1zAvo9SMJJbP4O/ySy+9BIZhsGTJEixbtgze3t5gGAaZmZlgWRY+Pj56M1kZhsHZs2ebFOCsWbMwduzYOo/x86v5L/WuXbtCLBbjzp07j2ySB/y7+sW/SR4AiOPOUJLXBJE64/IuZCtRqmbhIKEPKCHpFj9+vrU9WjqatoXITsJgeKA9NidWzayNTiq1qiQvvVSDUQdzUaDkd53+p68bXmzraJR7PN/aAa+EOuKjCwq9Geklag4rY4vwU0IJFnRzwfggB1oTuh5qlsPPt0qwMrYIOeU1t71G+cmxtKcrjt6vwPvnC7X7s8tZPH8gBwee8YKXvfW3oJK6GZzkeXp6wsvLC23atOHtf+yxx4weVHUeHh7w8PBo1LnXr1+HRqN55CdiqLuEQ/b7Fu225J/zqFCrAQn9JdcYAU4SBDqLkfLvoGYVC5zPUmJAC+v5YLc1V3KUOJmh5O0zVvHj+owNcuAleb+nlqNYxcLJClqlCpUsRh/Mwb0SfjPQ/C7ORkvwHgrzkGH3EA/8mVaOhRcVSCzk1xVML2Ux+2QB1t8owfKerujfgmaD6uI4DgfvVWDhhULtiiu6OjST4ONertrfR+3dpEgv1eCraus43ynSYNyhXOx5ytMq3qek8Qz+lP/jjz9MGUeTJScnIzo6GlFRUXB3d0dCQgIWLFiAzp07o0+fPkKHJyg2KAScsyuYosq/5pjSEogT/4EmhPoYGyvSV46UoqoP9r/TKyjJE5Bu8eNIXxnCPMwz7ijCV4aWDmLcL61MlErVHPallmNskGXPZKzQcJh4OBfX8/nJwpS2Dnivi2nKAjEMg6cD7DHYzw4/J1S2ROVW8Fui/slTYcSBHAzxt8OyHi5o60ZLMQKVz2XB+UIcr6U2p6+9CB92c8ELbfRbQhf3cEFGqQbR1cbsXc5RYdrRPGwd7EGr9tgwm0nhpVIpjh8/jueffx49e/bEe++9h4EDB2L37t0Qix/xJmmRGOrO/ESXVr9oGt1SKieoKLJg7pdoEJPMH3D+ekfz1S4UMQxG6ayAoVuM2dKwHIdX/87Xa/182t8Oa8LdTF7eRCpiMCPECZdH++CtTk6Q1/Ar+kBaOcJ3ZWHumQLklBupYJ8VSi/VYPbJfPTbnVVjgucgYfBeF2dcHOWDyW0da+zqFjEM1kY0w0Cd1tG/7lfgzVMF4KhIvs1qUH+dRqPB1q1bcfDgQaSmpgIAAgICMGTIEEyYMEHQZMrPzw/79u0T7P6WTt01HNJTB7TbkitnoJzwmoARWTfdcXmXc1QoUrFwpq4Ps9twoxjqap9Rwa4SPOln3q6+sUEOvO6wow8qkFWmgbcFjnniOA4fnC/EzhR+YtzLS4bvBzQz68xgV5kIi3u4Ylo7Ryy9pOAVGgcADQdsii9BdFIp/q+zM14NdYKd5NFodSpRsfjqWjG+vlaMUrV+EsYAeCHYAR92dUELA8aeysQMfnnCHcP25yAut6rMz9bbpWjhIMaC7lQhwBYZ/ImkUCgwZMgQvPnmmzh+/Dg4jgPLsjh+/DjeeOMNPPXUUygqKjJlrKQJNB17gquWhIsy0sBkpAkYkXXzdRCjrWvV30gaDjij0ypCTK9IxeKnW/zix7M7OEFk5kK7Hd2lCG3Gfz/oti5aiq+vFWP9Df4zC3aV4H+D3QWbPNTKWYLvB7jj0DAv9K5hjWGFisPiSwr03JmJHXdKUahkoTDCV1kNyZPQNCyH/94qQfffMvHplaIaE7z+zeU4PtwL30Q0MyjBe8hZKkL0YA+0cuKfs/pqEb6PL67lLGLNDG7JW758OWJjY7FixQpMnz4dMlnlD6JKpcIPP/yADz74AMuXL8enn35qsmBJE9g7QtMuDJIbl7W7JFfOQPWUv4BBWbfI5nLcqjb4+e/0CkT507g8c9p8qxSKarNCPeQijBNoLNzY1g5YfEmh3Y5OKsWroeaZ/GGoX5NKsfCigrfP116E36I84G4nfKtjDy8Z/hzqiT13y7HoYqF2ctNDacUazDieb9R7PtlSjk0D3OEqE74VPqtMgwmHcnEpp+aC2u1cJVja0xVRTVgxxMdBjJgoT0T9kc0bDzn3TCG87MQYHmhfx9nE2hj8rv79998xbdo0vPrqq9oED6gcC/fKK69g6tSp2Lt3r0mCJMah6dqXty2Oa1p5m0ed3ri8DBqXZ04alsO6G/zWh5dCHGEvUHfeaJ1xeZdzVLhdaDmrXxy9X47ZJ/gJkouUwfYoTwQ4Wc5Me4ZhMCLQHudG+mB5Txe4ykz7/fzrfgUmHc5FhUbYVr0iFYsxf9Wc4HnaibAm3BWnnvPGEH+7Jo+ZDHKVIPpJDzhU+1nhALz8dx5O0+8xm2Jwkpebm4uQkJBaXw8NDUVubq5RgiKmoQ7TmXyR+A+gpB/oxorw5XcrXc1VIb+Clgwyl99Ty5FaXNXSIxcDM9obt+xHQ/g5SfTeE9F1rEBgTldylJh8JI83dlEqAv77hAc6uVvm7FW5mMHrHZ0RO8oHr4Y6wpS5+4kMJWadyAcr0AQEpYbDlCN5vLFyQOV7+u1OTrg8ygcvtXcy6njJ7l4y/DTAHdWX3a7QABMO5+JmvuX8cUKaxuAkz9/fH0ePHq319aNHjy9q+isAACAASURBVMLfn7r+LBnn3RKsu7d2m1GpIE66IWBE1s3DTowO1cZhcQBO0V/BZvPNNX4r3tjWDoJPdNAtmxKdVCr4zMWUIjXGHspFsc7YrvWRzayiFp27nRif9HbDuZE+GNPaHp52IjhLmSZ/6c7ojUkuw4ILhTUHYUIcx2HOqXwcecD/3RHpK8OF532wqIcrXEzUlRzlb4cvH3fj7StUchh9MBf3Sx7dGc22xOA2+kmTJmHJkiWYNWsW3njjDW1R5MTERHzzzTfYt28fFi9ebKo4iTEwDDShXSE6WTXLVnwzlurlNUFkczmvztjf6RUY1orGtJja+awKnM/mT3R5zUzFj+syvJU95p4pgPLfBt2UIg0uZqvQs4bJBOaQU67BqIM5yCrjtzB/3MsVo1pbdh0/XUGuEmzs72606+WWazDkjxzeUnjfXi9Bcwcx5pixBM+SSwr8msRv8e3qKcW2wR5mKVQ8KdgRGaUsll+uGqt5v1SDMQdzsG+oF9zkwo9VJI1n8HfvzTffxNSpU/G///0Pjz/+OHx9feHr64uIiAhs3boVU6dOxRtvvGHKWIkR6CZ04moTMUjD6Y7LO0n18sxirU4r3uCWcoQ0E77b0U0uwlM6k2+EqplXomIx9q9cJCn4LTKvd3Ay22oglszDTozfojzgY8//GPzogsJs37P1N4rxn3/47+XHnMWINlOC99A7nZ30hjrcKFDjhcO5KLfAGcjEcAa35DEMgy+++AIzZ87En3/+ibS0yvIbAQEBiIqKQmhoqMmCJMajm+SJ7sQDFWWAnFqfGqOvjxwiBmD//T14o0CN7DINrQlpQilFavyeWs7b93pHy0laxgQ5YM/dqvhiksuworerWVcVULEcph3Lw2WdQfxjWttjaU+qh/ZQK2cJtj/pgWf256BIVZXMzD6ZD297kUlXsdmZXIr3z/G7hz3tRIiJ8jT77w+GYfBpb1dklGp4P1unM5V45UQefujvTusJW6kGT6kKCQmpcwIGsWychw9Y7xYQZT0AADAaNcS3rkHTqafAkVknN7kIYR5SxFb7MD2ZUYGRj1lXV5g1WXe9WJtUA5VrdfZvbjljy6L87OAqY1D4b2mX3AoWR+5XYIiZyutwHPD26QIcvMdvVR7QQo5vIpqZvYagpevsIcPmJzww+q8cqP7t1VaxwKTDefhjqKdJlsc7kV6BV/7OR/U2MkcJg+1PeuAxF2FmOotFDDb2d8fIAzk4m1U1FGJ3Sjnm2xfis96uJl8JhRhfg9uDk5KSsH79enz44Yf48MMPsWHDBty+fdsUsRET0YR0422Lb1KXbVNE+uoucUZFkU2loILF5kR+V9rsDk4W9eEjFzMYGSjcMmfrU6V6z6iTuxS/DHSHTGw5z8mS9G8hx/rIZrx9xWoOY/7KRUqRupazGud6ngoTj+Rqx20CgIQBfh7ojq6ewozdfMhewmDbYA+0c+Unmhtvluh1KxPrYPCfDGq1Gu+++y5++eUXsCx/EC/DMJg8eTLWrFkDicRy6i2RmmlCukJ6/HfttvjmFQGjsX79mst5S1r9TePyTObnWyUoqTZGyMdeZJETCMYEOeCnW1WJ1r7UcrMse/dDfAl+SOOPTQxwEmPHkx4mm6FpK0a1dkB6qQYLLlRNQMgqYzHqYA4OPuMFDyMUi04rVmP0Xzm8At4A8HVEMwz2s4xC6s3kIuyI8sCQP7LxoLTqs37JJQV8HcSY0Mbyft5I7QzOyJYtW4affvoJ48ePxyuvvIKgoCAAwO3bt7Fhwwb88ssvcHNzw5IlS0wWLDEOTUgX3rYoOQEoLQYcLGdckzXp4yODhIG2BtlthRoPSjQNWm6ooTJLNTh4rxxtXSXo5S2zqJYsU1GxHDboFD+eGeIEuQW2ToX7yODnKMa9f8tQlGk4/H633KQfkL/fLcPcswW8fe5yEWKiPODjQGNEDfF6R2ekl7L45nrV+yxJocG4Q7nYPcQTjk1I0vMrWIw+mIv0Un4jyaLuLhaXOPk7SbD9SU88vT+bl5DOOZkPLzuRxSSkAHAtT4WY+xI0K7e8ZVWfCrBDsKuwE8IMTvK2bduG5557DuvWrePt79q1K9avX4+ysjJs3bqVkjwrwLl5gG3RCqIHdwEADMdCfOsqNF361nMmqYmTVITuXjKcqzaO5URGhcmW18oq02DQ79naBGJACzmW9XS12KK2xrIzuYzXsuAgYTBdwOLHdRExDMYG2ePzq1XJQnRSqck+zM9mVmDG8TzeWEV7MYPoJz3QRuAPGWuzrKcLMss02FGtkPXFbBWmH8vDlkEejSpIXKbmMOFQLhIK+V2/L4c44q1OlvnHdQd3KbYO8sDzB3K0XctqDphyNA+nn/NGK2fhe+2OPyjH8wdzoeFkQLKi/hPMzM9JLHiSZ/CfJaWlpYiIiKj19X79+qG8vLzW14llUeuVUokVKBLboD8uz3RdtosuKrQJHgAce1CBfruz8PrJfKSX2mYBU47j9MqmvNDGAc0suIbXmP9n776joyi7OAD/pm5JTwg1CSXSe0eUjjRRBClSbQhSLSAK6gciCEQsiKgUAQVUCKIiKs0KIk2aUkPvgQRSt8/M90dkk9ndhJQt2c19zuEc553Z2Tdrsnv3Lfc6TCP/fs2M6x74/3MizYrHtqfClOfWHAOs6BSBFtG+XePlj1iGwaL7I5w282y5bMbzu9KKnNxakhWM/P2WajMDAPSppsXcVqV7M8P9FTVY2iESeXuYbXP+W/QFRVHwv/0Z8HE1ulKv0O+Qbdu2xe7d+dc63b17N9q2pZEgf+GUL+84BXkl0a6S+sPUU+vy9iSb8eVp50X8CoDVSQY0/zoZcw9mINsaWOXVdl634Mit3B3MDIAx9UrnCMgddSME1eiqrABfn3NvmbMr2RL6b01FmsMar/fahqNHLKVFKi4Nx2BV50in0fHVSQa8dbDw04KKouCl3en4wSHlT9sKIha384+0JH2q6TCzhTrtzprTBp+XcNx53eJUBo44K/R46zvvvIP+/ftj0qRJGDVqFGrUqAEAOHv2LBYvXox//vkH69ev91hHiXtJdRqrjrmLp4GsdCA4zEc98m+tymsgsrBPa1zMknA+04ZqbpzSkGQFk3cXXHbJYFMw91AmPjuVjVebhWJwvN4vPkju5sOj6pGDnnFaxIf5frrobgbG6/BPnuB03RmD2xIRp5llDNiaohrVBYBRcRaMqFU6p7H9SajIIvGBKHT74aaqRvLbhzNRWc/hyUIsFZh/OBPLT2ar2uqG8/iiSxS0nizG62aj6wXj42NZ9uUSBpuCFSez8WIj71UGcbTI4T2hUaTglJze1+J9lA4nr0L3oGXLllAUBadOncKKFSvsQ8x3hq55nkfLlupcawzD4OrVq27sLnGbkHBIcfHgLp6xN3EnDkNq0d6HnfJfOp5By/Ii/ryeZ13eNbNbg7wVJ7NVAQMAvNYsFOvOGHDKYa3PNYOM8TvT8MmxbMxuGYoOHkzq6mlJ6VZsueSQ/NhPKjY8Wl2P/+3LsOdDO5xqxck0K2qHl2ydjsmmYOgvqTiWpv7//mRtPUaW802FjUBUUZ9TFaP7Dym4lWfkatLuNETr2AJLGK46lY3ZDqN+VfQc1ncr53elwkSOwai6wZjxd+66tyXHsjC+frBP0vIkpVux2eE9YU7rMNxXsXQFeaVBoT+B+vbtW6rXDpCik+o0VQd5xw5QkFcC7Stp1EHedTOGu2lEJcUk4c0D6oXFj1bXYXLjEDzXMBifnczGnIOZSHWYQvn3lhV9tqSie4wGM1uGlTi48IWPHL6xNy0n4N4K/rHWrHIQh/aVNPg9z/R94hkjXmte/P8PsqLg2R23Vb9rANArTov5bcJx9kxKse9NnNUME7C2axQe3pwC438LwGQFGPn7LXzbvRzaVHAOLLZcMuH5XeqdzmEig/XdolDFg7vuPemJ2kF4+3CmPYXRdaOMr88ZfbIz+OOjDqOjwRLa+sl7grcVOshz3FVL/J9UrxmwNXeKnfLllUy7ihrMQe439x3XzFAUxS1fjt7Yn2GvoAAAwTyDN1vmTK0LLIORdYMxIF6P945k4uNjWTA7rO/fctmM7Vdu4InaQXilSYjflF1LNUlOaxDHl7Lkx3czMF6nCvLWnTXg1WYhxfoZFEXB1D3p+Pa8em1f6/IiPqXSUx7TsryI5R0jMPSX3B3MJgl4bHsqtjwYrfry9PdNC5787ZZqQ4CGA77qGlUq6isXV7iGxdCaeiw5nhtgffhvJh6L13n17zHVJOGL0+ogb1gVm1+9J3iTf40ZE7eSajeCwuT+CnBXz4NJS/Vhj/xbi2gRujxTF9cMMs5klDxb/v6bFqxyqGAwpUmIUx6+MJHFjBZh2Nu3AvrXcJ5GkhTg0xPZaPZ1Mt4/kukXhcc/PZGt2jUaE8ShTzX/2lDwUFUd8ubRvZglqdLtFMUH/2Zh8XH1B1ytMB5fdY2Czo/WePmjnnE6vN82XNWWZlHw6NZU+6720+lWDNyWCkOevy0GwNL2kbjXxYifvxlbPxh5v0ccvW3zevL35S7eEzpHBWZWAXegIK8s0wdDrlZL1cSdoNG84hI5Bm0qOO6yLVmJM0lWMPkv9bRPrTAezxaws7RqCI9lHSKxvXc02pR3nsLItCqY8XcGWmxIRuIZA+QipoTwFpNNwVKHgGZ0vaBi5SnzpVCRRc9YxzJnRd9l+9VpA6bvV0/ZV9LnVCcozalkAsmIWkGY2lS92eBytoRHt6bgvIHBo1tTnZZMvN0mDA/72ReT/FQL4dE7Tr2+15vpVEw2BUtPuHpP8FoX/A69NGWccyoVCvJKwnF3V0nz5a1KMuCQQ5qAhDZhhVrs3CJaxE+9yuGzTpGoHuI8PXs5W8Izf9xG10038Vdy6SvFlnjWgJum3A/MEIHx212jA+PVH/LfnDfAUoQEXz9fMWH8ztuqtlCBQeID5RAX7PsdfGXJlMYheKKWeh3asds2PHZQiwtZ6hGlSY2CMbKuf2wSKizH3eHbrphxIs07qUzWnzPghjEw3hO8hd4dyjipXlPgxy/tx9zxAz7sjf9r5xjkXS/+urxbJglv/K1OmdKnmhYdi7BTlmEY9KmmQ49YLZadyEbCIfXaPgA4kGJFzx9TUD2EA+emdS0WqxbikeQS3SPZqP7AHF5LjzA/rb/apYoWERoGt805r/1ts4LtV0zoFXf3EZ5DKRaM+OUW8s6uiyywuksUGgR4lZPSiGEYzL83HMlGGT/l2eEpKeq/nSH36PFas1DHh/u91hU0aBktYN/N3MDuo6NZ+OC+CI8+r6Io+Mhh1PDOe8INjz6zf6Mgr4yTajaAwnFgpJwPVDb5CpjUG1Ciyvu4Z/6pSZSAEIFBpjXnEznFJON4mg31irHg+s0DGfagAMgp4zW7ZfHyGGo4BuPqB2PIPXokHMrAshPZcMyXfC7TnetaWMBY8vWId3AMCpyiLu1EjkG/6np8mmeqad0Z412DvHMZNgzYlmrf0XjHJ+0iSl1OsLKEZxl82jECj2xOxd6bzksyHqiiwYL7wgN2M8C4+iF44rdb9uO1Zwx4rVkoyntwQ9cvV82qlEEsA4wOsFFSTyj01+JLly7BaMx/HYnRaMSlS5fc0iniRVo95Bp1VU1U/aL4eJZx2spfnIXJh1IsWHlSvdlicuMQxJRwai5Cw2JO63Ds6VsBD1X1n9x5D1fV+f205ECHzTA/XTIi3ZJ/1YCbxpy1XnmnrAFgTqsw9KtRugral0V6nsVXXSNRyyEpd7NyAlZ0ioTgZ2tHi6J3VS3ignMDOrME1RcYT1jkMIrXp6quVNTPLe0KHeQ1btwYmzZtyvf8Tz/9hMaNG+d7npReVOLMvZymbIsY5MmKgsm705B37CY+lHNbpQQAqBHKY1XnKPzYsxxaRJfuKb8aIRxmt/L/Siytyouo6vDB+P0F11+cs6wyBm1PxVmH0dWJDYIxxk8SQZcFkVoO67tFodF/0+ZtyotY2zUKwYJ/LisoLJ5lnEbWlx3PhtFDO/aP3rLil6vq99HxDejvoDAKHQbfrSizzUZ5avyVVK8ZsHGV/Zg7fhBQFID+fxaLY5C387oZkqwUOofZmiQD9t9UL2Se1zocGg9klm9bUYPtvcvjukFCphvr3Z4/fwHVqlUt8X0ElkHVYC4g3lsYhsGAeD3mH87NpbjujBHDaqoXjltlBU/8egsHUtS/AwNr6DCjReCt8fJ3ccE8fn0oGgdOnEbzupXBBsDvamEMr6XH3IMZyPhvaUqqWca6MwY8Xtv9GyE+OqYexWtTXkTzaEp+XBhFGuvM7402PT0d27dvR3R0tFs6RbxLiq8HRRDAWHM+VNjUZDA3r0EpX9nHPfNPDSMFhIuMvWh8ukXBP7esaFLu7m9KaWYZMxzSZDwYp0XXGM9OrVbUc6gIN66n0SuoGVa6Rwh9YWANnSrI23HNjKvZkj3noaIomPhnGrZfUY9adKqswYf3R5SZAMLfcCyDcAFl6v9PiMDi8dpBWJhnGnXR0SwMr6V36+uQbJCQeEa9dGUcjeIVWoFjynPnzkVkZCQiIyPBMAxGjRplP877r3r16li/fj369u3rrX4TdxI1kO5poGrijtEu2+JiGQb3V3TeZVsYsw9mqPJsaTngrQCYqiQ5aoULaBKVG/wqAL4+m/sBNutAhlOFj0aRAj7vHOmTGqGEFGR03SDkzcF9Kt2G7Zfdm45p6Yls5F26Wj2EQ69Y/1lP7GsFjuQ1bdoUTzzxBBRFwcqVK9G+fXvEx8errmEYBnq9Hk2bNsUjjzzi0c4Sz5HqNgWfZy0ed+IQbB17+7BH/q1dJQ02XcxNr7DjmhkTGoQU8AjgSKrFafHyi41CaHFxgBkYr8eh1NzUOGvPGjGhYQiWHc/CO0fU01JVgzkkPhCFkABf40X8U0wwj77VdUg8m7u29MOjWejmpiDMYJOx3OE9cUy9YCrfVwQFfnp0794d3bt3BwCYzWY89dRTaNGihVc6RrxLqttEdcwdO0Dr8krAMb3FrusWWGUl3x13iqJgyu50e11MAKgWwmHiXQJD4n8era7Da/ty/1//e8uKtw9l4K2DmarrojQsvu4WhQp6/6gzTMqmcfWDVUHeH9fMOJJqQaOokq+Z+/K0AbfyzGyEiQyG1KSd5UVR6K+HH330EQV4AUyuUReKmPvti02/BebaRR/2yL/VCecRrc3988qyKTiUkn9W+LVnjNjtUM90buswaKkeacCpoOfQ0eFLwOyDmard1HqewdoHonAPrWskpVyTciLuq6gO6BYdLXmpM1lR8JHDfZ6qHRTwO5fdrUiv1sWLFzFx4kQ0adIEsbGx2LlzJwAgNTUVkyZNwqFDVBLLb/ECpFoNVU2USqX4GIZxWf3ClXSLjP/tV1e26B6rRY/YwKh3SZwNjM9/NIJjgBUdI9GCdg8SP+GY3unrs0ZczS5ZcvXNl0w4k5F7D4EFRvlxQnRfKXSQd/LkSXTo0AHfffcd4uPjkZ2dDem/KglRUVHYt28fli1b5rGOEs+T6qnz5fEU5JVIO4fNF/klRZ57MENVj1HDAfNa02aLQPZgVS10+WykWHBfOLrTwnLiR3rEahEfmruswKYAS4+XbDTPcTSwX3UdKtHShSIrdJA3ffp0hISEYN++fViyZIlT3rxu3bph9+7dbu8g8R6pjoukyLL7cqeVNY7r8vYkW2B2KEp/9JYVS46rFxY/1zAE1WizRUALEVg86KLiyKtNQ5zy5hFS2rEMg7EOo3nLT2Yjq5i5Nw+lWPDndfXyFXcmgy9LCh3k7dq1CyNHjkT58uVd5suLjY3FtWvX3No54l1ytZpQdLkfMExWBtjL53zYI/9WI5RDZX3un5hRUrA/T51LRVEwZU8a8sZ9scEcnm9Ib2Zlwcg6Qci7D+ep2kGY3Jg22hD/NPgePSI0ub/Q6RYFXyQZCnhE/hxH8dpX0rhlI0dZVOggz2azISgo/2+Yt2/fBsfRUKpf43hItRupm07QlG1xuVyXl2fK9utzRqdvq3NahUHP08LisqBNBQ1WdIzEo9V1+OC+cLzdJiwgKnuQsknPs3i6tvoL6kfHsiDJRSt1djnLhg3n1OX+xtMoXrEV+tOkXr162LFjh8tziqLg+++/R5MmTVyeJ/5DqttMdcwdoyCvJByDvDvr8jKtMl7fp95s0bWKBg/G0VqssqRPNR0+7RiJEbWCKPcX8XvP1A2CmCeqOJ8p4Yc8+UILY/HxbNXsRu0wHl1jNPk/gBSo0EHemDFj8N133yEhIQG3bt0CAMiyjFOnTuGpp57CwYMHMWHCBI91lHiHU768k4cAuWS7pMoyx3V5+29aYLDJSDiUiWuG3PUqIptTn5ZGcggh/qqCnkP/Guqd445pUAqSaZXx2Un1GuWx9YPLVLk4dyv06u5HH30Uly5dwuzZszF37lx7GwBwHIdZs2bhgQce8EwvidfIsfFQgkLBZOfUT2UM2WAvJEGuXsfHPfNPccE8qgZzuJCVEyhbZGDVKQM+dnjjm9AgGPFhtNmCEOLfxtUPxhd5SvPtvmHB/puWQqUEWnXKgAxr7jBeOS1bYLohcndF+lR5/vnn0b9/f2zcuBFnz56FLMuoXr06Hn74YVStWtVTfSTexLKQ6jYBv/8PexN3/BAFeSXQvpIGq/IsQJ62N101HRETxOHFRrTgnhDi/+pHCuhcWYNfruauP170bxZWdIos8HE2WcEnx9Rffp+uEwQdJYQvkSIPHcTExGDs2LGe6AspJaS6TdVB3rEDsPZ6zIc98m/tHII8hywqmN0qDEGUxZ0QEiDGNQhWBXnfXTDiQqatwDrcmy6YcDErd2mQhsvZgU5Kxm8+WVauXInevXsjLi4O4eHhuHDhgtM1aWlpGDVqFOLi4hAXF4dRo0YhLS3NB731b7a6DvnyTh0BbDYf9cb/OW6+yKtjZQ0edpEvjRBC/FXnyhrUDc8N6GQFWHyX5MiLjqprNw+K1yNaRxk7SqrAkbzGjRsX6WYMw3istJnBYEDnzp3Rq1cvTJs2zeU1I0eOxOXLl5GYmAiGYTBx4kSMHj0aa9eu9UifApVSuSrksAiw6bcBAIzZBPbcCcg1G/i4Z/6pkp5DzTAeSenqQJlngITWlDaDkEKRJXD7d4A7cwy2pm0h16FsDl5js4Hf/TPYS2dga9P5rst3mP+SI0/4M3eQZdUpA15uEoow0XlsaU+yGftuqmt7U/Jj9ygwyLvnnnsK9QF05coVnDhxwqMfVnemiA8edJ3S4+TJk9i+fTs2b96M1q1bAwDee+899OzZE0lJSahZs6bH+hZwGAZSnaZg9/xib+KOH6QgrwTaVdQ4BXlj6wejVjgVoCfkbrijf0P86iNwF88AAMTN62Ae/hysXfv6uGcBTlHAHdgJzdrFYJMvAwCELYkwj/kfbK07FfjQgfF6vHkgt2RjplXB56eyMaGB8/pjx+TH3WI0qE3vjW5RYJD39ddfF/jgK1eu4N1338WOHTsgiiKGDh3q1s4Vxd69exEcHGwP8ACgTZs2CAoKwp49e/IN8pKSkjzeN288h7tFRVVBXJ5jy99/4nTdNj7rT3GVlte+FsMByJ22jRZl9Au+gaSkG77rlIeVlte+LAqU116Tcg1Vtici+PQ/TufEVR/gitGC9DrNXDzSNwLldQcA3bULqLJtHXQXT6naGUWBuHg2LmVkI6ta7QLv0Teax+KLubtqPzyShq7CdeTN937ZxGDTBS2A3EGiPuHpSEq6XaT+BtJrXxR3G8AqVs6Gq1ev4t1338Xq1auhKAqGDBmCSZMmISYmpliddIcbN24gKipKNZrIMAzKlSuHGzfy/yD19Aifv44iMqE64MdV9uPgK2dRs2ocIPpPUsrS9NpXi1ew+sZN/HvLCg0HfNwhGk1iAnctXml67cuaQHjtmYzbEL9ZCf6378HkUz+bgYLq3y2DsdY7kB0q9fhCILzuAMCk3oC4fimEXdvyvYaVbLhnw8cwTlsIObZGvtdNiZXw2ZXrMP23nyLZzOKoUEWVS2/p7jTIyM2N1yBSwJAWlYs0Mxgor70nFGnjxdWrVzF58mQ0a9YMq1atwuDBg/H333/jvffeK1aAN2vWLISHhxf4L78qG664+qVQFIXWPBWDUr4K5Mho+zFjtYA7c8yHPfJvAsvgl97R+KZbFPb0rYCuARzgEVJsFjOETWugf2kohF++cxngKUzuxxZjtUL3/jSqse0ORgPE9cugf3mYywAv7+sO5ORQ1c6fAiY1Od9bRmk5DL5Hnedu0dEsKEpOioE0s4w1DvVtx9UPps9sNyrUSJ6nRu7GjBmDgQMHFnhNYZ+jfPnySElJUQV1iqIgNTUV0dHRd3k0ccIwkOo2A/vnFnsTd/wQJIedt6TwRI5BpyoU3BHiRJbB7/kFYuJSsPkEDVLNBjAPHgv2ynloP02wtzOGLGjfmQLja4ugRJX3Vo8Dh2QD/8ePEDesAJvheorU1rAVLI89C+7QX9AkLrW3s2kp0M2fAsOrC4HgUJePHVs/GCtO5gZyB1Os2JVswX0VNVh5MhvZttycUhV1LB6trnPTD0aAuwR5np6WjYqKQlRUlFvu1apVK2RlZWHv3r32dXl79+5Fdna2ap0eKTypbhMIqiDvAIAnfdchQkjAYU8dgeaLj8CdO+HyvFy+MswDR0Nq0R5gGMjx9WC+nQLNhuW597h1MyfQe3UhEESJxQtFUcAd2Qvxq4/BXT3v8hIppgYsj42B1LAlAECuUh3M7RSI27+xX8NevQDde9NgfPkdl8t5aoYJ6BGrxeZLuTVsFx3NQsto0Smtyqh6wRA5GsVzpwKDvKZNm8JqtaJhw4Z48cUXERMTg+TkZCQn5z8827x5c7d3EoD9eU+fPg0gZzdteno6YmNjERERgdq1a6Nr16544YUXsGDBAiiKghdeeAHdu3enufpichy1mNAZ4QAAIABJREFUY88cB8wmQEOjUYSQkmGSL0Ozbokq8XpeSlAILA+PgLXrIwCv3mlpfXg42NspEH7daG/jrpyHbsFrME5O8Ku1w77AXjwD8auPwR/d7/K8HBYJS7+nYGvfE2Dz5KpjGFiGjgebfgv8vt/tzdzpf6H9+E2YJryhvv4/4+oHq4K8ny6aMP+Iun63nmfwZG1KfuxuBQZ5FosFAHDkyBE8+WTBIzh3pklv3brlvt7lsXz5csybN89+fGead9GiRfZdvUuXLsXLL7+Mfv36AQB69uyJhIQE55uRQlHKVYQcXRnszasAAEaygUv6F1KDFj7uGSHEb2VlQPzucwg/fwtGck6yrnA8rF0egaXPiHynAMEwMI94Dkz6LfAHdtqbuZOHoV08G6Zx010GG2Udk5YK8etPwe/YDEZxsd5R1MDacxAsvR4DtPnUjGU5mEZNgy4jDdzJw/Zm/sBOaD5fAPPjLwAOa+ruryiicZSAw6k5ufAUAAmH1MmPh9bUI0LjN/UZ/EaBQd6iRYu81Y+7mjp1KqZOnVrgNREREViyZImXelQ2SPWagv39qv2YO3aAgjxCSNFZLRB+/hbid5+DMbiufmBr0R7mgaOgVCjEkiCWg2nM69AlTAKX9K+9md//B8Q1H8IybKJTsFFmmY0QfloH8ccvwZhNTqcVhoHtvm6wPPo0lMhCrGsUNTA+Nwu62RPAXTlvbxZ+3Qg5ohysfUaoLmcYBuPqB2PUH67X/DEAxtSj5MeeUGCQN2TIEG/1g5RSUt2mEH7/wX7MnXCdjNotFIXelAkJNIoCbv/v0KxdYp8VcCRVrwPz4LFFT4UiamB8/i3oZ08AezW31KW4/RsoEeVg7e273K0lYrUA+aSOKRoF/N7fIK7/FGxaissrbHWbwjJ4LOSqRVzWFBQC0+QE6N4cB/bWTXuzZsNyKBHlYGvfS3V53+o6zNifjqsG55/rwTgtaoQWK6Ob+1nMOZ9F7sDzAOfbn6uUvKqktHJal3fuJGDMBnRuXDuhKBA2roK4eR3kCjEwPT8bSrh7NuQQQnyHPXMcmi8XqUba8pKjKsAy4BnYWncG2GJO1QWHwjg5AbqZ41SBjCZxKZTwKNju71G8+/qCIQvaj2aC+3cfGHcFGvmQK8XCPGgMpCb3FvvLtRJZHqZJCdDNnqAandWsmA8lNCLn3v8RWAaj6wVj+v4Mp/uMa1AKRvGyM6H74DWwJ4+47bU3jZ1+18ognkYT4KRASngU5Eq5tS8YWQZ38ohbn0NcvwyaDcvBGLLAnTsBzYp33Hp/Qoh3MSnXofn4TehnjnEZ4ClaPcwDnoFh7uew3du1+AHenftFVYBpcgIUvfrLp+bTBHBH9pTo3t6k+fIj8P/s9WiAp4SEwTz8ORhmrYDUtG2JZ0/kmOowvvAWFCF3cwwjy9AuegOsQ27Vx2sFIYhXP1/zcgLalBfha5rEJeBOHPZ4cO1tFOSRu7LVU5cN4o67b8pW2LYB4qY16vsf2Q0mn3xNhJBSzJAFcd1i6F8ZDmH3z06nFZaFtXMfGN5ekzOV6sZdsHJsDZgmzoLCOwQbH04He9Z1epbShD19FMIfP3rs/govwNJrMLIT1uTU/OXdN5En12oE07OvQ8lbccpigu7dV8Bcv2RvC9eweLy2ekPHhAYhvk9+bDGD3/3L3a/zQxTkkbuS6jZRHbsryOP2/Q5xzUKndkaWwe/51S3PQQjxApsNwvZvEDRlKMQfvgRjtTpf0rgNDLNXwPz4C1BCIzzSDaluU5hGv6oONswmaN99BUzyZY88p1vIEjSrFqiaFJaFImpK/i8kDNb7usMw93NYBo0G9J6ZGpVatId5+HOqNiYrA7q3XwKTlmpve61ZKPpW0yEmiMPkRiHoU833Kbm4w7vBGHNLqykM457XvoQj1O5Aa/LIXUl11EEee/E0kJWRf3qDQmBPHoF28ax8h8b5XdtgfaBfse9PCPECRQF3+C9ovvoE7LWLLi+R4uJheWwspPqeyaHq9HytOsKSlgpNni+QbGYadPOnwPj6Io8FmCXB//4DuPOnVG2ml+ZDcphFKe1sXR6B5XYKxO9X29vYlOvQvvsKjFPfB3RB0PMsVnSK9GEvnTmWcbN27QfLsAk+6o17+T7MJKVfSDik2Hj7IaMo4E4cLuABBWMvn4Pu/Wmqb/uO33i4s8fBXC/F37wJKePYC0nQJkyC7r1pLgM8OTwKpqdfhvGNJV4L8O6wdnsUll6DVW3sjavQvvsKYDLk8ygfyUqHJnGZqsnaqpPfBXh3WB59GlaHzS7chSRoF/4PsDmP8PpcVga4w7tVTbZ7u/qoM+5HQR4pFMddtjklzoqOSb0B7TtTnPJkmZ98CVKdxqo24S/nItmEEN9ibt2EZulc6KaPAn/M+X1AEbUwP/IEDAmrnSsmeJFlwDOwtu2mauPOnYT2w+mAzTkJs69oEpeByc7dcapotLAMHuPDHpUQw8D85GTYGqnLifJH/4Zm2Tw3pYZxH37f76qk3HKFGMg16viwR+5FQR4pFOcgrxjr8rIzoX1niiqnEgCY/yufY733AVU7v2ub+/IVEUJKxmSAuGEF9C8Ph7Bzs9NSC4VhYG3fC4aE1bD2fQLQ+LjQPMvC/PQU2Bq0VDXz/+yDZvnbpeK9hT13Avzvm1Rtlj4jCpeQuDTjeZjGTYdUXR0sCX9th5hYugoWOE3Vtn0goPK1UpBHCkWq3QgKk/vrwl05Dya9CCXsLGboFrymyo4OANbOfWB9eDgAwNayg2pnHHvjqtMWfEKIl8kS+N9/gP7l4RC/+wyMxbligq1+cxhnLoX56SlQIsr5oJP54HmYxr8BqVotVbPw5xaIiUt91Kn/yDI0qxaogmW5Yiys3Qf4sFNupNXD+OJcyBWqqJrFH7+CsHW9jzqlxqRcB3dKnRLMdm8XH/XGMyjII4UTFAK5mjojOnfiUOEeK0vQLp6tqnMIALbm7WAenqf0UFCIKnkmAPB/bS92lwkhJcP9ux+6/42CdvnbYPPskLxDrlwVxhfnwvTSfMhx9/igh4Wg08P04lzI0ZVVzeIPX0DYtsFHnQL4HT+BO3Nc1WYeNhHI80XX74WGwzj5bcgOm13ELxaB3+P7lCX8X+o0P1J8vcKV1PMjFOSRQivWlK2iQFy9EPz+P9T3qtkApmdfc1qv4zhlK+z5pVStnyGkLGCunIf2nZehe3syuEtnnM7LIeEwPf4CDLM+hdS4Tamf3lLCImGcnAAlJEzVLq5ZCG7fb97vUFYGNA7TlrYW7SE1bJnPA/yXUr4yTC/OhaLNnb5nFAWaJXPcmnO16B1TIOzaqmqytX0gn4v9FwV5pNCcgrxjd/8DFTZ9AfHnb1VtcuWqMD7/lstEqFLj1lDy5HFiMtPBHd1fzB4TQoqCSb8Fzcp3oH/1KfAuKkUoggBL76EwvL0Gts59fF6XsyiUijEwvjAXipibl41RFGgXzwZbgmwBxSFuWA4mMz23b6IG5sFjvdoHb5Kr14Zp/EwoXO6XesZmhfaD18A4rNH2FvbiaVW9Y4VlYW3l2xJknkBBHik0qVZD1R8pm3wZzK0b+V7P79wMzXr1uhc5ohyMkxPyz7EniLC17Ki+zy7aZUuIR1nMEL5fDf2UYRB+/R6M4rwD0npvVxjmrYZlwDPurV3tRXJ8XZjGv6FK2cRYrdAtmAb28lmv9IG9kAThl42qNkvvoVDKVfTK8/uK1LAlzE+/rGpjDNkQtiT6pD+OnytSw1ZAaLhP+uJJFOSRwtPqIVevq2rijrtel8cd2QPNpwmqNkUfBNOkBChRFQp8GqvDkDl/YCdgLGW5rQgJBLIM/s+t0L88HJr1y8C4yCEn1WoEw/RPYH72tbv+7foDqXFrmJ96SdXGGLKhnT8FTGr+X1rdQpah+XyBKoiWy1eGtecgzz5vKWG7rxvM/Z5StQm/bQLyVJvwClkC71B2LxCnagEK8kgRFabEGXv2BLQfTgeTJx+SwgswPjcbcmyNuz6HXKsh5DwfJozFnBPoEULchj1xGLqZY6Bd8hZYFyPycoUqME6YCeO0BQGVNwwAbO16wtx/pKqNvZ0C7fwpQHamx56X37UV3Ol/VW3mYRPdWsO3tLP2HKTaiMGYDBB+/8GrfeCOH1RtJFK0Otia3ufVPngLBXmkSByzsDsmRWaSL+fUiTTnpllQGAamZ1+F7FAeLV8sC1sb9TZ2mrIlxD2Y65ehXfAa9HOeA3fupNN5JSgE5qHjYXhrJaQW7Uv9porisvYeCkuXR1Rt3NXz0L0/DbCY3f+E2ZkQ1y5WNdma3pezcaUsETWwOrzuwtavAcl7G+z4XeqsDbbm7QGN72voegIFeaRIpHvqq3PZpSSDuXkNAMBk3IZu/hSwmWmqx1iGToDksM7ubhyHzrmjf6uKXBNCiigrHeLqhdBPe9zlyLjC8bD0GIjst7+AtVv/wErl4QrDwDJsAmwt2quauVP/QPvJLECW3Pp04rcrwWbcth8rggDzkHFufQ5/Ye3cB4og2o/Z1GSnDAweYzY5PVegTtUCFOSRohI1kO6pr2rijh0ATAZo33kZ7I2rqnOWBwfD+kC/Ij+NHFMdUp68W4wil4q8SoT4HasFwk9rEfTSUIjbvgYjOQcvtpYdYJjzGSyDxwJBIT7opI+wHEyjX4VUq6Gqmf97B8TVC91WFYO9dBbC9m9UbdYHh0ApXzmfRwS40HDY7uuuahJ+WueVKiT8oV2qtadyWCSkek0LeIR/oyCPFJlTKpV/90P74XRw50+p2q1tu8EyYFSxn8exSDRN2RJSBIoCbu9v0E99ApqvPnaqFw0AUnxdGF5dmLPj1KEyQZkhamB8/i1IVaqpm3/+FsKmNSW/v6JA8/n7qjXKcnQlWB4cUvJ7+zFL9/6qY+7cCbBJ/3j8eZ2matt08Vl9ZW+gII8UmeO3HmHvr+D/2adqszVoCfPTU0q0nsfWpguUPI/nzp8CkyevESHENfb0UehmTYBu0QywN686nZfLVYBpzOswvv4RZIdRrDIpKASmSQmQHUqyadYvA7/jpxLdmv9ru1PpLPOQ8WVqs4UrSuWqsDmsRxR/WufZJ81MA/ePOv9jIE/VAhTkkWKQa9RVJRR1JFWrBdP4NwC+ZIlSlchop1FDgcqcEZIv5uY1VNuwBPo3xznt4gQARRcE88DRMMz5PGcEI0A3VRSHElUepskJqmTsAKBZ/ja4w86JoQvFmA3xq49VTbZGrSE1bVvcbgYUx9Qx3ME/wSRf9tjz8Xt/Uy1XkCvFQa5as4BH+D8K8kjR8YLTGpY75P9K2ECnd8tT2RzKnPG7tnll3QYhfiU7E+LaT6B/ZQQiju1zOq2wLCxdHkF2whpYHxxc5keR8iPH1IDxudlQhNxNJ4wsQ/vhdLAOdWYLQ/z2M7Dpt+zHCi/APGwCBdf/keo0gZQnyGIUBcKW9R57PsFhqtba9oGA/39BQR4pFsd8eUBOPUvj5AQoYZFuex5bi3bqXVgp18EmOY9QEFIm2WwQtm1A0JShEH/8CozN6nxJk7YwzF4By4jnAzKjv7vJdRrDNPo11VIRxmKC7r1XwFwv/CgTc+U8hG1fq9qsPQdBqRDjtr76PYaBtfsAVZOwYzOQleH+p7px1Wl023HddyCiII8Ui9RAXUhbEbU5Rajd/QamD4atiXpqg6ZsSZmnKOAO/An9a09Cs/oDMC4+FKWqNWF85T2YXngLSuWqPuik/5JadoBl6ARVG5OZDt38l8DkGZnLl6JAs2qBemowqgIsDw1zd1f9nq11J9VaSMZigvDr925/Ht7hc0Oq2QBKdCW3P09pQ0EeKRa5Wi1YOz0MAFBCwmB6bpbHsuI7Lozl9/wKuBixIKQsYM+fgnbuC9AteBXstUtO5y0h4TA98wqMMxY7rWklhWd9oB8svYeq2tib16B955W7llnk9/4G3qEakHnw2IBNuFsivOCUZkvYvsG97/GKAuEvdXYGx/KZgYqCPFJs5ideRPbCb5D9zlpIDVp47HmkRq2gBIXaj5nsDHBH9nrs+QgpjZhbN6BZMge6GaPBn3CuGa1otDD3ewrHxs6C7f4eAEtv7yVl6T8S1vvV+dy4C6eg/XB6/kGIyQDxy0WqJlv9FjnVQ4hL1o4PQckTALNpqeB3uy8vKnv+pOoLkcLxsLXq6Lb7l2b0LkBKRAmN8Py3U15w+oN0HHonJGAZDRC//hT6l4dD+HMLGIeNRwrDwtrhQRgS1sDaZwQUgTZVuA3DwPzkS7A1bKVq5v/dB82nb7vcBCZuXAX2dor9WOF4mIdPDPgF/iUSFAJr+16qJmGz+5IjO+bGkxq1BoLD3HLv0o6CPOIXHIfW+YN/AsZsH/WGEC+QJfC/bYL+5aEQN64C46Keqq1BSxjfXAbzUy9BCY/yQSfLAJ6HafwMSNVrq5qFXVshJi5RtTHXLkLYnKhqs/YYAKVSnMe76e+s3fpDYXJDEu7SmZxqSiUl2cDv+Vn9XGVkqhagII/4CblmA8jlKtqPGavFe7UOCfEy7p+90L0+EtoV88Gm33Y6L1WpBuOkeTC99Dbk2Bo+6GEZo9XD9OJcyA5lyMQfvoSwbUPOgaJAs+oDMJLNfl6OKAfLw8O92VO/pZSvDKn5/ao2YXPJkyNzxw6o/oYUXRCkJveW+L7+goI84h8YhsqckYDHXj4L7fyXoJs/Bdzlc07n5dAImJ6YBOOby3KmnIjXKKERME5+G3KIOg2NuGYhuL2/IezkQfBH96vOWQaPBbTuyRlaFlh6DFQd80f2gLlyvkT3dCpj1qJ9mcoTSUEe8RuOQ+zc8YNgbt30UW8IcR8mLRWa5fOhe22kU4lAAFAEEZaHhsGQsAa2Tg8BXMmqyZDiUSpUgWnSXNUmAUZRoF08G7E/rVZda6vXDLZWnbzdRb8m12wAKb6eqk3ckpjP1YVgNoL/Wz3jE+hlzBxRkEf8hlK5KqRqtezHjKKA3+O+HViEeJ3ZBOG7z6F/eRiE3zeBUWSnS6xtu8EwbzUs/Ue6rZIMKT65eh2YJsyEwuUWtWdsVgjZmfZjheNgHkabLYrDaTRv19bC5SZ0gT/wJxizyX4sR5SDVKdxifrnbyjII37FZZkzQvyNLIPfuQX6V4ZDs2E5GJPR6RKpTmMYZiyGefQ0KFHlfdBJkh+pYSuYn5qS73nrA49CqVLNex0KIFLz+x3WX1sh/PJdse7lmIXB1qYLwHL5XB2YKMgjfsXWprN6B9bF02BdrF0ipLTijh+Ebsaz0C6dA9bFcgO5QgyMz82C8ZX3ITvs6CSlh+3+7jAPeMapXQ6LhOWRx33QowDB8bB2769qEn7+FnCxu7wgTMZtcP+o86mWtalagII84meU8ChI9Zur2ihnHvEHzLWL0L7/KnRzXwB34ZTTeSUoFOahE2B4awWkZvfTVJ8fsD44BJaufVVtlsHjcjZbuCnHW1lkbdcLij7Ifsxkphd51obf8ysYOXf5gxRTHXJsvNv66C9o9S7xO7Z7u4L/N3dxOv/XdlgefZoy/JPSKTMN4refQfh1o6qW6R0KL8DatW9Oqo2gEB90kBQbw8AydDzkylVh2vMbtO17wHZvl5xzipLzj4L1otPpYe34EMQfv7I3iZvXwda+V6Hf53mHMma2e7uWyf8X9KlI/I6teTsoebbAs6nJYE/948MeEeKCxQzhx68QNGUoxO3fuAzwrK06wTDns5xUGxTg+SeWg63LIzg3YFxOObk77gQUNKJXLNau/VSbW9hrF52mX/PDXL8M7sxxVZtjCq6ygoI84n90etiaOSTNpClbUlr8t+tbP/VxaNZ+AsbgXJlFiq8Hw+uLYB43HYpDgl0SQMrgyJG7KFHlnVLQFDY5suAwiifVbgwlqoLb+uZPKMgjfskpMfLeXwGrxUe9ISQHe/oodG+Og/ajmWBTrjudl6MrwTR2OoyvL4J8T30f9JD4BI3mFYu1+wDVMX/sANgLSQU/SFGc1mmXpTJmjijII35JatASSkhugWnGkAXu8B4f9oiUZcyNq9B8OAP6N8eBO3PM6byiD4J50LMwzPkMttadaISnLKFp22KTq9d2ymvnWBvYEXv2ONjkK/ZjhRdga9nBI/3zBxTkEf/E87C27qxqchyiJ8TjsjMhfvkR9FMfh7DvN6fTCsfB8kA/ZCesgbXXY4Ager+PxPco0Cs2S49BqmN+z88FVjpy3IUrNW5Tpte7+k2Qt3LlSvTu3RtxcXEIDw/HhQsXnK5p2LAhwsPDVf9mzJjh/c4Sr3CcsuUO/QXkyTpPiMfYbBC2fo2gl4ZC3LwOjM3qfEmz+2B4ayUswyYCDvVOSRnEMDSCWwxS4zaQK8bajxlJgrD9G9cX22zg9/yqairLU7WAH6VQMRgM6Ny5M3r16oVp06ble92UKVPw9NNP24+DgoLyvZb4Nzm+HuTylcHeuAogp7QQv+932Dr2dttzsKf+AX9gJ+TKVWFr15PepAm4YwegWfku2OTLLs9LVWvBMngMpLpNvdwzQgIQy8LSvT+0n71nbxJ+3QjLw8Ny8hHmwR3dDzYzzX6s6IMhNWrtta6WRn4T5I0dOxYAcPDgwQKvCwkJQYUKZXMXTZnDMLC1fQDit5/Zm/i/trslyGOuX4Zm7SfgD+y0t5mzMnKm3EiZxZ4+Cu38KWAkm9M5OTIalv7P5IwwU85GUpA707b0pbFQbPd1h/L1p2CyMgDkrMEWdmyG9YF+quscp2ptLTsAedJtlUV+E+QV1sKFC/Huu++iSpUqeOSRRzBx4kSIYv7rYJKS7rJTxw288RxllaZyTdTLc8yfOITz+/fAGhYJoOivPWfIQsUdmxD9929gZHVeM27jKpyo2gByGX/TKKyA+72XZdT+dK5TgCeJGiS37YkbrbtCETTAmTM+6mCugHvt/USRXncK9IqkUpN2qLjzh9yGTV8iKa6+/QvVmX//QcP9O1SPOR9XF1kB/rdQs2bNAs8HVJA3evRoNGrUCJGRkThw4ABmzJiBCxcuYOHChfk+5m4vUEklJSV5/DnKtpqQNtcFdzY38WXN5LOwtmhdtNfeaoHw87cQv/scjCHL5SW8MRu1r5+BrUsfd3Q8oAXi7z3/87fQJl9StVk7PgRLvycRGhaJUB/1y1Egvvb+oFivOwV6hcZEPwVl91b7+ldN2k3UyUyG1KI9kpKSUDv9GlhbbhotObI8KnUufIWMQOXTn37WrFlOGyUc/+3YsePuN/rP+PHj0b59ezRo0AAjRozAO++8g1WrVuHWrVse/CmIrznlzCtKjUNFAbf3N+inPgHNlx/lG+DdIW5JBPLUQyRlREYaNOuXqZqsbbrA/OQkKP+NGhNSZBTcFZoSHuX0Xi/mSY7sNFV7b5cyH+ABPh7JGzNmDAYOHFjgNTExMcW+f/PmOYXsz549i8hIeiMOVLbWnSB+uchejJq7fBbsxbtPmbGnj0Lz5cfgTv/r8rxcrgIsvQZDs+ZD+xQdm3wZ3KG/IDW7z30/ACn1NIlLVF8AFK0OlsfG+LBHJGBQoFdo1h4DIOz4yX7MJf0L9swx8FkGcEf/Vl1rK+O7au/waZAXFRWFqKgoj93/n39y6pnSRozApoRFQmrQEvyR3GTI/F/bgWadXV7P3LwGMXEJBIet9vb76YJgeWhYzqJeUQPuzHEIf26xnxc3r4ORgrwygz1zHMIfP6raLH0ehxJRzkc9IqRskmNqwNagJfh/99nbhM2JiAgrD0bJnWGR4uIhx9TwRRdLHb9Zk5ecnIzk5GScPn0aAHDy5Emkp6cjNjYWERER2Lt3L/bt24d27dohNDQUBw8exLRp09CzZ0/Exsbe5e7E39nu7eoQ5G0DmnZUX2TIgvj9Ggjb1oOxOuc1U1gW1k4Pw/LIE0Bobl4za48BqiCPO3kY7LkTkKvXcfePQUobWYJm1fvqpkpxsHZ71EcdIqRss/YYqAry+H2/IzpMPVhku5dG8e7wmyBv+fLlmDdvnv34zjTvokWLMHToUIiiiG+++Qbz5s2DxWJBbGwsRowYgeeee85XXSZeZGt+PxSNFozZBABgb6cg+MIpoFbtnMS1v30P8duVYDLTXT++yb0wD3oWSuWqTufkuHtgq9cM/LED9jZhcyLMY173zA9DSg3+9x/BnTupajMPfw7gBR/1iAQ02ohxV1KDFpBiqoO7fA4AwCgyNGm5FTAUhoGtjetZnLLIb4K8qVOnYurUqfmeb9KkCbZv357veRLgNDrYmreDkGfxbeQ/u8FFRUKz7hOw1y65fJgUdw8sg8dCqteswNtbewxUBXn83l9hGTgKShQtBQhYWenQJC5VNVlbdoRUv7mPOkQCHsNQ6bO7YRhYuw8E9+k8l6eluk2hRJb3cqdKL9p6QgKG486rqMN/QrfgVZcBnhxeDqaRL8P4xuK7BngAIDVsBTnPKB8jyxC2bSh5p0mppVn/KZjsDPuxImphGTzWhz0iZQKN4t2V7d4ukMMi8jnX1WV7WUVBHgkYUv3mkENd/+HfoWi0MPd9EoaEVTllyliucDdnWVi6D1A1Cb9tAozZxe0uKcXYcyfB//a9qs3y8HAoUTRCQIjPCSKsXfo6NSuCAFuL9j7oUOlFQR4JHByf71oMhWFgbd8LhoQ1sD7yOKDRFfn2trYPQM5TaJ4xZjvtuiQBQJahWfU+mDzTZnKFGFh7DCjgQYQQb7J2fhiKQ/UhW5P7AH2wj3pUOlGQRwKK7f4ezm31W8A4cxnMT0+BEl6ClD2ixqnahbB1PeCijinxX/zOLeDOHFe1mYdPBIT8yyMSQrwsJBzWdj1VTTaHY0JBHgkwctWaMA8ZBzmiHLJi74HxxXkwvfQ25Lh4t9zf2uURKELuzko2JRnc3zvdcm9SCmRnQly3WNVka3Y/pIatfNQhQkh+LANHwdbsPliDw2B5aBikxq193aVSx2921xJSWNbuA2DtPsAjNTwNq/WQAAAdW0lEQVSV0AjY2naD8HtuoWxx81oYW3agBdMBQNywHGxmmv1YEUSYh4zzYY8IIfnS6mF6bjbVay4AjeQRUkSWHupSfNyZ42CTXJdGI/6DvZAE4efvVG2Wh4ZBia7kox4RQkjJUJBHSBEplavC1riNqk3ckuij3hC3UBRoVi1QlUaSy1eGtecgH3aKEEJKhoI8QorB6pBOhft7B5jkKz7qDSkpftc2cA6jseahEwCH3XuEEOJPKMgjpBikes0g5dnMwSgKhG1f+7BHpNgMWRDXfqxqsjW5F1KTe33UIUIIcQ8K8ggpjv9K6+Ql/PEjkJ3pow6R4hK/WQk2/bb9WBGEnFE8QgjxcxTkEVJMtjadIefJu8eYTRAcqiT4hax0cPt3gLl20dc98Tr28lkI29Xl6ay9hkApX9lHPSKEEPehII+Q4uIFWLv2UzUJWzcANquPOlR0TMZt6GeOhW7h69C/+iT4HT/5ukvec2ezhZxns0W5irD0HuLDThFCiPtQkEdICVg7PQRF1NqP2bQU8Ht+9WGPikZcuxjsfxtGGEmCZvnb4A7v9nGvvIPf/Qu4E4dVbeYh42izBSEkYFCQR0hJBIfC2k5dSk3YvA7IU/e0tGJPH4Wwc7OqjZFlaD+cAdahrFfAMRogfuWw2aJhK0jN7vdRhwghxP0oyCOkhKzd+0PJU+2Cu3ga3PGDPuxRIcgSNJ+/7/IUYzFB994rYK5f8nKnvEfc+DnYtBT7scILMA+bSFVLCCEBhYI8QkpIqRADqel9qjZh8zof9aZw+F83gbuQlO95JjMduvlTwKSlerFX3sFcvQDBIXm1tecgKBVjfNQjQgjxDAryCHEDS091OhX+8G4wVy/4qDd3kZkGzdfLVE3W1p1h6T1U1cbevAbtu1MBo8GbvfOsO5stJMneJEeWh+WhoQU8iBBC/BMFeYS4gVyzIaTqdVRt4pb1PupNwTSJS8HkyeenaLSwPDYGlv4jYb2/u+pa7sIpaBf+z692DBeE2/c7+GMHVG3mIWMBjc5HPSKEEM+hII8Qd2AYWB1H8/7cAmSk+ahDrrFnjoP/40dVm6XP41AiowGGgfnJl2Br2Ep1nj+6H5pPE4A8qUb8ktkIzZeLVE22+s0htejgow4RQohnUZBHiJvYWrSHHFXBfsxYLRB+/taHPXIgyzlTlXl2/sqV4mDt3j/3Gp6HafwMSNVrqx4q7NoGMXGpt3rqEeLG1WBv3bQfKxxHmy0IIQGNgjxC3IXjYe32qKpJ+PlbwGL2UYfU+D9+BHfuhKrNPHwiwAvqC7V6mF6cC7lCFVWz+OOXELb6Z31e5volCD+tVbVZuw+AUrmqj3pECCGex/u6A4QEEmuHByF+sxKMKWezApuZBn7XNtg69vZtx7IyoElcomqytewAqX4Ll5croREwTkqAbtZ4sBm5dV3FLz6EEhYJW+tOHu0uLGYI2zaAP/gnYDaW+HZM+m0wks1+LIeXg+XhESW+LyGElGYU5BHiTrogWDv2hpgnhYq4JRG2Dg/6dFpQs34ZmKwM+7EiamEePLbAxygVqsD04hzo5jwPxmwCADCKAs2St6CEhkOq29T9HZVl8H9th7h+qWpq1d0sg8cAOr3H7k8IIaUBTdcS4mbWB/pBYXP/tNirF8Ad2euz/rDnT4H/7XtVm+XhYVDyrB/Mj1y9DkwTZkLhOHsbY7NCu+A1sBfPuLefJw5B98az0C55y6MBnq1OE9had/bY/QkhpLSgII8QN1PKVYStpXrHprDFR8mRZRmaz99Xb7aoEANrj4EFPEhNatgK5qemqNoYYza077wMJjW5xF1krl+CdsGr0M95Htz5UyW+X0HkqAowP/USbbYghJQJNF1LiAdYuw+EsOdX+zF/9G+wF09DjrvHq/3gd24Bd+aYqs08bAIgiEW6j+3+7jCnp0KzLnddH5uWAt38KTC8uhAIDi1657LSIX77GYRfvlMlJ75D4QVYu/aF7d6u7gnKOB5ypViAo7c9QkjZQO92hHiAHF8XUq2G4E79Y28TNifCPGqq9zqRnQlx3WJVk63ZfZAatS7W7ay9BoO5nQJx2wZ7G3v1AnTvTYPx5XcAUVPIG1kgbNsA8ftVYAzZri9p2RGWgaOglK9crL4SQgih6VpCPMbiMCXK7/4ZzO0Urz2/+M0KsJm5yZgVQYR5yPji35BhYBkyzmkqmjv9L7QfvwnIzqNxKooCbu9v0E99HJq1n7gM8KT4ejC89iHM42dQgEcIISVEQR4hHiI1bQs5T6DCSDYI27/xynOzF09D2K5OxGzpPRRKdKUS3piDadQ0SHUaq5r5Azuh+XwBkGftn+php49CN2sCdItmgL15zem8XK4iTGP/B+PriyDXbFCyPhJCCAFAQR4hnsNysHYfoGoSft3olrxvBVKU/ypb5JYhk6Mrw9rrMffcX9TAOHEWpJjqqmbh140QNq5StTE3r0Hz0RvQvzkO3Ol/nbuqD4J50LMwzPksZ8crbYgghBC3oSCPEA+ytusBJSjEfsxkZ0LYsdmjz8nv2qZaCwgA5qHjC79mrjCCQmCaNA9yZLSqWbNhOfjffwBnMkBc+wn0r4xQbUC5Q+E4WLr2RXbCmpzg0519I4QQAoA2XhDiWRodrJ0ehrhpjb1J2Loe1s4PAyxXwAOLyZAFce3HqiZb4zaQmrZ1+1MpkeVhmpQA3ewJYAxZ9nbNyndQT6MDb3S9qcLW9D6YB42GUinO7X0ihBCSi0byCPEwa9e+UPKk7WCTr0Bct8Qj07bit5+BTc8tQ6YIAsxDJ7j9ee6QY6rD+MJbUPKkZGFk2WWAJ1WtBeMr78H0/GwK8AghxAsoyCPEw5SIcrC16aJqE39aC/2U4eD/+Onuu1ILib18FsK2r1Vt1l6DoVSo4pb750eu1QimZ1+Hwrh+O5EjysH0zFQYZ3zimVJohBBCXKIgjxAvsPYaBIUXVG1sWgq0n86DbvoocEf3l+wJ7my2kPNstihXAZYHh5TsvoUktWgH8/Dn1F3SaGF+9GkY5q2G7f7uAEtvN4QQ4k20Jo8QL5BjasA0bgY0y99W5a4DAO7iGegSJsPWuA3Mj42BUrlqke/P7/4F3InDqjbz4PGARluifheFrUsfGMMjIfzxE1L0YQgZNBJKeJTXnp8QQogaBXmEeInU7D4Y6jSGuOkLCFsTwVitqvP84d3g/tkLW8eHYOn7BJTQiMLd2GiA+JXDZouGLSE1v99dXS80qXk7SM3b4VpSEoIpwCOEEJ+i+RNCvEkfDMvAUTDMXQXrvV2dTjOyDOGX76B/aSiETWsAi/mutxQ3fg42LbeShsLxMA+bSDnnCCGkjKMgjxAfUMpVhPnZ12D438eQXFR4YEwGaBKXQv/KCPB/bQfyrLVTXXf1AoQtiao2a4+BUCrGeqTfhBBC/AcFeYT4kBxfF8ZXF8I4/g1VCbQ72NRkaD+ZBd3MsWBPHVGfvLPZQsrdnStHRsPSZ7inu00IIcQPUJBHiK8xDKSWHWCY8xnMg8epKmTcwZ07Af3sidAu/B+Y5Ms5bft+B3/sgOo68+BxgEbnlW4TQggp3fwiyLt9+zZeeukltGzZEhUrVkT9+vXx4osv4tatW6rr0tLSMGrUKMTFxSEuLg6jRo1CWlpaPnclpJThBVh7DEB2whpYuvVXJVC2X7L/D+inPgFxzYfQfLlIdc5Wrxmklh281VtCCCGlnF8EedeuXcO1a9fwxhtvYNeuXVi8eDF27dqFp59+WnXdyJEjceTIESQmJmL9+vU4cuQIRo8e7aNeE1JMwaGwDB0Pw5yVsLVo73SakWwQt64He+umvU3huJw8dbTZghBCyH/8IoVKvXr1sHr1avtxjRo1MHPmTAwaNAgZGRkIDQ3FyZMnsX37dmzevBmtW7cGALz33nvo2bMnkpKSULNmTV91n5BiUSrEwDRhJtiTR6D58iNw507ke621W/9i5dcjhBASuPwiyHMlMzMTGo0Ger0eALB3714EBwfbAzwAaNOmDYKCgrBnz558g7ykpCSP99Ubz0FcC4jXntUBQ15AxNF9qPzLBogZ6mUKlpBwHG9wP+RS9rMGxGvvp+i19w163X2nrL72dxvA8ssgLy0tDbNnz8aIESPA8zk/wo0bNxAVFQUmz3QVwzAoV64cbty4ke+9PD3CR6OIvhNwr32t2rA8OADK1vUQv18DxmSAwrKQRk5BfIOGvu6dSsC99n6EXnvfoNfdd+i1z59Pg7xZs2Zh/vz5BV7z/fffo127dvbj7OxsDB48GJUqVcLMmTNV1zIu1iMpiuKynRC/JGpg7T0U1o69wZ04DLlyVZqmJYQQ4pJPg7wxY8Zg4MCBBV4TExNj/++srCwMGDAAALB27Vpotbl1OcuXL4+UlBRVUKcoClJTUxEdHe2B3hPiQ8FhkFxsyiCEEELu8GmQFxUVhaiowtW3zMzMxIABA6AoCtavX4/g4GDV+VatWiErKwt79+61r8vbu3cvsrOzVev0CCGEEELKAr9Yk5eZmYl+/fohMzMTa9asgcFggMFgAABERERAFEXUrl0bXbt2xQsvvIAFCxZAURS88MIL6N69O83VE0IIIaTM8Ysg79ChQ9i3bx8AoHnz5qpzedfsLV26FC+//DL69esHAOjZsycSEhK821lCCCGEkFLAL4K8du3aFapyRUREBJYsWeKFHhFCCCGElG5+UfGCEEIIIYQUDQV5hBBCCCEBiII8QgghhJAAREEeIYQQQkgAoiCPEEIIISQAUZBHCCGEEBKAKMgjhBBCCAlATFpamuLrThBCCCGEEPeikTxCCCGEkABEQR4hhBBCSACiII8QQgghJABRkEcIIYQQEoAoyCOEEEIICUAU5BFCCCGEBCAK8jxk2bJlaNSoESpUqIAOHTpg165dvu5SwJszZw7Cw8NV/2rVquXrbgWkP//8E4899hjq1q2L8PBwrFmzRnVeURTMmTMHderUQcWKFfHggw/i+PHjPuptYLnbaz9mzBinv4OuXbv6qLeB5d1330WnTp0QGxuL+Ph4DBo0CMeOHVNdQ7/77leY151+712jIM8DNmzYgFdeeQWTJk3CH3/8gVatWmHAgAG4dOmSr7sW8GrWrImTJ0/a/1Fw7RnZ2dmoV68e5s6dC51O53R+wYIFWLRoEebNm4dffvkF0dHR6Nu3LzIzM33Q28Byt9ceADp27Kj6O0hMTPRyLwPTzp078fTTT2PLli3YuHEjeJ7HI488gtu3b9uvod999yvM6w7Q770rlAzZA7p06YL69evjgw8+sLc1a9YMffr0wfTp033Ys8A2Z84cbNy4EX/99Zevu1KmVKlSBQkJCRg6dCiAnJGMOnXq4JlnnsHkyZMBAEajETVr1sSbb76JJ5980pfdDSiOrz2QM6Jx69YtrF271oc9KxuysrIQFxeHNWvWoGfPnvS77yWOrztAv/f5oZE8N7NYLDh06BA6d+6sau/cuTP27Nnjo16VHefPn0fdunXRqFEjPPXUUzh//ryvu1TmXPh/e/ce09T5BnD8W/tTYCJ0ihTQWRTwzkCKcxmS4GXFBcFtgMYwp0Lc5rLpnBLFmsxNJzLGQINbIkzwgpuX6XRzQ53BzOElU2dmokanmcREqzALK8ELpb8/DI1HLoq29vcrzychoW/Ped/nPHkPeTjvOe3ly5hMJsU54OXlxUsvvSTnwFNy5MgRQkND0ev1zJkzhxs3brg6JLdksVhoampCo9EAMveflgfz3kzmfUv/cXUA7qampgar1Urv3r0V7b179+b69esuiqpziI6O5ssvvyQsLIzq6mpyc3MxGAwcPXqUnj17ujq8TsNkMgG0eg5cvXrVFSF1KuPHjycxMRGdTkdVVRXLly8nKSmJgwcP4uHh4erw3MqiRYsIDw/nhRdeAGTuPy0P5h1k3rdFijwnUalUitc2m61Fm3Csl19+WfE6OjqayMhINm/ezHvvveeiqDovOQdcIzk52f77sGHDiIyMJDw8nL1795KUlOTCyNzL4sWLOXr0KOXl5ajVasV7Mvedp628y7xvnSzXOlivXr1Qq9UtrtpVV1e3+O9OOJe3tzeDBw/m0qVLrg6lU9FqtQByDvyPCAwMJCgoSM4DB8rKyuK7775j9+7dBAcH29tl7jtXW3lvjcz7e6TIc7Bu3boRGRlJRUWFor2iooJRo0a5KKrO6datW1y4cMH+h1c8HTqdDq1WqzgHbt26xZEjR+QccIGamhquXr0q54GDLFy4kO3bt7N79+4WH9Ekc9952st7a2Te36NetGjRUlcH4W569OhBdnY2AQEBeHp6kpuby+HDhyksLMTX19fV4bmtJUuW0K1bN5qamvjrr7/IzMzk0qVL5OfnS94dzGKxcO7cOUwmExs3bmTo0KH4+Phw584dfH19sVqt5OfnExoaitVqxWg0YjKZKCgo6NT3xzhCe7lXq9V88skneHt709jYyOnTp3n//fexWq3k5uZK7p/QggUL+PbbbyktLaVv377U19dTX18P3PsHX6VSydx3gofl3WKxyLxvg3yEipMUFxezatUqTCYTQ4YMYcWKFcTExLg6LLeWnp7O4cOHqampwc/Pj+joaIxGI4MHD3Z1aG7n0KFDJCYmtmifOnUqX331FTabjZUrV1JaWorZbEav1/P5558zdOhQF0TrXtrL/RdffEFaWhp//vkntbW1aLVaYmNjMRqN9O3b1wXRupcHn+ZstnDhQrKysgBk7jvBw/Le0NAg874NUuQJIYQQQrghuSdPCCGEEMINSZEnhBBCCOGGpMgTQgghhHBDUuQJIYQQQrghKfKEEEIIIdyQFHlCCCGEEG5IijwhRKeQnZ2NRqOxf4m8M8yePZvw8HCn9S+EEB0hRZ4Q4omUlZWh0WjQaDT8+uuvrW4zduxYNBoNI0eOdGosFouF7OxsDh065NRxnOHMmTNkZ2dz+fJlh/b7/5wTIcSTkSJPCOEQnp6ebNu2rUX7xYsXOXnyJJ6enk6Pob6+npycHH777Tenj9Wa1atXc/z48cfa9+zZs+Tk5FBVVeXQmFydEyGE60iRJ4RwCIPBwK5du7h9+7aifcuWLfj7+zNixAgXRfb0dO3atdN8T6bVauXOnTuuDkMI0Q4p8oQQDpGcnIzFYqG8vFzRvn37dl5//XW6dGn556apqYmCggL0ej3+/v4MGTKEzMxMamtrFdslJCQwcuRILl68SHJyMkFBQYSFhfHxxx/T1NQEwOXLlxk0aBAAOTk59iXk2bNnK/qyWCzMmzeP/v3706dPH6ZPn84///yj2ObUqVOkpqYSEhJCQEAAERERvP322/YvRW9La/fkaTQa5s2bx/79+4mNjUWr1RIVFcX27dvt25SVlZGRkQFAYmKiPfaysjL7Nj/99BPjxo0jMDAQnU5HWloa58+fbzeeR8nJtWvXmDt3LoMHD8bf35+oqChWrVqFzWZT9KPRaMjPz6e4uJioqCj8/f05duyY4r3169czYsQIAgMDSUxM5O+//wagsLCQ8PBwAgICSE5O5tq1a+3GLYRwjP+4OgAhhHsICgoiJiaGbdu2MWnSJACOHz/OpUuXmDx5MqdPn26xz/z58ykpKeGVV17hnXfe4ezZs3z99decOHGCvXv30rVrV/u2dXV1TJo0iQkTJpCQkMAvv/xCfn4+Op2OGTNm4OfnR25uLpmZmUycOJHExEQA+vfvrxgzIyMDrVaL0Wjk4sWLrF27lq5du1JcXAxAdXU1r732Gr169WLu3LloNBquXLnCzz//TH19Pd27d+9wbn7//Xf27NnDzJkzmTZtGhs2bOCtt94iPDycQYMGERMTw6xZsygqKmL+/PkMHDgQgFGjRgH3CuVZs2YxfPhwjEYjdXV1rF27FoPBwMGDBwkODm513Ifl5MaNG4wfP57GxkamT59OQEAAR44c4aOPPuLq1ausXLlS0d/WrVuxWCzMmDEDb29vAgIC7O/t3LmThoYG0tPTsVgsrFq1irS0NJKTk9m9ezfvvvsu165do7CwkA8//JDNmzd3OI9CiI6RIk8I4TCpqaksWLAAs9mMRqNhy5YthISEEBUV1WLbM2fOUFJSwuTJk1m7dq29PSwsjKysLL755hvefPNNe7vJZGL16tX2tvT0dEaPHs369euZMWMG3bt3JykpiczMTIYNG8aUKVNajXHgwIGK8Ww2G0VFReTl5eHr68uxY8e4efMmO3bsUCwxL168+LHzcu7cOSorK+1X1V599VWGDx/Opk2bWLZsGcHBwbz44osUFRURFxdHbGysfd+7d+9iNBoJDQ2lvLzcXmQmJCQwZswYVqxYoTie+z0sJ8uXL+f27dtUVlbi7+8PwMyZMwkICKCwsJDZs2ej0+ns21dVVXHixAlFcdf8oMiVK1c4efIkGo0GgC5dupCdnc2tW7c4fPiwfRnbYrGwbt06qqur8fPze+ycCiEeTpZrhRAOM2nSJFQqFbt27aKxsZHvv/+e1NTUVrfdu3cvAHPmzFG0p6en4+PjY3+/maenJ2lpaYq2mJgY+5Lgo2peFr2/D6vVypUrVwDo0aMHAOXl5dy9e7dDfbclNjbWXuAB+Pv7ExYW9kixnzp1CpPJREZGhuIqYkREBHFxcezbt0+xtPqobDYbu3btIj4+HrVaTU1Njf1n3LhxNDU1UVlZqdgnISFBUeDdLykpyV7gAURHRwOQkpKiuE9Rr9djs9kc/hSxEKIlKfKEEA7j6+uLwWBg69atVFRUcOPGjTaLvKqqKlQqFWFhYYp2Dw8PdDpdi6dMg4KCUKvVijaNRsPNmzc7FONzzz3Xog/A3k9sbCyJiYnk5OQwYMAApkyZQmlpKRaLpUPjtDdm87iPEntzHpqXcO83aNAgzGYzdXV1HY6puroas9nMpk2bCAkJUfw0L7dXV1cr9mlrWRigb9++itc+Pj4A9OnTp9V2s9nc4ZiFEB0jy7VCCIdKTU1l+vTpwL2rNiEhIR3uw2azoVKpFG0PFniPq61+mq+GqVQqNm7cyIkTJygvL+fgwYN88MEH5OXlceDAAfuypiPHfFxPsn/zAyspKSm88cYbrW4zYMAAxWsvL682+2vrGJ117EKIh5MiTwjhUPHx8fj4+FBZWdnixv379evXD5vNxoULFxg+fLi9/c6dO1RVVSnuS3tUDxaGT0Kv16PX6zEajezfv5/U1FQ2bNjAggULHDbG/dqKvV+/fgCcP3+esWPHKt67cOECGo3GfnWsI/36+fnh4+NDY2MjcXFxjxe0EOJ/mizXCiEcysPDg7y8PBYuXEhKSkqb2xkMBgDWrFmjaC8pKaGuro74+PgOj/3MM88AT7YUaDabW1xlioiIeOJ+H6at2CMjI9Fqtaxbt46GhgZ7++nTp6moqMBgMLRb3LbVr1qtJikpiR9//JFTp0612K+2ttZh9yQKIVxDruQJIRyuveKu2bBhw5g5c6a9qBszZgxnz56lpKSEqKgopk6d2uFxvb29CQsLY8eOHYSGhtKzZ090Op39IYBHsXnzZoqLi5k4cSL9+/enoaGBsrIy1Gq1/V41Z4iIiKBLly7k5+dTW1uLl5cXer2e4OBgPv30U2bNmkV8fDxTpkyxf4SKj4/PQ5/6bS8nS5cupbKykgkTJjBt2jSGDh3Kv//+y5kzZ/jhhx84efIkWq3WaccshHAuKfKEEC6Tl5eHTqdjw4YN7Nu3j169epGRkcGSJUsUn5HXEWvWrCErK4slS5Zw+/Ztpk6d2qEiLyYmhj/++IOdO3dy/fp1evTowfPPP89nn33m1O/eDQwMpKCggIKCAubOnYvVamXNmjUEBweTkpKCl5cXeXl5LFu2jG7dujF69GiWLl3a7sMQzdrKiZ+fHwcOHCA3N5c9e/ZQWlqKr68voaGhLFq0iGeffdZpxyuEcD6V2WyWu1+FEEIIIdyM3JMnhBBCCOGGpMgTQgghhHBDUuQJIYQQQrghKfKEEEIIIdyQFHlCCCGEEG5IijwhhBBCCDckRZ4QQgghhBuSIk8IIYQQwg1JkSeEEEII4Yb+C17qgrFv7GNSAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAGTCAYAAABUPgTYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdcE/f/B/DXJSFhEzayxIEKDhwIDqxaq53aWqvWVbW1tnTZqba1qNWqraPL1lpt7XD86qrW2mGdX0XBhWgVEBEEB5uwQ0jufn9Qg0cYAZJcEt7Px4PHw7tc7t5cgnnns96MQqHgQAghhBBCrIpI6AAIIYQQQojhUZJHCCGEEGKFKMkjhBBCCLFClOQRQgghhFghSvIIIYQQQqwQJXmEEEIIIVaIkjxCCCGEECtESZ6RpaamCh1Cm0H32rTofpsO3WvTovttOnSvjYuSPEIIIYQQK0RJHiGEEEKIFaIkjxBCCCHEClGSRwghhBBihSRCB0AIIYSYmlqtRnl5eb2P2draori42MQRtU10r5vm4OAAiaRl6RoleYQQQtoUtVqN0tJSyOVyMAyj87hMJoOtra0AkbU9dK8bx3EcFAoFnJycWpToUXctIYSQNqW8vLzBBI8Qc8IwDORyeYOtzk2hJI8QQkibQwkesRStea9SkkcIIYQQYoUoyTMicVICQr+cB3FSgtChEEIIIaSNsagkLzY2Fk8//TRCQkIgl8uxZcsW3uMcx2H58uXo1q0bfHx88OijjyIpKUmQWI8fPAlu5TzIigvBrZyH4wdPChIHIYQQQtomi0ryysvLERoaihUrVsDOzk7n8c8//xxfffUVPv74Yxw+fBienp4YO3YsSktLTRrn8YMnMXTLIthrVAAAe40KQ7csokSPEEIIISZjUUneqFGjEBMTg8cffxwiET90juOwbt06vP7663j88ccRGhqKdevWoaysDDt37jRZjOKkBAzdugj2rIq3355VYejWRdR1SwghpEWio6Mhl8uxcuVK3v7jx49DLpejoKCgWeeaOHGioUMkZsZq1sm7ceMGcnJycP/992v32dnZYdCgQYiPj8fMmTPrfV5qaqpB4whdtwQyjarex+w1KlStW4LkVz826DVJLUO/nqRxdL9Nh+614dja2kImkzV6jFKpNFE0+tNoNLC1tcXnn3+OSZMmwcPDAwCgUtV85iiVSr3j1mg00Gg0Jv89VSoVpFIpb5853mtzU1JSgtzcXJ39wcHBjT7PapK8nJwcAICnpydvv6enJ+7cudPg85q6Qc3FRn+Ayk/mwY7VTfQqRFIw0R8Y/JqkRmpqKt1bE6L7bTp0rw2ruLi43gV4XTbKTRvHLEWzjheLxRgyZAhu3bqFL774Ap988gkAaJMmW1tb7e+VnJyMmJgYnDx5Era2thg6dCiWLVsGb29vLF++HNu3bwcA+Pj4AAD27duHIUOG8K5348YNhIWF6cQREBCAS5cuNXkdoKbFsLCwEAMHDsS3334LlUqFa9euQaFQYP78+fjzzz9RVVWFyMhIrFixAiEhIc26J22Fs7MzAgICmv08i+qu1Ufd9WQ4jjPpekiakD44OmURWPCvqWRsMKbn2/hB3MVksRBCCLEuIpEIixYtwqZNm5Cenl7vMdnZ2XjkkUcQEhKCQ4cOYc+ePSgrK8OkSZPAsixeffVVjB07FsOGDUNKSgpSUlIQGRmpcx5/f3/t4ykpKTh37hwCAgIQFRWl13Xuio2NxeXLl7Fz507s3bsXQE3yd+7cOfzwww84dOgQ7Ozs8NRTT6GystIId63tspqWvLvfGnJzc+Hv76/dn5+fr9O6Z2xDHhiE7OM94ZtxUbvvG98ROOraHSdOKhDgKMYwXyrjQgghpPlGjRqFyMhILFmyBN9//73O49999x169OiBxYsXa/etX78eQUFBSEhIQL9+/bRd1nc/O+sjFou1j7Msi9deew3e3t749NNP9b4OUFO6bO3atdou8rS0NPz555/Yv3+/Npb169ejZ8+e2LFjB5555pnW3yQCwIpa8tq3bw9vb28cOXJEu0+pVOLUqVP1fkMxNvfwCN62lFMDANQc8MzhQiQVVZs8JkIIIdbhww8/xJ49e5CQoDuZLzExESdPnoSfn5/2p3v37gDQYOtfUxYuXIjLly9jy5Yt2i5hfa8TEhLCGwOZkpICkUiEiIjaz0kXFxeEhoYiOTm5RfGR+llUS15ZWRmuX78OoOZbxc2bN3Hx4kW4uroiICAA0dHRWL16NYKDg9G5c2esWrUKDg4OeOqpp0weK+vXgbfdo/ym9t8l1RzG/1OAQ495wttebOrQCCGE1OPuGDmlUlnvmD1z0rdvX4wZMwYLFy7EO++8w3uMZVmMGjUKS5cu1XleS3q2tm7dik2bNuHPP//ktfzpex0HBwfeYxzHNXgtKjdnWBaV5CUkJGD06NHa7eXLl2P58uWYNGkS1q1bhzlz5qCyshLvvPMOFAoF+vXrh927d8PJycnksbL+/CQvvOoWwHHAf2/gm+UaPH2oAL8/5AEHG6tpUCWEEGIiMTExiIyMxKFDh3j7w8LC8OuvvyIgIAA2Njb1PlcqlUKj0TR5jfj4eLz11lvYuHEjevbs2ezr1Kdbt25gWRanT5/WdumWlJTgypUrmDx5st7nIU2zqOxiyJAhUCgUOj/r1q0DUPMN4N1330VKSgpycnLwxx9/IDQ0VJBYOQ8fcNLab4L2ylK8HlDFOyYhvxrP/68IGrbhbzWEEEJIfTp27IgZM2bgm2++4e2fNWsWSkpKMHPmTJw9exYZGRk4evQo5syZoy0OEBgYiKSkJKSmpqKgoADV1bpDiHJycjB16lQ899xzCA8PR05ODnJycpCfn6/3derTqVMnPPLII3jjjTcQFxeHy5cvY/bs2XBycsL48eMNeIeIRSV5FkUkAusXxNu1yLsAD/jx12b6I1OJBWeKTRgYIYQQazF37lxIJPxOuXbt2uHvv/+GSCTCuHHjMGDAALz99tuQSqXasXHTp09Hly5dMHz4cHTq1AlxcXE657569Sry8vKwdu1adO3aVfszfPhwva/TkK+//hp9+/bF9OnTMWLECFRWVmLnzp31VrMiLccoFApqRjIS2XefwOZ/f2i3qya9hIL7n8LDf+ThcpGad+wnkS6YHepo6hCtCq0lZlp0v02H7rVhFRcXw8XFpcHHLWFMnrWge62fpt6zDaGWPCOqO/lCdDMdzlIRto/0QDt7/q2ff7oYf2XR+kCEEEIIMQxK8oyo7uQL0c2aKeV+DmL83wPucJDUziJiOeDZo0W4kF9/STRCCCGEkOagJM+IdJK8WxnAf6uAh7lLsWmYG0T3zBavUHN4+mABbpbxu3IJIYQQQpqLkjwj4lzcoLarXR+IUSnB5NXW0R0VYItPIvl97NmVLCYcLECJigUhhBBCSEtRkmdMDINKTz/eLtEt/mrjs0Ic8XJ3/oSLK0VqzDhSiGpaWoUQQgghLURJnpEpveokeTd1S8os6e+MxwL5s4sO367C26cUja4MTgghhBDSEEryjKzS05e3XV+SJ2IYfDvUFf08+CuG/3i1Ap9fKjNqfIQQQgixTpTkGZmyie7au+wlImx7wB2BjvxatovOleDX9AqjxUcIIYQQ60RJnpEp67bk3ckE1LrlYwDAy06M7SPd4SzlF2ieebQIrptuoef2bOxIK29RHDvSytFze3arz0MIIYQQyyBp+hDSGho7B7BunhAV5gEAGI0GouwssP4d6z2+m9wGPw93x7gD+VDfMxyPA5BVrkH0cQX2pFci1E2qdwxXClX4+2aV9nxZ5Rq8FltTSm18J4dGnkkIIYTwHT9+HKNHj0ZaWhrc3d2FDoc0gpI8E2D9OmiTPKBmXF5DSR4ADPWV4YvBcrx0QqHzmJoD9mdVYX9WVatiqtRwWHi2hJI8QgixENHR0di2bRumTZuGL7/8kvdYTEwMvvjiCzz44IP45ZdfjBpHZGQkUlJS4ObmZtTrkNaj7loTaKjyRWMmBxs/+bpdweKzi6Wo0tAMXkIIaS4hhsH4+/vj119/RXl57bXUajV++eUX+Pv7t+rcKpV+FZekUim8vb3BMEzTBxNBUUueCehWvmg6yQMAfwcxbpZrjBGS1qJzJfjxajk+inDBwwG29EdLCGmz5Jtutfi5WeUaPP8/BZ7/n24PTEMUM/2aPqiO7t27486dO/j1118xdepUAMDff/8NmUyGQYMGoaioCABw/vx5LFmyBImJiaiurkb37t3x4YcfIiIiQnsuuVyOlStX4tixYzh8+DCeffZZLF26FH///Tfef/99ZGVloW/fvpg1axaee+45JCYmon379jrdtVu2bMHcuXOxdetWzJ8/Hzdu3EDfvn2xdu1aBAUFNft3JIZDSZ4JsH7Nb8kDgIX9nPBabDEq72lpkzDAI4EydG/GmLzLhSr8kVnFG+N3r/RSDSYfKsRwXxmWR7qgm9ym/gMJIYQIbtq0adiyZYs2ydu8eTOmTJmCjIwM7TGlpaWYOHEiVqxYAYZhsGHDBowfPx7nz5/njaP7+OOPERMTg6VLlwIAsrKyMG3aNMyaNQszZ87ElStX8P777zcZU1VVFdasWYO1a9dCJpMhOjoab775Jnbv3m3YX540CyV5JsD6BYFjGDD/LWzM5N0BqioBmV2jz7s7Xu7Dc6W4Wa6Bv4MYMf2cWjSObkdaufY8LlIGVRoOlXUaCY/crsLgPbmY1c0B7/ZxhlxGvfmEEGJuxo8fjw8++ABpaWlwdHTEoUOH8Mknn2DZsmXaY4YOHcp7zieffILffvsNBw8exMSJE7X7x44di2eeeUa7vXjxYgQFBeGjjz4CwzAIDg7GtWvXsGTJkkZjUqvVWLVqFYKDgwEAr776Kl5++WWwLAuRiD5LhEJJnilIZeC8/MDk3AQAMBwH0a0bYDt2a/Kp4zs5GGRyRN3zFCo1WJ5Qiu9SynFv9TQNB6xPKseO65V4v68TZnRxgFhEXbiEEGIu5HI5HnvsMWzevBkuLi6IiopCQEAA75i8vDx89NFHOH78OPLy8qDRaFBZWYmbN2/yjuvTpw9v++rVq+jTpw9v6E54eHiTMclkMm2CBwA+Pj6orq5GcXExXF1dW/JrEgOgJM9EWP8OEOXU/nGJbqbrleQZi5utGCsHyjGjqwPmxytwPJs/4LawisVbp4rxfXI5VkTKMaSdTKBICSHENO6OkVMqlbC1tW302B1p5TrDaezEDL4Y7GKSVQumTp2K6OhoODg44L333tN5PDo6Grm5uVi2bBkCAwMhk8kwZswYnckVDg78WDmOa9HYbImEn07cPQfLss0+FzEcakM1kZZOvjC27m42+O0hD/x8vxva16m2AQCXi9QY/Vc+ph8pwI1StQAREkKI+RnfyQFfDHZBgIMYDIAAB7HJEjygpjvWxsYGBQUFePTRR3Uej4uLw+zZs/Hggw8iJCQEjo6OyMnJafK8Xbt2RUJCAm/fuXPnDBY3MS1qyTORlk6+MAWGYTC6vR1G+tniq8tlWHOxFOV1ZmnszVDirywlXu3hhDd6OsLBhr4fEELaNkMNp2kJhmEQGxsLjuMgk+n2tHTq1Anbt29HeHg4KioqEBMTA6m06Ql7M2fOxFdffYUFCxZg+vTpSEpKwqZNm7TXJJaFPqlNRKOzVt51gSJpmK2EwVthTjjzpDcmdtKdFFKlAVYllqL7L3fQcesdKpFGCCECcnJygrOzc72PrV27FuXl5Rg2bBieffZZTJ06FYGBgU2eMzAwED/99BP+/PNPREVFYd26dZg3bx4ANNmFTcwPo1AoaCVcI0pNTa0ZjKpWw+GFh8HcU7e27Ku9gKOLgNE17nRuFebHF+N8fv21du8y5TiUxmjvNTEJut+mQ/fasIqLi+Hi0vD/vfqMyWtL1q1bh+XLlyMjI8PgM2XpXuunqfdsQ6glz1QkErDt+N+iRDczhIlFTxFeMhx8zBNfRcnhZdfwW6VSw+HDc6UmjIwQQoixbNiwAefOnUNGRgZ27tyJlStXYtKkSbQUigWiMXkmxPp3gDgrTbstupUOtluYgBE1TcQwmBLsgNHt7bDmYik+u1RW73HGrsxBCCHENK5fv441a9agsLAQvr6+ePbZZzF37lyhwyItQEmeCdWdfCG+mQ5Lma/qLBVhUbgL/u9aBbIrdafE+zvozswlhBBieZYvX47ly5cLHQYxAGp7NSGdZVTMcPJFU5b0d0bd+VVSERDTz0mQeAghhBBSP0ryTEg3yUsHOMua9zK+kwOGteNPw3/ATyb4pAtCCCGE8FGSZ0Kcuzc429qlSZiKMjBF+QJG1DITO/MTugoajkcIIYSYHUryTEkkAusXxN9lJpUvmqO/J78l73yeCqyFtUgSQggh1o6SPBMz58oX+uroLIarrHZkXkk1h6vFljKFhBBCCGkbKMkzMWuYfMEwDPp58FvzzuapGjiaEEIIIUKgJM/EWP+OvG1LbMkDgH51umzPUZJHCCFEQNHR0Zg4cWKjx0ycOBHR0dEmikh4lOSZmE5L3u0bAGt5MxfC6yR5Z/IaL31GCCHWSJyUAPs3J0KclGCS6+Xm5mLevHno3bs3vLy8EBISgqeeegoHDhwwyfXvpU9SZUorVqzA+vXrjX6d6OhoyOVyrFy5krf/+PHjkMvlKCgoaNa5jHkPKckzMc7ZFZxTbf05RlUFJu+OgBG1TD8PG972laJqlFfrLpJMCCHWSpyUANs18yEqyIHtmvlGT/Ru3LiBoUOH4vDhw1i4cCFiY2OxZ88ejBo1Cm+++aZRr90a1dWmaQRwcXGBXC43ybVsbW3xxRdfID/fvFfIoCTP1BgGGiuYfOFmK0Yn59oqFywHXCig1jxCiOVynD4MjtOHweOFh7T/buzHbsUbYFRVAGq+sNuteEOv5939aa63334bHMfhyJEjGDt2LIKDg9G1a1fMnj0bJ06c0B6XlZWFKVOmwN/fH/7+/pg6dSpu3bqlfXz58uUYOHAg79xbtmyBn5+fzjG7du1C79694e/vj8mTJ2tbqZYvX45t27bh77//hlwuh1wux/Hjx3Hjxg3I5XLs3LkTo0ePho+PDzZu3IiAgADs3buXd80jR47A398fubm59f6+I0aMwGeffabdfv755yGXy5GTkwMAqKiogKenJ+Li4gDotopVVFQgOjoafn5+CA4OxurVq3WuoVKpsHDhQoSGhsLX1xfDhw/HoUOHGn8hAAwZMgQBAQH45JNPGj0uOTkZEyZMgL+/Pzp37oznnntOG39D99CQKMkTQL2LIlsgGpdHCCGmUVRUhIMHD+L555+Ho6OjzuN3W7A4jsOUKVOQl5eH3377Dfv27UN2djamTJkCrplLXWVmZmL37t3YvHkzdu/ejYsXL2LJkiUAgFdffRVjx47FsGHDkJKSgpSUFERGRmqfu3jxYsyaNQtxcXEYM2YMxo0bh82bN/POv3nzZowcORJeXl71Xj8qKoqX9MTGxsLd3V2b0MbHx8PGxgb9+vWr9/kffPABjh49ip9++gl79+7FxYsXcfLkSd4xL7/8MmJjY7FhwwacPHkSkyZNwtNPP41Lly41em9EIhEWLVqETZs2IT29/s/w7OxsPPLIIwgJCcGhQ4ewZ88elJWVYdKkSWBZtsl7aAiU5AnAWiZfhHvUHZdHSR4hhBjD9evXwXEcunTp0uhxR48exb///osNGzagb9++6NOnDzZu3IjExEQcO3asWddUq9X4+uuv0aNHD0RERGDGjBnaczg6OsLW1hYymQze3t7w9vaGVFr7mTB79mw8/vjjCAoKgp+fH6ZPn47Dhw/j9u3bAACFQoH9+/dj0qRJDV4/KioKcXFxUKvVSEtLQ0lJCWbMmKFN/E6cOIGIiAjY2NjoPLesrAw///wzFi9ejBEjRiA0NBRfffUVGKZ2+a/09HTs3LkTmzZtwuDBgxEUFITZs2dj5MiR+OGHH5q8P6NGjUJkZKQ28a3ru+++Q48ePbB48WJ07doVPXr0wPr163H+/HkkJCQ0eQ8NgZI8AVhLS15/L2rJI4QQU9C3FS4lJQXt2rVD+/bttfuCgoLQrl07JCcnN+uaAQEBcHGpHUPu4+Oj9xi0Pn366GyHhoZi27ZtAIAdO3ZALpdjxIgRAICnnnoKfn5+8PPzw4ABAwAAAwcORFVVFc6fP48TJ05g4MCBGDp0qLYl78SJE4iKiqr3+unp6VCpVIiIiNDuc3R0RPfu3bXbiYmJ4DgOAwYM0F7bz88PBw4caLB1rq4PP/wQe/bsQUKC7njMxMREnDx5knfuu9fX9/ytJTHJVQiPTtWLnCygWgXYGDaDN7burjaQiYGq/yYH365gcbtcA18HceNPJIQQM1T241EAgFKphK2tbaPH3p10cXdMHgBwUhmUb66AJqRPI89smU6dOoFhGFy9erXR4ziO47VW3evufpFIpJM0qtW6C9rXbSFjGAYsq98EOwcH3XrmzzzzDNatW4e33noLmzdvxuTJkyEW13xefPHFF1AqlQAAiaQmNXF0dERYWBiOHz+O5ORkDBkyBBEREcjKykJaWhrOnz+PxYsX13t9fZJilmXBMAwOHz6s87s29frf1bdvX4wZMwYLFy7EO++8o3P+UaNGYenSpTrP8/T01Ov8rUUteUKwdwTrVjsGgdFoIMq+KWBALSMVMwhzo0WRCSFtjyakD5RvrgAnlQEwboIHAK6urhgxYgQ2bNiAsrIynccVCgUAoFu3brh9+zZu3LihfSwjIwN37txBt27dAAAeHh7Izc3lJUJNjUGrj1QqhUaj/xJgEyZMwJ07d/Dtt98iMTERU6ZM0T7m6+uLjh07omPHjggMDNTuvzsuLzY2FlFRUbC1tUW/fv2watWqRsfjdezYETY2Njhz5ox2X3l5Oa5cuaLd7tWrFziOQ05Ojvbad398fX31/r1iYmJw6tQpnQkbYWFhSE5ORkBAgM75nZycADT/HjYXJXkCsZYu236e/G8/1GVLCGkr7iZ6rLu3URO8u1atWgWO4zB8+HDs2bMHqampuHr1Kr777jttt+WwYcPQo0cPzJ49GxcuXEBCQgKef/55hIWF4b777gNQkzgVFRVh9erVSE9P105MaK7AwEAkJSUhNTUVBQUFTS6V4uLigscffxwLFizAoEGD0KlTpyavcTfJKysrQ1hYmHbf9u3bGxyPB9S0Ak6bNg2LFi3CkSNHkJSUhFdeeYXXEtm5c2dMmDABL730Evbu3YuMjAwkJCTgyy+/xG+//ab3fejYsSNmzJiBb775hrd/1qxZKCkpwcyZM3H27FlkZGTg6NGjmDNnDkpLSwE0/x42l1UlecuXL9dOQ77709QgVaHoTr6wvPJmANBfZ1FkSvIIIW2HJqQPKtb8YvQED6gZW3fs2DEMGzYMCxcuxODBgzFmzBj8+eef+PTTTwHUdKlu2bIF7u7ueOyxxzB69Gh4eXlhy5Yt2u7arl27Ys2aNfjhhx8wePBgHD16tEXr7E2fPh1dunTB8OHD0alTJ+1SJo2ZNm0aVCoVpk2bptc1Bg4cCIZhMHDgQG3X7pAhQ6DRaBocj3fXkiVLEBUVhalTp2L06NEICQnBoEGDeMd89dVXmDJlCmJiYtC/f39MnDgRsbGxvNZEfcydO1fbzXxXu3bt8Pfff0MkEmHcuHEYMGAA3n77bUilUshkNS3ALbmHzcEoFIrmzak2Y8uXL8fu3bvx+++/a/eJxWJ4eHgIFlNqaiqCg4N19ktiD8D222XabXXvQVC+sUznOHN3o1SNsJ052m17CYPMKe0gEdU/JsSYGrrXxDjofpsO3WvDKi4u5k0oqEufMXmkZXbv3o3XX38dycnJsLe3p3utp6besw2xuokXEokE3t7eQofRJJ3u2luW2V0b6CiGp60IecqaJvAKNYckhRo93epvQieEENL2VFRUIDMzE6tXr8b06dNhb28vdEhtgtUleRkZGQgJCYGNjQ3Cw8MRExODoKCgBo9PTU01ekz1XYOpViGMYcD8N/BVlHcHaZcvgZVa3jeabvZS5Clr30p/XM6CrY8w9XhN8XqSWnS/TYfuteHcXZusMXdnehLDWL16NT7//HNERETgtdde491futdNKykpqbcySFMt/FbVXfvPP/+grKwMwcHByM/Px8qVK5Gamoq4uDi4ubkJElNj3Sz286ZBlJ2l3a6IWQe2U4ipQjOY1YmlWHK+RLs9JdgeX0W5mjwO6tIyLbrfpkP32rCou9Z80L3WD3XXAhg5ciRvOzw8HL1798bWrVvxyiuvCBRVw1j/DrwkT3TzukUmeeE0w5YQQggxO1Y1u7YuR0dHdOvWDdevm+fMVWtZRqWPhxT3TrNIUahRotJvwUxCCCGEGIdVJ3lKpRKpqalmOxFDYyWTL5ylInSV1zYKcwAS8qk1jxBivvQtE0aI0FrzXrWqJG/BggU4ceIEMjIycPbsWUyfPh0VFRWNFkAWEutnHS15ABCus16eYRd0JIQQQ3FwcIBCoaBEj5g9juOgUCjqLROnD6sak3f79m3MmjULBQUF8PDwQHh4OP75559mL2poKpy3HziJDRh1TUIkKi4EShWAk1zgyJov3FOKzakV2m0qb0YIMVcSiQROTk4oKSmp9/GSkhI4OzubOKq2ie5105ycnHQWWtaXVSV533//vdAhNI9YAtY3EOLMNO0u0a0MsN16CxhUy/Sr05J3Lk/VaKFsQggRkkQiaXC2Ym5uLgICAkwcUdtE99q4rKq71hLVLW8mzjLPSSJNCZFLYC+pTejylCwyy4RZK48QQgghlOQJzloqX0hEDHq785dSoS5bQgghRDiU5AnMmiZf9K/TZUtJHiGEECIcSvIEVm9LnoXO+NIdl0czbAkhhBChUJInMM7dG5xtbaFmpqIcTFGegBG1XN1lVBILVVBpLDNhJYQQQiwdJXlCYxjd1rwsy+yy9XUQw9e+9i1VpQH+LaTWPEIIIUQIlOSZAZ1xeRY6+QLQbc2jcXmEEEKIMCjJMwPWUsMWqCfJo/JmhBBCiCAoyTMD1pTk1bcoMiGEEEJMj5I8M6CT5N3OAFjLXEi4t7sNxPcUuUgr0aBQaZm/CyGEEGLJKMnjXq9VAAAgAElEQVQzA5yzK1hnV+02U60Ck3tbwIhazsFGhFBX/qLI5/Jp8gUhhBBiapTkmQlr6rIN96TKF4QQQojQKMkzE9ZU+YLG5RFCCCHCoyTPTFhXS57uMiqchVbxIIQQQiwVJXlmom6SJ7bgtfK6uEjgbFM7+0Kh4pBWohYwIkIIIaTtoSTPTLB+QbxtJjsLqLbMbk4Rw6CvTmseTb4ghBBCTImSPHNh5wDWw1u7ybAsRHcyBQyodcI9aFweIYQQIiRK8syIdU2+qDPDlipfEEIIISZFSZ4ZsebJF5cKqlGppskXhBBCiKlQkmdGdFryLHjyhaedGO0dxdptNQdcLKDWPEIIIcRUKMkzI2xAR962JbfkAfUspUKVLwghhBCToSTPjLA+AeBEtS+JKD8bqKwQMKLWoUWRCSGEEOFQkmdOpDJw3v68XZbcZVu3vNkZSvIIIYQQk6Ekz8xY0+SLXm5S2NzzDssq0yC3UiNcQIQQQkgbQkmemdFY0eQLWwmDnm51llKh1jxCCCHEJCjJMzPW1JIH0Lg8QgghRCiU5JkZa59he4bKmxFCCCEmQUmemeG8fMHZ1HZxikqKwJQUCRhR6/Svk+Ql5KugYWlRZEIIIcTYKMkzNyIxWN8g/q5bGYKEYggdnMRwk9W+zUqrOVwtVgsYESGEENI2UJJnhqyphi3DMOjnQZMvCCGEEFOjJM8MWfvkC0ryCCGEEOOjJM8Msf51J19cFygSw+jvRUkeIYQQYmqU5JmhelvyOMudrNDPg5/kJSnUKKtmBYqGEEIIaRsoyTNDnJsnODsH7TajrABTmCtgRK0jl4nQ2Vmi3WY54EIBLaVCCCGEGBMleeaIYaxq8gUA9KtTx/ZsLnXZEkIIIcZESZ6ZsrbJF3XXy6NxeYQQQohxUZJnpnSTPMuefFG38sW5fEryCCGEEGOiJM9MWVtLXnc3G9iKa7fvVLC4Va4RLiBCCCHEylGSZ6Y0dcfk3bkBaCy3UoSNiEGYO3XZEkIIIaZCSZ65cpaDdXHVbjLV1WBybwsYUOvpTL6gJI8QQggxGr2TvBkzZuCvv/6CRkNdbKZibTNsafIFIYQQYjp6J3mnTp3C5MmT0bVrV8ydOxfnz583ZlwEupUvxAknBYrEMOqWN0ssqIaatdxFngkhhBBzpneSl5SUhB07duD+++/H1q1b8cADDyA8PByrVq1CZmamMWNsto0bN6JXr17w9vbG0KFDcfKkZSZHdSdf2Jz6B+KkBIGiab0ABzG87GrfchVqDleKaFFkQgghxBgYhULR7KaUiooK7Nu3D9u3b8exY8fAsiwGDBiAp59+Go8//jhcXFyMEatedu/ejdmzZ2P16tUYMGAANm7ciK1btyIuLg4BAQEmj8dlo7zFz2Vvu4NLqxOziIWo+3Uw8rJWRiaMx0Vf4jfmfu32OnYxXuS2CxgRIYQQYnjFsxRCh9CyiRf29vaYOHEidu3ahStXruCJJ57AqVOn8Prrr6Nbt2547rnnBOvO/eqrrzB58mRMnz4dXbt2xcqVK+Ht7Y3vv/9ekHhailM4gkv3032AFYG93BGcwtH0QRnAAC6Rtx2PXgJFQgghhFg3SdOH1C8jIwPbt2/H9u3bkZaWBi8vL4wfPx5SqRTbtm3Dr7/+imXLluHFF180ZLyNUqlUuHDhAl599VXe/vvvvx/x8fH1Pic1NdWoMYW38Hns1UCAbSAHZ0VgrwZCHHGlxXEJJZK7xNuOZ3oBNCyPEEKIlTF2fgEAwcHBjT7erCRPoVBg9+7d+OWXX3DmzBlIpVI8/PDDWLZsGUaMGAGxuGa123fffRezZ8/GmjVrTJrkFRQUQKPRwNPTk7ff09MTubm59T6nqRvUasda9jRRl0ywlzvWn+iJWIi6mNc4SH2F418wHAuOqfm9kphOUMAJcpQKHBkhhBBiOEbPL/Sgd5I3ZcoUHDx4ECqVCv3798fq1asxduxYyOW6Y85sbGzwyCOPYM+ePQYNVl8Mw/C2OY7T2WcqZ4eeafELLU5KgO2quWDUtZMTODBQzv0cmpA+hgrR5Lr9moMkRe3CzkcfTsVwP9tWnzc1NdUs/qjaCrrfpkP32rTofpsO3Wvj0ntMXmJiIl599VWcPXsWBw4cwMyZM+tN8O4aPnw49u3bZ5Ag9eXu7g6xWKzTapefn6/TumcJNCF9oHxlMa83kwEH1sNHsJgMoW4dW1ovjxBCCDE8vZO8f//9FwsWLECnTp30Ot7DwwNRUVEtDqwlpFIpevfujSNHjvD2HzlyBJGRkSaNxVA0fQaBDeDfc/HF0wJFYxg6SV4+LaNCCCGEGJreSZ6bmxt27tzZ4OO7d++Gm5ubQYJqjZdffhlbt27FTz/9hJSUFMybNw/Z2dmYOXOm0KG1mHrgCN625GKcQJEYRt1Fkc/lqcBxNPuCEEIIMSS9x+RxHNfoBzHLsoKNe7vXk08+icLCQqxcuRI5OTkICQnB9u3bERgYKHRoLabpNQDY/q12W3zlPKCqAqQyAaNquRC5BA4SBuXqmvdTvpLFjTINgpxaPNmbEEIIIXU0a528xpK4s2fPNjpGz5RmzZqFS5cuITc3F8eOHcPgwYOFDqlVWP8OYF09tNuMqgrilIsCRtQ6YhGDPh42vH00Lo8QQggxrEabTtatW4dvvvlGu/3uu+9iyZIlOscVFxejpKQEEydONHyEBGAYaHoNgOjY79pd4otx0PTsL2BQrRPuKcWJ7NrE7vVYBTiOw/hODgJGRQghhFiPRpM8d3d37dTmzMxMeHt7w8eHP7OTYRjY29ujT58+mD17tvEibePUYZGwuSfJkyTGQzXl1UaeYd6UGn7Xf5maw2uxNSVgKNEjhBBCWq/RJG/ChAmYMGECAOCxxx7DO++8g6FDh5okMMKnCe0HTiwBo6lZX06UcxNMzk1w3v4CR9Yyv2VU6uyr1ABz44sxrqM9RGYwvpMQQgixZHqPyfv9998pwROSnT00Xfl1XiUWvJTKnQq23v1FVRzu35eHuJwqE0dECCGEWJcGW/KysrIAAAEBAbztptw9nhiepmcEJFfOa7fFiXGoHvmkgBG1nL+DGFnlmnofu1BQjYf+yMdTHe2wONwFfg5iE0dHCCGEWL4Gk7xevXqBYRhkZ2dDKpVqt5tSWFho0ABJLXXYAMh+qZ0II06+AFQpAVnrS4KZWkw/J7wWW4xKTcPL8uy8Xok/MpV4vacjXu3hBDsJdeESQggh+mowyVu7di0YhoGNjQ1vmwiH820P1sMbovwcAABTrYI4+QI0YQMEjqz57k6u+PBcKW6Wa+BjL4KfvVin+kWFmsOyhFL8nFqBJeEueDzIlt6HhBBCiB4aTPKmTJnS6DYRAMNA0zMSoiO/aXeJE+MsMskDahK9ujNpT2RXYX58Mf4t5Cd7WWUazDhaiME+UqyIlKOnG3+dPUIIIYTw6TXxorKyEr179+atmUeEoa6T0EkungasqCRYlI8Mx0Z74rNBcrjLdN+esdkqDP0tF2+cLEKBsv4xfYQQQgjRM8mzs7NDSUkJpFJp0wcTo9KE9gEnqW3FEuXdBpOt36QYSyEWMZjR1QHnxnkjOtQBdYfisRywKaUCfXflYN3lMlSz1pPkEkIIIYai9xIqo0aNwoEDB4wZC9GHzA6armG8XZLEeIGCMS65TITlkXLEPuGF+3116/QWqzi8e7oYUXtycfiWUoAICSGEEPOld5L3xhtvIDMzEzNmzMCxY8eQmZmJvLw8nR9ifJqwSN62+KJ1Jnl3dZXbYNcod2wb4YaOTrrLqaQUq/HkgQL0P2GHbv93BzvSygWIkhBCCDEvjVa8uNeAATVjwZKSkvDbb781eBwtoWJ86rABkG39SrstTkkElBWArb2AURkXwzB4ONAO9/vZYv2VMqxMLEVpdd1uWgbZlSyijytQoeYwvaujILESQggh5kDvJG/u3Lm0dIWZ4Lz9wXr6QpR3GwDAqKshvpIATd/BAkdmfDIxg9d6OmFiJ3ssOV+CzakVOseoOeCNU8UQixhM7kwl0gghhLRNeid57777rjHjIM3BMFCHRUJ68FftLsnF+DaR5N3lbS/G2ihXbEmtQH3TLlgOeOWEAt8ll+PjSBdEeOmO6SOEEEKsmd5j8oh50fTiL6UivhhvVUup6Mu/iZJnCfnVGLU/H7OPFeJWA2XUCCGEEGukd0veXadPn8aFCxdQXFwMluUXmWcYBnPnzjVYcKRhmpDe4GykYKpVAABRQQ6Y2zfA+QUJG5iJ6VMeDQC2X6/E75lKvNnLCa90d4QtlUgjhBBi5fRO8oqLi/H0008jPj4eHMeBYRhw/7Uc3f03JXkmJJVBE9IHkntm1koS41DdxpI8fnk0NfwdJIju7oD4XBX2ZvCXValQc1h6vgQ/XS3H0v4uGN2eSqQRQgixXnp31y5atAgJCQn45ptvkJCQAI7jsHv3bpw7dw7PPPMMevXqhatXrxozVlKHplfbWkqlIeM7OeDSBB+cjqrEpQk+eKm7E34c7o59D3mgu6vu95jMMg2eOVKIMX/l65RPI4QQQqyF3kneX3/9hWeeeQYTJkyAs7NzzZNFInTs2BGfffYZ2rVrh/fee89ogRJd6rpJ3tVLQCWtEXfXkHYyHBvjhTUD5XCrp0Ta8WwV7vstF2+fUqCQSqQRQgixMnoneYWFhejRowcAwMampqxWeXltQjFy5EgcPHjQwOGRxnDefmB9ArTbjEYN8eXzAkZkfiQiBs92c8D5cd54IcQB4npKpG1MLkffXTlYf4VKpBFCCLEeeid5Xl5eyM3NBQA4OTnByckJqamp2seLioqg0VBriKnVbc2TXIwTKBLzJpeJ8PGAmhJpw+spkaZQcZgXX4xe2+8geNsduG66hZ7bs6l6BiGEEIuld5IXHh6O2NhY7fYDDzyAL7/8Er/88gu2bduGr7/+GhEREUYJkjSs3nF5bXApFX11k9tg9yh3bB3hhg71lEi7U8khT8mCA5BVrsFrscWU6BFCCLFIeid5s2fPRnBwMJTKmhmLS5YsgZubG1588UW89NJLcHNzw4oVK4wWKKmfpmsvcFJb7baoKB+irOsCRmT+GIbBI4F2iBvrjcXhznBsZDmVSg2HD8+VmjA6QgghxDD0XkJl4MCBGDhwoHbbz88P8fHx+PfffyEWi9GlSxdIJM1edo+0llQGTWgfSC6c0u4SX4wDG9hJwKAsg0zMYM5/JdI+PFeCrdd0S6QBwE1aRJkQQogFalXFC4Zh0LNnT4SGhlKCJyB1neoXkounBYrEMvnYi/H1EFd42dX/59BUVQ1CCCHEHDWYmWVlZbXohAEBAU0fRAxK04s/FlKUegkoLwUcnASKyDJ91N8Zs/+n4NXClYpqqmoQQgghlqbBJK9Xr14tqgZQWFjYqoBI83Ge7cD6tofo9g0AAMOyEF8+B03EMGEDszDjOzlgc2oFjt1RafcN95Vpq2oQQgghlqTBJG/t2rVU8smCqHtFQvpfkgcAkovxlOS1wPQuDrwkL1/JNnI0IYQQYr4aTPKmTJliyjhIK2nCBgB/bdduiy/GAywLiFo17LLNGezDX0PvQkE1SqtZONnQfSSEEGJZ6JPLSmi69ARna6fdFhUXQpR5TcCILJO3vRjBLrXffTQccDpX1cgzCCGEEPOk95TYjz/+uMljGIbB3LlzWxUQaSGJDTSh/SA5f0K7S3wxHmxQFwGDskyDvaVILVZrt2OzqzDCz7aRZxBCCCHmR+8kr7GFjhmGAcdxlOQJTB02gJfkSRLjUT1mmoARWabBPjL8cLV2zbwTd6glz5ztSCvH4nOluFWugYetCNOC7TDUt2VJ+bHbSvycWol8JQt/BzFi+jnRxBtCiMXSO8krKirS2ceyLDIzM7F+/XrEx8dj586dBg2ONI/OUippV4CyEsDRWaCILFPdcXnn81Uor2bhQOPyzM6OtHK8GquA8r/1qvOULNZcKseaS60vRXe3rB0ASvQIIRapVZ9aIpEIQUFBWL58Odq3b4/58+cbKi7SApybFzT+HbXbDMdC8u8ZASOyTL4OYl5dWzUHnMmj1jxz9OG5Um2CZwxU1o4QYskM1jQxZMgQ/P3334Y6HWkhTVgkb1ucGC9QJJatbmveiWxK8syRKUrOUVk7QoilMlgtstTUVHAc1/SBxKjUvSIh3b9Nuy2+dJqWUmmBwT4ybE6tHZcXm10lYDSkIc5SBsUq3f93ZCIg0ltWzzMaFp9Thap6lkWksnaEEEuld5IXGxtb7/7i4mIcP34cGzZswBNPPGGwwEjLsJ17gLNzAFNZMyZJVKqAKOMq2I7dBI7Msgz2kfK2z+WpUKnmYCehBcLNRTXLganne6WdmMEXg12aPY5uR1o5XjqhQPU9iR4D4IO+VNaOEGKZ9E7yHnvssXorYHAcB7FYjHHjxum1zAoxMokEmh7hkJw5pt0lToyjJK+ZAh0lCHQUI7OspqtOxQJn81QY0q55rUPEePbfUEJRzc/y/OxFWBTu3KKJEuM7OaCsmsMbp4q1+zgAXV1tWhsqIYQIQu8kb9++fTr7GIaBXC5HYGAgnJzo2665UPeK5CV5kovxqB47Q7iALNRgHxkyr/G7bCnJMx/rk8p42zO62OOzwa6tOufMbo7462YV/s5Savftvl6JMHdpI88ihBDzpHeSFxUVZcw4iAFpetZZSiU9GShRAM5ygSKyTIN9pNh2T5J3gsblmY0L+SqcyuFPhnkh1NEg536qgx0vyduVXomF4c4QUS1vQoiFafbEi9LSUhw/fhxZWVkAgICAAERFRcHZmdZiMxecqwc0gZ0h/q+sGcNxkFw6DfXgUQJHZlmi6sywPZunQpWGg0xMH/ZCW5/EXwdvaDsZQgzUrfpwoC3sxAwqNTVdwTfLNTiTq2r2RA5CCBFas6Zcfvrpp+jWrRumTp2K+fPnY/78+ZgyZQq6deuG1atXGytGvT366KOQy+W8n2effVbosAShCRvA2xZfpKVUmqu9oxh+9rUzK5WamgkYRFi5lRrsul7B2/diqOEWK3a0EeGhAH7FjJ3plQY7v1B2pJWj5/ZsuG66hZ7bs7EjrWULRhvqPEQ/dL9Ja+jdkvf555/jww8/RFRUFGbNmoXOnTuD4zikpaVh48aN+OijjyCRSDBnzhxjxtukKVOmICYmRrtta9s2a46qe0VCum+zdlty6QyqWA0gouUg9MUwDAb7SLH9eu0HfGx2FQb5UIuOkH5IKYfqnhmwQU5ijPI37N/5kx3t8GtG7eu+J70SyyNcIBFZZivujrRyvHJCoV0iJqtcgxePK7D+SjkCHPXv0MkqUyOhoBr/NXJSVRAj++VaTUUX1T2vG91v0hx6/3Vv2LABw4cPx+7du3n7e/TogTFjxmDs2LHYsGGD4Emevb09vL29BY3BHLCdQsDZO4KpqBmczpSXQHQ9GWzn7gJHZlmi2sn4SV6OCu8IGE9bp9Jw+C6Z35IxO8QRYgMnXyP9bOFsw6Dkv9m7eUoWsdlVLa6JK7T3TpforAGo4YCz+dU4m1/dqnNXajgsOldCSYeBncqpwiux/CV9gNoqLHS/iT70TvIKCwvxyCOP1PsYwzB47LHHeC1oQtm1axd27doFLy8vPPDAA5g3b16jM39TU1ONHpMprlGfoKAQuF6pLWtWcuQP3OGse5agoe+1n5IBYKfdjstWIiklFRJaWxqA6d/bf+WKkVNZ25JqL+YwUHQHxghjiKsU+3Nr/4v8/kIOfMuF665v6b2+XsEgT2mLmlX/jONWuQafx17HQ54aWGhjpw6h/t/OrmLwZboNDuQ3/PF8s1wtWHzGYE2/i6kFBwc3+rjeSV5YWBiSk5MbfDwpKQm9e/fWPzIjGD9+PAICAuDj44Pk5GQsXrwY//77L/bs2dPgc5q6Qa2Vmppq9Gs0RDL4AeCeJM/zZiocBYrFFIxxrztzHHyuZCO7subrtJJlUOoaiAgv6rIV4r39YnIugNqWpyldHNEnxN8o15ppp8T+fwq020eLbLChYyCkAky8aem9zq3U4J3f8wAYuzQbg4VXZfi9yAYrIuXo52nZXyaFeG9XqFl8+W8ZPrtYpp300xAvO7FgnyuGJuRnZFugd5K3cuVKjBs3DgEBAXjuuefg6FizXEFZWRk2btyI/fv3Y9euXQYPcOnSpVi1alWjx+zbtw9DhgzBjBkztPu6d++OoKAgjBgxAhcuXBA8ARWCpmd/3rY44yoYRQE4ubtAEVmemnF5MuxKv3dcnoqSPAGczVPhXJ2uxdkhxuuyGuorg7tMhIL/+jmLVRwO31bioQC7Jp5pHirULCYdLNAu6F2XVARM72KPgc2YNXwqpwo/Xq3gjYm815m8aoz4PQ+TO9sjpp8zfOxpDHBTOI7DnoxKfHCmRO86yZVqFlll6maNpyRtk97vkOeeew4Mw2Dx4sVYsmQJvLy8wDAMcnJywLIsvL29dWayMgyDuLi4VgUYHR2NCRMmNHqMv3/93+T79OkDsViM69evt8kkj3Nxg6ZDV4jTU7T7xJdOQz3kYQGjsjx1k7wT2VV4oxct/m1q31zhL3480k+GYBfjVaOwETF4PMgO36fUjgHcdb3SIpI8luPwwv+KdJJiBwmDCjUHfwcxYvo5NXtc15Md7RHhJcWH50pxs1wDRxsGFdWcTjvh1msV+C2jEm+HOSG6uyMtO9SAiwUqzI8vxsmc+ocB9HKzwYP+MmxMLkfRPTWaS6qBif8U4M9HPeEipbEjpGF6J3keHh7w9PRE586defs7dOhg8KDu5e7uDnf3lrU8Xb58GRqNpk1PxND0GsBP8i5SktdcdevYxueooGY5i51paYnuVGiwp84yJoZa/LgxT3bkJ3l/ZCpRoWZhb+aDMmPOlGDfDSVv3/2+Mvwy0h02rXzfju/kwEsO00vUWHCmGPsz+dcrU9dMyPjxajk+inDBwwG29ZbGbIvylRp8dL4EP16tAFtPz6yHrQgx/ZwxpbM9xCIG7/dzwYLTxVh7ufaLzhWFGjOOFGK7AV5TYr30TvL2799vzDhaLT09Hdu3b8eoUaPg5uaGlJQULFiwAL169cKAAQOaPoGVUveKgHTvj9ptyb+nUaVRA2Jq5tdXFxcJPG1FyFPW9FGVqTkkFlRb/LgjS/JdcjnU93wYBrtIcL+f8bvMB3lL0c5ehDsVNa99uZrD31lKjO1gb/Rrt9R3yWW8ZAAAQuUSbBruZpRkoIOzBFtGuOPobSXejS9GkkLNezy9VIPJhwox3FeG5ZEu6CZvu7WAq1kOG5LKseJCCUpUutmdhKn58vJOmBPkMv4XiQ/7O+NGmZqXvB+5XYW3Tinw+SA5JdCkXub9dbQZbGxscOzYMTz55JPo378/5s2bh+HDh2Pv3r0Qi9vuuBC2YzdwjrXVSJiKcoiuXREwIstzd1zevWKpxJnJKNUcfkipu2yKg0nKjIkYBmM78Ltnd10334WRD2Qp8U5cMW+ft50Iv4x0N3q33jBfWxx/3AufRLpALtV9bY7crsLgPbmYF6eAou56Lm3AoVtKDN6Ti/dOF9eb4I30k+HUWC98FOGik+ABNe/F9fe5op8HP0n+6WoFPr9UpnM8IUAzy5ppNBps3boVBw4cQGZmJgAgMDAQDz74ICZNmiRoMuXv748//vhDsOubLZEY6p4RsDl1ULvL5vBeVHXtJWBQlmewjxR7MviLIr/Wk8blmcKu9ArkK2uTAmcbBpM6m64l7akO9vj6cm2S+c8tJYpVrNmNhbpYoMKzRwt53X/2Ega/POBusgH6EhGD2aGOeKqjHZYllOL7lHJePBqupiTdjuuVWNDXGdO72Bt8jUNzk1asxntninn1kO/V2VmCZREuGBXQ9BqM9hIRtj3gjgd+z+NNqFl0rgTtncRm3cJMhKH3/1IlJSV48MEHMWfOHBw7dgwcx4FlWRw7dgyvvfYaHnroIZSWlhozVtJCml6RvG1J/GGIkxIEisYy1W3JO5Wjgqa+wTTEoDiOw/or/Fa8qV3s4WhjugSrj4cNgpxqv8BWaYD9N8yrNe9WuQYTDxag7J4+bREDfDfUFb09TD+swM1WjFUD5Tg+xgtDfHSvX1jF4s1TCvj8fBuum26h+y938GNKGUpUbIt+fkwpQ/ftd8ym9NeOtHJ0/+UO5Jtuod/unHoTPGcbBkv7O+PkE156JXh3edmJsWOkO1zqtJa+eLwI8TnUw0D49P56t3TpUiQkJGDZsmV49tlnIZXW/OFWV1fj+++/x3vvvYelS5fi448/NlqwpGU4mS041C6FynAcbFfPg/Ktj6EJ6SNkaBajm1wCN5kIhf91M5VUc7hUWC3IB2hbcipHhYuFtTNEGdRUuDAlhmEwroMdVl+s7RLbnV6JycHmUXGgtJrFxIMF2nGDdy2PcMHDgcLOBO7uZoPfHvLAvhtKLDhTrLOcy91qDrcqWMw5WYw5J4vrOUvzCF36a0daOV6JVaCqgdVQGADTuthjQV9neNm1rPerq9wGP9/vjnEH8rX3sEoDTD5UiIOPeaKDM425JjX0/jr8+++/Y+bMmXjxxRe1CR5QMxbuhRdewIwZM7Bv3z6jBElaTpyUANtvluqsdc9Uq2C7Zj616OlJxDAY5M1P6E7QuDyjW5/EH2v0UIAtgpxM/wE2riO/G+zI7SoUKI29wHDT1CyHmUcK8W8hf6mUF0MdTDL7WB8Mw2BMkB1Oj/XGB32dYS8xfvfs3dJfQog5U9JggjfQW4ojoz3xxWDXFid4d93XTobPB8l5+wqqWIz/pwCFZvDeJOZB7ySvoKAAISEhDT4eGhqKgoKCBh8nwpBtWAFGVX8ywqiqINuwwsQRWS7dyRfClbhqC7LK1Pi9zjIgLwqUuIS62iBEXptcajhgb0b9Y6xMheM4zI0rxsFb/L/vRwJt8VF/F4GiapithMFbYU44+6RplrTSd2FhQypUanCnsuFJJX4YA08AACAASURBVH887GHQ1v/JwQ6Y25s/NvhaiRpTDheiqomqGaRt0DvJCwgIwJEjRxp8/MiRIwgICDBIUMRwqp6fD05a/1ITnFSGqufnmzgiy1V3vbxTOVVgOfqP1Fi+Sy7HvZ9ToXIJ7msnXPf4k3Vn2aZXCBRJjbX/lvHW8ANqxg9uuM/VrCcz+DqIEeBQfysWA8DJhmnWT0O/qb2EAWfCv88qDYcphwsbfDzAQWyUZU7e7e2ECZ34781TOSq8cqLIpL8/MU96J3lTp07F/v37ER0djaSkJFRXV6O6uhpXrlzByy+/jD/++APPPPOMMWMlLaAJ6QPlmyvqTfSUz75DY/KaoburDW+ws0LF4XKRupFnkJaqULM6y6a8EOoo6FpgdbtsT2arcFuA1iIA2JtRiQ/OlvD2+TuI8X8j3OFgwkkpLRXTzwl2dapg2IkZfHufHFlTfZv18+19ctTX81mu5nTWCzQWjuPwyokinGqgcoWdmEFMP+PMxmcYBl8OdtUZTrLjeiWWJdBkyLZO7/8N5syZgxkzZuD//u//MHjwYPj4+MDHxwdRUVHYunUrZsyYgddee82YsZIW0iZ6dT4gGQ0lKM0hFjEY5E3r5ZnCjrRKKO5ZS8xVxmB8J2EnEXR0lqDPPWuUcQB+zTD9LNuzeSq88D9+i5GzDYMdI93hbSG1Ysd3csAXg11qWrdQ08r1xWCXFk2UqDmXHL72uh9nMWdK8JsJXqNlCaXYUWf9RJkIrf7d9CUTM9gywh3BLvzxqisTS7ElVdiZxkRYeo9gZhgGn376KWbPno2//voLWVlZAGrWyRs1ahRCQ0ONFiRpPU1IH6gHjoTNyQPafeLkRKijHhIwKssz2EeKP+9ZDiE2u0qwcWLWiuM4nTq107s4mEUpsXEd7JBwTz3Y3dcr8HJ3073+GaVqPH2wAPeOq5cwwE/3uyHE1bIqSdQtj2aIc10pqsZD+/NQUl3zBYED8ML/iuDnIDZahZotqeVYmchvMQt2keDAo55wrWdRY2NxlYmw/b819AruWWx6TqwC/g4SDPU1foUYYn6aPU0tJCSk0QkYxHypox7USfJI80TVmXxxMlsFjuOopJAB/e+OilcaS8wAz3Uzj+VKxnawx4Iztd2k5/KrkV6iNsmSFYoqFhP+KeAtDA0Anw6SY5iv/uusWbNQVxv8ONwN4/8p0JbBq9RwePpgAf55zNPgM7OP3a7CnFgFb5/7f8mWKRO8uzo4S7DtATeM/itfO8NXzQHTjhTgwKOebbqkXFvV7HdhWloavvnmG7z//vt4//33sX79ely7ds0YsRED03TuDu6emrWivNtgCnIFjMjy9HSzgbNNbUJXUMUiWUHd3oZUtxXvsfa2JqvY0BQ/BzEG1hn7tDvd+N2B1Sww7XABrhbz32tv9XLEtC7mkQCbi+F+tlhTZ2mRPCWLif8UGLScWrKiGtOOFPBqKsvEwLYH3ARdpy7CS4b1Q9x4+0pUHCb8U4DcSlpapa3RO8lTq9V44403EBERgXfffRdff/01vv76a8yfPx8RERGYM2cO1Gr6sDNrMluwHbrxdomTLwgUjGUSixgMoPXyjCajVI2/6lQHeMHEix835amOpp1ly3EcPromxfE6S/aM62CH9/s6N/Cstu2ZLg54sxf/fZNSrMa0wwVQGWBpkdxKDSb8U6BTg3b9EDdEeAnfLfpEBzssDue/NzLLNHj6YAEq1G2vbnBbpvfXjSVLluCHH37A008/jRdeeAGdOnUCAFy7dg3r16/HTz/9BLlcjsWLFxstWNJ6mpDeEF/7V7stTkmEevAoASOyPIN9ZDhwszaxi81W4XkjjWDYkVaO90+XIFfJwtdehMXhzoKs4m8q3yaV4d6PzV5uNjotZ0J7PMgOc+OKtcu7XClSI6mo2ihj4nakleOtU8Uoqeb/Vz3AS4qvolwhomECDVrQ1xkZpRpeS+vxbBXmnFTg6yh5i4dYVKhZPH2wQKd6x+JwZzzRQdjJQfd6rYcj0kvU+OFq7ZeQ8/nV8P35DvwdxFjYz0nQ/0t2pJXjgzMlyK60g8vp2xjpJ0OYe8v+1hMLVPjnVhWKVRxcpEyLz2Xo85SoOPg7iBEj4L3WO8nbtm0bnnjiCaxbt463v0+fPvjmm29QWVmJrVu3UpJn5jRdw4B9m7XbNC6v+XQXRa4yyri8HWnleOmEQlu26HYFi5eO12ybS0ktQyqrZrH5Kr9V7IVQB7Mb7+hhK8YwXxkO3bMI8a70SiwwcJK3I60cL59QQFWn4cVTxmDLCDfYmqByhCUTMQy+jnLF7XIN4nJrW0G3XatABycx5vZufiuohuUw+1gRzufzK4zM6GKP13qYV4szwzBYNVCOrHIN770K1CwUbT6l3xgUqzjsTFdiZ3rrFxg31LkMdR6hy+zp3V1bUVGBqKioBh+/7777oFQKuwI8aZomuDs4Ue3LLsq5CUZBlUqaI8zdBo73fMDmKVmkFht+qMLCsyXaBO+uag54NVaBPzIrrW6h023XKrSzIgHAw1aEcR3sG3mGcOoujLz7eoXBX4/3TpfoJHhAzZABd1vLWCpFaLaSmoS4oxP/fi1LKMX2tOZ3s8ecLcHvmfzPuft9ZVg5sOUtg8YkETHYNMwN9U1MF7L024fnShss/WaNhLzXeid5gwYNQlxcXIOPx8XFYdCgQQYJihiRrT3YDl15u2hcXvPYiBhE/j97dx7eRNX9Afw7M8kk6b5QCtgWBAotyL4Ksgoi4gaCqCivIovwggsoFERERCkgICL4sqgooiKIivITBAEF2aEsQikFZC+FtnRvtpn5/VFJO9mattl7Ps/D8zA3k8ntdJqc3Ln3HLNbiK4ocXa92PrcGUEqLUQ+6LdsnMk1WN3H14iShBWp8nxezzcN9NrRqgFxGvDl3j0vFAg4lu2830V6ngG3tNZ//5l2ymYRS5FqDuv71kK4Sn4tjd9zu1J5LlelFmKpWXLlZuEKrO4VAaUXVxgJ4VkINi4ZT5R+8+TrepKnfmaHb9cuWLAAgwcPxqRJkzB69Gg0bNgQAHDhwgUsX74cJ0+exIYNG1zWUeI8QtPW4M6nmra5M8dh7Hy/B3vke7rWkd+u+ytThxecmObjRHbFQePO6zp0/fEmRiYEYmqbEIR5IGWDs+y4ppONhiq8KG2KNWEqFn1j1NhcblTn+wslaOOEuqRZWgFDttkeXY+xURKM2NYoVIGv74/EY1uyTKOjehEY9ntpapX4UPu32rde0WLygTxZWx1NaaqUEN77/+5iAjlcsRJk3OWhaylAwaDIaDnyHaxk8J9Krhb/4mwRCgzVP5arj+Opv1uHg7wOHTpAkiScPXsWn3/+uWlo+s4tCoVCgQ4dOsiewzAMrl+/7sTuEmcQEloB//eNaZtLo3l5ldXVYiTPefPyJElCktkHii2CBCxPLcL6CyV4s20w/tMkEAovHlWwZblZ2pTH79agrpdXb3jibo0syPvhnxLM6hBSrcUQJUYJT2/PxsUC69/6XVkey9/dG63Csm7hGPnHbVNbrl7CkG3Z2P5wFGrZuAV+PFuPEbtyIJb73A5UMPi2TyRivCS1T0VmtAvGhL9yZUm0AWDw3e7Pr5ijFaCzssJZwzFYeG/lK4O0ilTg5b/yUFLumFU5lquP46m/W4ev0IEDB3rlnANSeUKTFpAYFoxU+pWWvX4JTF4OpNCICp5J7mhTi4eGY0x/yBnFIi7kC2gUWv03/U2XtNhrVgOTQek3wRFNA7Djus4inUaOTsSkfXn47EwR5nQKQ/e6nk/j4Kj0PAO2mU0M94UqIv1i1QgsNyJxrVjA/kw9utSp2rkXJQkv7c7BoVvy276BCgbFRhExgQqPrtLzB4MbBuBigYDZR8sSWl8sEPDM9hz89GAtaMymB1wrKk07Un7UiWWAT3uGo7UTRm3d5c41Yx58pOa5/xbil2eLIR/EkxATqKjyat87z5l1pABXi4Qqr2b1tuM4i8OfSOaraokP0wRCbBAP7p80UxObdgJCx56e65OP4TkGHWvz+CNDfsu2ukGe1ijhrUPyUbw+d6mw4YFapu1XW0r4+ZIW0w/lWaRxOHXbiEe3ZOHR+mrM6hDq9Az/rmA+F69dLSXau6gElTMFKln0j1NjQ7mapRv/KalykPfO4Xz8dFE+qb9HXRU2PBCJi+fPIT4+vlr9JaUmtQzCxQIjvkovW3hx8JYeY3ffxmc9y9LS5OtFPLktCxlmc2OTO4biwVjvSZXiqCGNAhEXpEC//8sytf12RYsL+UY0dFPyZqMoYdUZ+d/7+AYGzO4VU63jOqtEnrcdxxm8fzIBcQmhaSvZNi2+qLyudZyfFHnpqUJZ4KZggPc6hsr2YRgGjzbQ4ODAaLzVNgQBVhYnbLqkRacfMjH7aD6KzJfoepE8vYhv0uWrHH1hFO8O81W2P14sgVGs/Crb1WlFWPy3/JZ1QpgCX3j5pH5fxDAMFnUJQw+z0e4fL5Zg1pHSET6jBIzYlYNTt+Wr5sc2C8RoH7o+zXWszaN1ZNn8QwmluSndZfNlrWwBgoZj8Hg0FVFwJQryaighobVsm+blVZ55vrw7dWyrKqNYwMIT8mX2IxMD0dRGvUm1gsGkVsE4PCgaTzayHFnQCcAHxwvQYWMm1p93fooPZ1ibXozCcvdu6mhYPNbAd0ZJ7r9LjVC+LAjL0or4M6Nywf72q1pM2ievf1pbw+K7vpE+vZjGmylZBl/0ikBCmHwE68OThVidVoT555XYbjaF4KE4NWZ3kH/h8jUMw1h8iVqbXowCN30RNC9Z+GQjDSpY80Kqid5BaqjSeXllH07c1X+Aglw7zyDm2tXiUX6u9tUiAZcKqz7H5Z3DebK5PxEqFkkOJGytF8hhRfcI/DagFtrWsnzHvF4sYtSft9H++0w0/TYD4Z9fQ4vvbmD9+SIrR6vY+vNFaPHdDXTco6nWcdadK7K4NT0iIRA85zsjVyqOwSP1zcucOV7L9u8cA17YlYPy89A1HINv749EnI9M6vdVYarSQLq2Rv4x+OreXGy8If87alNLiZXdw8H5wajqwLs1sp+5wCDh63TXluYDgGNZeuwzm2s8xodHRX0FvYvUVIHBEGMbgbt8ztTEpZ2E0L6bBzvlW9QKBu2jeOwptwjirxu6Ks2DO3JLj2/Py4ODN9sGV2okp2NtFbY/HIVvzhXjnSP5uGmWT+18uRWbV4oEjP4zF28ezEMI7/gq1ny9gFta6d/SY4yTjlMmQuV7H6KDG2pk87t+vlSChfeGQVVBsJpRLGDotmxZugUGwKoe4WjrA3MS/UFckALf3h+JAb9myRYklBehKg26A5X+MSai4hi80DQQc4+V3TVYkVqIUYmBLi2Tt9xs7m33uio0C1ciPcvGE4hT+MdVS6pESDCbl5dG8/Iqy7LEWeWTIpemTJGPojYLU1Q6XxRQWsppWHwgDg+KxqstgmAvhZcE4KZWwrl8o8P/bloJzJx1HABYfLJqo4KedF8dFaLUZSc6Xy9h+1X71X8KDSKGbsvGtWL5yO97HUMxoL7v3K72B22jeKzqEW7zcZ5lEO3l6Xwq64WmgSgfs57PF7D9avXnFNtyq0TA9xfM5956x8IEf+dwkHflyhWUlNi+DVFSUoIrV644pVPEPYSmZvPyqI5tpVmrY1tZ6y+UWKTNmNMptFr57kJ4FjPbh2L/wGj0j3V/Lqyq8sVM+AqWweMNHL9laxQlvLgrBydy5L/zUYmBGEsffB5hL7D2xwojdQI4DDS7Zpe7cAHG6rQiWYm++kEc+sX4zvuSL3M4yGvVqhV++eUXm4//+uuvaNWqlc3HifcRElrKttkr54Eiz9TX81UdonjZaNmlQgFXCh1fLVZkEDHzsHxe2kNxavSo55w3wIYhCnzTJ1I20uTNfLWawxMN5R+YW65ora5qliQJUw/kYavZqEm/WDWSO4ZSLlIPsnXt+eo1WRHzBRi/X9PhrAvKJOoFCZ+apU0Z3SzIL+Y3+gKHJw9VtDLPaDTSG5SvCQqFENMQ3NULAABGksClnYDQtquHO+Y7NAoG7aJ42YTiv27o8VRjx/60Fv9dKKtRy7NwyQq+9zuGWCRCVXPAtDbB6B/n+O3BXy+X4P2UAlnmfGcdx5erOXSszSMmkDONRBYbJWy5osUTDQNk+y07XYSVZh94LSOU+LSHf0zq92Vvtwv2qkoFrtY2ikeHKKXsLsKK1CJ8cG+YU19n06US3Cg3GhqoYDCscYCdZxBnqtQMcVtBXF5eHrZv346oqCindIq4j5DQyhTkAaWpVCjIq5yu0SqzIE+Hpxx4E7tcaMRHJ+Ujp2ObBbkkMamzsrDHt1CibgD373GMVa7CID+O57PCVxfLMBh4twZLyuW623ChRBbk/XypBNMPykdtYwI5rOsbiSA/mdTvy+R/I1W/tn3JS82CcKhcmbdvzhVjelvn1sE2T5vyTOMASg3kRnY/TZKTkzFv3jwApQHe6NGjMXr0aJv7jxkzxrm9Iy4nJLQCtv9g2qakyJV3X10eH5wo23Z0Xt7Mw/mykazaGhaTWrlu1MDZ2dzT09OrVYXBm7LCO8MTZkHe9mta5OpEhKlYHLmlx+g/bssWmwQrGazrE+n1NXprEmdd277i0QYa1D2UZ6rqUWSU8FV6Ecbf45z3ocO39DhsNt94NM07dSu7QV6bNm3w/PPPQ5IkrF69Gt27d0ejRo1k+zAMg4CAALRp0waPP/64SztLnE80q3zBXjoHFBcCAZS/yFEdongoGJjqMV4oEJBRLNj98N57Q4eNZpPz32obghB7y2GJV2sVqUSjEA7n80sjd4MI/HK5BN3qqPDU9mzZbUCOAb7oFYHmEZQJlniOkmXwYkKQrJbvytQijHXSnLnlZqN4fe5SIZ6yH7uV3SCvX79+6NevHwBAp9NhxIgRaN++vVs6RtxDCgmHWK8+2OuXAACMJIJL/xtCq84e7pnvCFSyaFuLx8Fb8lu2gxtav2UrShKmmt22axWpxLB4mqfiyxiGwRMNAzCvXP6xr84W4+O/C3FLK1+EsfDeMPS+i1YXEs97vmkA5h/Ph+7fuwqXCgVsuaKtdiqfjGIBP5h9kaXkx+7n8LDBsmXLKMDzU5Z1bCmVSmWZ17G1d8t2bXoxjmebpUzpGOrSRKTEPcxr2e6/qceZXPlq61dbBOE/TemWFfEOtdScxRdS88TFVfHZmSKUK+CDxiEK3H+XyvYTiEtU6t7Q5cuX8fLLL6N169aIjY3Fnj17AADZ2dmYNGkSjh2j+Vy+SEg0r2NLv8fKcjQpcr5exLvlbo0AwMAGGnSpQ29+/iAhTInm4bZvkAxsoMGMdhWXqiPEncYkyr90/Jmhw6mcqqdT0QkSPk8zS5vi4ooaxDqHg7y0tDT06NEDP/30Exo1aoSioiIIQun4bmRkJA4dOoRVq1a5rKPEdcxH8th/0oAS19cy9CedonmUr2J1Ns+IzGLLxL4LjhfIyo2pOeCdDvSh70+ahloP8hoGc1jWLZw+6IjXaRnJo0u0/G7EimokR/7+QjGyyk1RCFEyeJqmo3iEw0He22+/jeDgYBw6dAgrVqywyJv3wAMPYP/+/U7vIHE9KSwSYp1Y0zYjiuDO/e3BHvmeYCWLVpHyCcV7M+W3bP/JN+ITs4nIE+4JpkL0fmbfTeujuFpBgkZBAR7xTubz5dadL0aOtvIVaCRJwv9Oy0fxhsUHIJjSBHmEw2d97969GDlyJGrXrm01X15sbCwyMjKc2jniPjQvr/ruq+CW7fRDebLSPvUCWLzagiYi+5sbxdbLYGXYaCfEGwyIU8uqe2gF4Muzlb+js/+mXlayjwEwOpHe5zzF4SDPaDQiMND2ZOHbt2+D4yjfk68SEijIqy57dWz/uK7F5svyovUz24cikL7d+p2aVh6L+AcFy2CU2dy8VWeKYBTtV7syt9xsFK9frBp3uyDBO3GMw58wzZo1w+7du60+JkkSfv75Z7Ru3drq48T7mQd57D9nAJ3Wxt7Ems7RPMqnlkrNNSJbK8AoltYrLa9DlBJDGlYvRQHxTjPaBUPDye92+HN5LOI/hjcJlF27V4sEiy+n9lwtNOLnS/K0KS9R8mOPcjjIGzt2LH766SfMmzcPOTk5AABRFHH27FmMGDECKSkpmDBhgss6SlxLiqgNMaqeaZsRjODOnfJgj3xPKM+ihVly279u6PHF2SKcNkujkdwpjGo9+6khjQLxUddQxAZyYADEBnL4qGuoX1X3IP4pXMViaCP5l0/zsmT2fHqmCOVyfiMhTIEedSlzgCc5PIb6xBNP4MqVK3jvvfeQnJxsagMAjuMwe/Zs9O3b1zW9JG4hJLQCe+u6aZtLOw6heTsP9sj3dK3Dy3Lgbb5cgm1X5QswhjbSoF0Ub/5U4kf8rWQbqTlGNwvC6nJz8fZl6nEsS4/Wtey/ZxUbRaw+K79VOyYxiL7MelilbpS/+uqrGDx4MDZt2oQLFy5AFEXcfffdePTRR1G/fn1X9ZG4iZDQGsrdv5q2aV5e5XWNVmHZqbI3unXn5bcuAhUM3m4X6u5uEUKIQ5qFK9Gjrgp/ZJR9OV2RWoRl3ewHeRsulOC2rmwYL4xn8GQjmpLiaZWeDRkTE4Nx48a5oi/Ewyzm5Z0/Deh1AE/D7Y7qUkcFBoCtqcqvtQxGPZqATwgAgEtNgWplMnSjkiAktvF0d/yeo+d7TLNAWZC34UIx3mkfgiiN9fcuSZLwv1Py27rDmwTSwjIv4DO/gdWrV+Phhx9GXFwcwsLCcOnSJYt9cnNzMXr0aMTFxSEuLg6jR49Gbm6uB3rrm6RadSDWijZtM0YDuPOnPdgj3xOuYtHMRsWD2CAO/21OqQQIAUoDDvXCJLDZmVAvTAKXmuLpLvm1ypzvfjFqNAguC+j0IrA6zXaps9039LJ5xywDjEyk6QrewO5IXqtWrew9bIFhGJeVNisuLkbv3r3x0EMPYdq0aVb3GTlyJK5evYr169eDYRi8/PLLGDNmDNatW+eSPvkjoWlrsFlbTdvsmeP0DbuSojUsTt22bH8oVk3JcAlBWcDB6EtHixi9DuqFSdBOTKb3GxfgUlOgXjAFjKE0d2dF55tjGYxKDMKbB8uyAnx6pgivtAgGz1m+h5kvzhgQp6Yk717C7m+hcePGDk2avHbtGs6cOePSCZZ3bhGnpFj/9pGWlobt27djy5Yt6NSpEwBg0aJF6N+/P9LT0xEfH++yvvkTIaEVlH+VBXlc2nFUvYJhzXQ822i1ffNlLeZ2dnNnCPEy3OmjpQGHUf7OQoGea3CHdkG9bBYYUZ6Mu6Lz/Wx8AN4/mo8iY+nkkxslIjZdKsHghvLyZBcLjPjVLM3KS83ojoW3sBvkff/993affO3aNSxcuBC7d+8Gz/MYNmyYUztXGQcPHkRQUJApwAOAzp07IzAwEAcOHLAZ5KWnp7u8b+54DWfhVaFoXm6bTf8b51JPQ1IobT7Hm3jDuc7RaVCa513uWpHRK/rnTP7283gzfzjXmhuX0eTzOWAE61+EGL0O7Cfv4syEuW7umSVfP9+M0YCoQztQ7/cNVt6N/t2ngvP9UJQS6zPK3vs/PJqFVoI8W8CiC0pIKNsnPlBEVP5lpBc43ldfP9eeVNEAVpXGU69fv46FCxfiq6++giRJeOaZZzBp0iTExMRUqZPOcPPmTURGRspGExmGQa1atXDz5k2bz3P1CJ/PjSJKjSF+Uwvs7SwAAGs0oAlnhBjfzMMdq5i3nOuYlBu4UmRZ8zEmUOEV/XMWbznfNYHPn+v8XKg2rILiz81gJNsVFCQwEJ9/zeM/q0+fb0kCd2wfVN8sBZt5zf6unALi2Lds/qyTaxuwfmPZ5+ffBRzywuqj/b8poAoNIn45eAPll5q90iYCTeIdn4/n0+faB1Rq4cX169fx+uuvo23btlizZg2efvppHDlyBIsWLapSgDd79myEhYXZ/WeryoY11m4XS5JEeXoqg2EgJMgrl1AqlcqhigeE/MtogHLLegROGQblH7/YDfAAgIEE/tf1gEFvdz9iHXP9EtQLJkPz4bQKAzwAgGAEimwnO44PVaLPXfLsCsvLzb/79lwx8vVlv9NIFYvBd8tv5xLPcmgkz1Ujd2PHjsWTTz5pdx9HX6N27drIysqSBXWSJCE7OxtRUVHV6mdNIyS0hnLfdtM2d+Y4DI8+58Ee+ZY7SXBnHSnA1SIBMYEcZrQLpuS4pEbhThyA6uuPwWZcsfq40CgR7OXzpsUApuedPQHVp/OgG/MmQF/QHVNUAP7H1VBu/8Fi7h0ASAFBMHTpC+Ufm2XnmwGgXj4bJeEfQmyUaPXQLzULwvZrZbdof/inBLM6CIjWsFiRKl9x+3zTAKhpcZlXsRvkufq2bGRkJCIjI51yrI4dO6KwsBAHDx40zcs7ePAgioqKZPP0SMXM8+Vx6X8DRiOgoNVSjqKKB6SmYm5cgerrpVAc32/1cbFOLHTPjIfQqlNp3rYVcyAFBoO7ct60j3LfdkhRdaF/4kV3dds3iQIUf2yG6vtPwRTkWTwsMSyMvR6BbtALQHAYhPbdoVo2C0xBrmlUldHroP5wGkpmLIMUVdfiGL3vUqFxiALn8kvnURol4LMzRegczeNsXtncSo4BXkygBRfexu6ndps2bWAwGNCiRQtMnDgRMTExyMzMRGZmps3ntGvnmjJYd1733LlzAEpX0+bl5SE2Nhbh4eFo2rQp+vTpg9deew2LFy+GJEl47bXX0K9fP7rfX0lSdAzE0AiweaU1ihm9FuzFNIiNm1fwTEJIjVVcCP6nL6HcttHqwgpJEwj94/+Boc9A4N+FXEJiGxQv+g4oKkDAu+Nko378pjUQo+rB2L2/234EX8KeOQbV2iXgLp+3+rgxoTX0wyZAjGtkahMS26B4yQ9Q7PoF6s8/KDtW/m1oFiahePrHQKB8WgnLMBidGIjJuHyZfAAAIABJREFUB8qCyM/TinDolnwE9rEGGkr07oXsBnl6fekv8cSJE3jhhRfsHujObdKcnBzn9a6czz77DHPnlq0AunObd+nSpaZVvStXrsSUKVMwaNAgAED//v0xb948l/THrzFMaR3bAztNTdyZYxTkEUIsiQIUu7eA37AKbL5lgkiJYWDsPgD6wS9CCgm3fozAYJRMnAvNrHFgC8oS2KtWfwApsjbV0C6HyboB/tv/QXlol9XHxVrR0D01DkL77jZvdxt7Pgz9zevgN39tamOvX4L647ehnTTXFITf8XR8AGYfzUe+oXT0L0srYtd1+Srbl5rRnQtvZDfIW7p0qbv6UaGpU6di6tSpdvcJDw/HihUr3NQj/yY0bQ2lLMg7DsPDzk+RQ2WNCPE9d/5u9Q8OgXLPb+AunbW6n9CkBXTDJkBs0KTCY0q160H76nvQJL8KxlCaQ48RBKg/noHi6Ush3dXAmT+Cyznzve3ObW0hoTUUh3ZZzGMEAIlXQ//wMzD0H+pQKUr94JFgbmVAebDsfV5x+ihUny+AbuQUWYAYrGQxLD4An5y2XvWiTS0lOkTZr23ras463/72mcTk5ubaX+5EqsVXl4cz1y4icNrzpm1JrUHRsp8Bznnz8spnvZd4VbWToPrqufZVdL7dx5vOtXn1BGvEiNrQP/USjB17VXrxBHdwFzRLZ8qPVysaJW8tgxTmnDncFanu+bZ4bxs/y2Kus8PHOnMM6o/eskgeXZ7h3j7QPzkaUkTtyh1cr4Nm7kRw507JmnWDRsDw2HBZ2z/5RrT9PtNqXe7l3cMxtFHVVtU649p21vnmzhyH+uMZTvtM8gY0k55YJdWrDzE4zHTrhNGWgL10DmLDBKccn0tNgfqDyaY3Lsp2T4j3404cgPrDaWAEyzyQACApeRgGPA39Q08DKnWVXkPo2BO6W2Og+m65qY3NyoT6wzdRMvXDKh/XXayVENMsnOKS1xIaNIHu2Zchxt9TtQPwKpS88h4CZo0De+u6qVm18TNItevBeG8fU9vdIQq0iFDgRI7lfEtB9NxYEZeaAvX8103XpLPOt798JlUqTx6pQRgGovkq2zPOqUtsHuCZXvLfPyoqVE6Il5EkKDd+Xhq82AjwjAmtUZz8JfQDX6h2IGZ46CkYej4ia+P+OQP1/2YDovXX9wamESUX5/mTAOj7D0XJ2/+reoB3R0gYSiYlQzJbcKFaNRds2glZW0axZXoWAJiTUonyFk5kCqhtXJPVxeh1UH8wGdzpoy45vjtQkEdsEpq6JshT/W+2zVsPjF4H1cpkp7wOIaT62MvnoEl+FaqfvrBZHgsA2FsZkGrVcc6LMgx0w1+BsUUHWbPi6B7w3/7POa/hAqqVyWD0uop3rCYGgOLgLoB1zke4VDcOJS/PlpWvZIwGaBZPB3OjbMVzltZ6kHfVSoUfd1CtTHZ5QM0YDVAvmAL2km+WXqMgj9hkUfni7Mnqf4suyLU7R0fiVdCNSqreaxBCqi8/F6rVC6CZMbrCqjcu+bvlFND+dyaEmIayZn7reii3/+Dc13IS3bMTrM5ZA0pH3ySFEhKvcuyfQmn7WC4432JCK+henCxrY4ryoVkwBcgvnbYTYyNFiq12V9ONeMM559vOuQb+DXjfHg3VZx+AsbKC3JvRnDxik3hXA0iBIWCK8gEATEkR2MvnHVopZ5VeB83i6aa6uOYkANqxM3x6/gMhPs9ohHLHj+B/WA2m2LLklQTIRvRcOkFdEwjtxOTS1Cq5Ze8b/FdLINaKhtC6i/Nfsxq40ylWRzureo7KLyio7rEcYezSF7pbGVBt/MzUxt68Ds3i6SiZsgAz2gXj5b/yUCKUhUSeLtnorPNt7VzLXkeSoPzjFygO7rTI9+jNaCSP2MayEJq2lDVVuY6tKEK1am5p9QwbGMAUUBJC3I87eRAB00dAtfZjqwGesUVHaEcmQfo3RYc7ViBKkbWhnTgHUrl5fowkQr1sFtiL1lO3eAJz/RKUv1uOMFbnHAmJbaCdmOzW82149DkY7ntQ1sad+xuqlckYcrcGH3UNRWwgBwZAbCCHj7qGeqy6j+LADou2qp4ji3Ot5CFYKfXGlBRB9c0yBEwfAe74gap13I24pKSkmZ7uhD/LyclxWuk2T2DysqE4eaisgedh7Hx/pY/Df/8p+B0/ydqMiW0gNGoG7to/ZY16PYxdH6hSX339XPsaOt/u4+pzzdy4CvXKZKg2fgam0LI8lhgdA+3oqTAMfAFS/XiI8feASz0G3fiZbhl5l8IiIcY2guLATjD/3lhjBCO4Y3tL07QEODfIqPT5liSoV7wHLvOaqUkMCYcUGALd+HeqdY6kqLruPd8MA6FVJ7DnToG9lWFq5q5dBIwGJHS7F+OaByGpTQjGNQ9C84jq5cer8rVt0EP96VxTTkWg9JzrXn63yudIfq7fgX7wSAgNE8FdTANTKB+AYArzody3Hew/ZyDc3RQICq3Sa7oa3a4ldlnMy0s7CYhipSb8Kv78P/A/fyVrE+vGQTthFpjcbCjLfRvjTh8Bk3/bdmZ8QojzlBSB37QGyq0brJciUwdA/9hwGB54QnZrSkhsg+KF69zZUwit74X+2QlQrVlsamNzs6FemISS6UsAjecqLnDH98u/DAPQDX8FQoeeTjm+28+3Qgnt+HcQMHs82OuXTM385q8h1q4HY8+H3dcXG7iTh8AUlyVnloJDUfzh+mrncjU/10KrTihu3hbK7T+C/3E1mBJ5QmjF8f3g/j4EQ98noH9sOBDgXfV76XYtsUuMbQip3EXLFOWDvfqPnWfIcacOQ7V6gfyYIeEomTQXCAyGdFcD2cRqRhTBHfqz+h0nhNgmilD8+SsCpjwL/v++tQjwJIaBoftDKJ73FQwPPeU1c48MfQZC32+IrI27egHqpTMBo2WQ6hZGA1TfLJM1CQmtILTv4Zn+OEtgMEomJkM0+8Kt+mIhOLOA1hPMb9UaO/R0arJ++YspYXhwSOnfQ4+HIZktHmQEAfyW7xAw5Tko/tjsVWl+KMgj9rEchCZm8/LSHJuXx169APWSt2U5jCQlD+2r70GKqmtqM7/9q9z/ezU6TAixhUtNQcDLg6CZ+h+oP50LNs9ypaDQ+B6UvP0JdC9OhhQa4YFe2qd/6iUY23WTtSlOHoL6o7cQMHGo2/NsKrf/CLZcmhGJYaB7ZnylK314IymqLrSvvm+apwaUfhFXL56OgFee8FxOU10JFEf/kjUZqjCNqLKkkHDoRryOkndWWHwuAgCbfxvqz+ZDM3MsFL9t8Mj1aNEnj7468Qnm5WEcyZfH5GZDvXCqbGhbYhhoX5oOsVEz2b7GTr3kxz97AkzOzWr0mBBijjuwE+p5k8Dm5YArF5TcIYbXgvalt1AyfQnEu51T2cYlWA7aMW9CMOuj4vg+sNmZ7k2onp8L/qfVsiZj9wEQ63tHCTpnEBslQjtmumz0ijHoSm+VL5jikSBGcWwfGL22rI8RUdVPCl0JYv14lExbDO24GRCtlJLjLp2Feu3HpdfjAs8m+Kcgj1TIIshLOw5IdrIK6UqgXjQVbHamrFk/9CUI7btb7C7VrgehoXwVk+Lgrir3lxBSjl4HftVcqJe9A0a0TGYrKXnoHxuO4rlrYLz3ft8YgVKpoX3tfYi1oi0ecmflHNXGT+XzwjSB0A9+0eWv625C+27QPzXWop0x6D1SpUix3+xWbcdeTksM7TCGgbFTbxQnfwnd48/LRjtluxk8W8mJgjxSITGuMSR1WfFppiAP7LWLNnYWoP5kNjiz1AaG3o/B8OCTNl/D2Lm3bFtBt2wJqR5JAnfoDwRMegr87l+t5xNjWWhfnAz9oBGASuP2LlaHFBoB3WPPW01i645Aj718Hopdm2Vt+seG++2iMTGuMSTWMumx28tRFhWAOyFPXWL++eFWKjUMA59HcfKXMJotVLzDkyU7KcgjFeMUEJq0kDWxNubl8d8sgyJFPlfC2KozdM9OsDtCYOzQU3Y7gPsnDUzm1Wp0mpCai718Huq5E6H5+G2wdjL0M6II1fqVbuyZc6l+XG2z1JpLSyRKEvivPwYjlY2MitExMPQd5JrX8wKqVXPB2FhQ4M5ylIqje2RlMcXa9SA2aOqW17ZHioyWpZwx56mSnRTkEYdYzsuzDPKU2zaC/+17+fPiGkM7dkaFq56kiCiIZomXzYfkCSEVKMiF6otF0MwYBYUDowa+XkZQNyrJ5m0yCUzpl0sX4I7stji/umfGec0qZFewe66VvNuuI4tbtZ29Z4qB3XPkob81CvKIQyzz5R2Tzcvjju0Fv/Zj2T5ieC1oX5sDaALgCPPVUdaymRNCrDAaofztewROfhbKHT/JRpiA0kVP5rfa3FE9wdXMqxSUx0ACv3U94OwC9nodVN9+Imsy3tMBQqt7nfs6XsbeuTa26uSW64jJvw3u9BH5a3fy4K1aM7bOkSf/1ijIIw4R6zeRlRVi826D+XeFHnvxLNRLZ8k+WCS1pvRij4hy+DWM7btD4so+iLhrF8FeveCE3hPiv7i/D0Pz1kio1i6xXoqseXsUv/c5tJM/cGt5LHexF3xwZ45D9dkH9heKVZLytw2y23ISy0L3zH+9ZjTJlUznWiG/M6P4+whgliTYFbhDf8oWDwkxDSHG3O3y160MT5Sis4eCPOIYhQJCvHxeHnfmOJjsm1Avmipbzi4xLLTj3oYY17hyrxEcBqF5e/nL0i1bQqxiMq9BvfhNaOa/Du76RYvHxdr1UPLq+9C+Mb806fi/Hz5iZLTfBHh3mH62iNqy5OoAoNz7G/gfVzvldZjcbPCb1sjaDL0fg3RXA6cc3xcIiW1Kc+eVT6miLYZyz1aXv7Z5DlWPLriww5v+1ijIIw4zn5enOLYX6oVJYHOzZe26516B0KpzlV7DfOhdsX+HU7+FE+LzSorBf7ccAdOet0gIC5SOouueHIPi91dDaNNFNsJ0p2STPwV4dwiJbVC86DuUTF0EMTpG9hj/4xdQOCEI4devBKMr94U2MAT6gS9U+7i+RmjREYbHhsvalNs2lpa8dBEm5ya4sydkbcaOvWzs7Xne8rdGQR5xmNDUPMjbB87sdqr+wSdhvP+xKr+Gsd19kJRlk5fZW9fB/pNW5eMR4uu41BQ0WzIF3KkjUOzZUlqKbPM3shWGdxi69Ufx3K9gGPA0oKxe4XifFRSKkknJkILlBeNVn82vVgoL9sIZKPdskbXpBz4PBIVU+Zi+zNDrUUjlFtSxmVfBnTzostczz50qNEyEFH2Xy17PX1CQRxwmNkywuXIIKJ1Tpx/6UvVeRBNoMYGZcuaRmopLTYF6YRJUeTlQz38d6pXJYPNyLPYTGjVD8dv/g27kFEhhkR7oqXeRomNQ8sp7si+MjGCE+qO3wFy/VIUDSlCZLSwT6jWAofej1e2qz5LCIi2qFSnNsis4k/nngDctuPBmFOQRxymUEOvGWX1IqBsH7ehpTsk6bjC/ZXtgp0tvAxDijbjUFKgXTAGj1wEAGCvTFsSwWtCOeRMlby2F2NCLS5F5gBh/D3SjpsnamOJCaBYmgbGTO9Aaxf4d4M79LWvTDxtfYWoof2fo+4RsW/H3oaoF0RVgMq+CK3dHR2IYGDv2dPrr+CMK8ojDuNQUm6td2axMcBdSnfI6QqvOkNRl2ffZ3CywZnMxCPFn3IkDUM9/A4yN9B8Sx0H/yLMonvsljF361oiVnVVh7NQLuiGjZG3srQyoP5wG/Bs8V0inBf/d/+THbd0Fwj3tbTyh5hAbJkBo3FzWxm/b6PTXMV+AJzZtWanMDTUZBXnEYaqVyWAEGxnPDU7M5q1Sw9imq6xJSatsSU0gSeAO7y5dsS4Ybe8WEg794JGA2rEclDWZYcAzMPQYIGvjzqdCvfw9h+4QKP/vW7A5t0zbEqeA7ulxTu+nrzKv8qHYsxUoKnDqa5jnTDW/20NsoyCPOMyd2bwtatke/gMw2v7QI8TXsVcuQD1vEjRL3pLlAjMn8Sroxrzpxp75OIaBbvhrMN7TQdasOPwn+O+W239q9k3w//eNrM3QdxCkOjE2nlHzGNv3gBhWy7TN6LVQ7v7Vacdnr14AV65WusSyMHbo4bTj+zsK8ojD3JnNW7inA6TAYNM2U5BnkemcEL9QmAf+yw+heWskFKeP2t3V04lVfZZCAe1/34ZgljiX/3UdFDt+svk0/rvlpjmRACAGh0FvljqkxlMoYDDLqFCaTsX6XZ9KH97sLo7QvD0QHOaUY9cEFOSRSnFbNm+FEsb23eVNVOaM+BPBCOX2HxA4+Tnwv/9oWYqMZWFo181rMuf7vICg0gS1oRGyZtWaxeBOHLDYnT170iL5rn7wSCAgyKXd9EWGno/IU19l3QB3bF/1DyxJVmrV0q3ayqAgj1Sau7J5WyRGPrLH8cnShHgx7tSR0lJkaxaDKcq3eNzYvB1K3v0UupffhXZiMnShERTgOYEUGQ3ta3Mg8WUlGhlRhHrpTLCXz5XbUYRq7RLZc4W4RjB27++urvqWkDAYO/eRNTkjnQr7TxrYW9dN25JSCWPb+6p93JqEgjxSJe7I5i0ktoYYGm7aZkqKwJ1wXbJNQlyNuXkd6o/egmbeJNk8ozvE2vVQ8sp70L7xgakmp5DYBqcnzKUAz0nEu5tCO/Yts7JcJVAvTALz7wKLiBP7wF08K3uebtgEgOVArLNYgJGaAvZK9WqPm+fGE1p2ppHUSqIgj3gvlrMoW0O3bIlP0haDX78SAVP/A8WR3RYPl5YiG11aiqxtV0qJ4mJC267QPzNe1sbezipd1ZybjXo7f5A9ZuzQA2JCa3d20eeI9eMtqiIpt1VjNE8US3OklmPofH/Vj1dDUZBHvJrFLdtjewFtsYd6Q4jjuNQUBEwcCn79CgRMeQ78L2utlyK7r9+/pcieqbmlyDzA8MAT0Jsl8+Uun0PAlOegLMwztUlKJXTVreRTQ+gfMEuOvHcbUO5cVgZ79gTY3CzTtqRSV7kmek1GQR7xamLj5hBrRZu2Gb0OipS9HuwRIRW7U62Czc4E/8vXYHOzLfYRGiWieMYn0I2aSqXIPET/zDiLnJyM2ZdIw4NDIUXVdWe3fJbQpgvEyHLv1wY9lLt+qdKxzHOjGtveB6jUNvYmtlCQR7wbw8DY0Ww0jxIjEy/GHdoF9bxJNqtViGGR0I6ehpLpSyE2SnRz74gMy0E7djqEBk2sPiwBEOKbW32MWMEpYLj/cVmT8vcfATuJva0yGktzo5ZvolW1VUJBHvF65n/c3MmDQKHlikRCPEqvA//ZfKg/nmk1mbEEwHBvHxTPXQNj1wecUueZOIFKA/3Dz8CyMjDAAFB/PBNcaoq7e+WzDD0GyHKpsjm3wB3ZU6ljcKePgCkod8s8IAiCWTJr4hh6lyFeT4xrDLFurGmbEYxWJ68T4hGSBO7oHgRMewH8H5tha8kEA4A7e5JKkXkh1Tef2P696Z1YsrEmCAqBscsDsia+kgswzBfYGdt3BxRKG3sTeyjII96PYSwXYJgtrSfEE9ir/0A9/3VoFk+X5fOyxtml/4jzuLNkY01gnk6FO3sSrFlKGpv0utKcqOUYaVVtlVGQR3yCeUFqLvUYGCuT2Qlxi8J88GsWQ/PWi1Ccsiy3Z37rj6pVeDd3lmysCcSYu2Fs1lbW5mg6Fe7EQTAlRWXHCg2HkEjpa6qKgjziE6R69SHENTZtM5IIxaE/7DyDEBcQjFD8/iMCJz8LfvsPFnPvJIaF/v7HoX3lXSpH5mPcVrKxhjA8MFi2rdi/A0z+7QqfZ3GrtmMvSkJdDRTkEZ9hvgCDVtkSd+JOH4Vmxiiov/zQeimyZm1R8u4q6Ie/CqFtN7eU/iPOdSfQozJy1Se06gQxqp5pmzEaoNj5s/0naYtLc6GWYz5Vh1QOBXnEZ5hXv+DO/Q0m64aHekNqCuZWBtRLZkAzdyK4q/9YPC5G1UXJhHehnbwAYmxDU7s7Sv8R56Myck7CcjD0HShrUu74CbCSEPwORcpeMOXqk4uR0RAbNXNZF2sCCvKIz5Ci6kJoLM9ZZV72xhnuVCqgtAk1k+n3f3wf+A2rEDB1OBSH/7TYT1KpoRs8qrQUWftuVIqMEDOGbv0hqTWmbTY32+40G/O7M8ZOvSnVUDX5zNlbvXo1Hn74YcTFxSEsLAyXLl2y2KdFixYICwuT/Zs5c6b7O0tcxmKVrZNr2XKpKVAvTAKbnQn1wiQK9GoY+e9/KvifvwJjsFKKrMsDKE5eA8MjwwAbqzIJqfECgmC470FZk80FGIX5pTlQy6EEyNXnM0FecXExevfujaQk+0vZJ0+ejLS0NNO/119/3U09JO5g7NgTElN22XKX0sFkXHbKsbnUFKg/mGy6XcDodRTo1SB3SpGZfv9W9hEaJqL4raXQjZkGKSLKvR0kxAcZ+shv2XLnU8GeP22xn+LIbjDlKmOIdWMhlltsR6pG4ekOOGrcuHEAgJQU+x+4wcHBiI6OtrsP8V1SWCSExNZQnD5qalPs3wHDwOerdVzur9+gXpkMRpKvlrwT6NEkbP9WGuAl2S5FFhgM/TP/LU3ySrePCHGYVDcOxpadoDhxwNSm3LYROrO5dua5T42detMUCCdgcnNzrVVz8VopKSno1asXjh8/jvr168sea9GiBXQ6HQwGA+666y48/vjjePnll8HzvM3jpaenu7rLxMkiU3YjbvOXpm1tZB2kvjSrSm8IrK4EdfZsRu19W21mvAcAXWgETk+YW4XeEl/QbMkUqPJybD6uDwnHqZfnubFHhPiP4PN/o/E3i03bEsvh7wnJMAaHAQAUhXm4Z/EbYKSycOT0S7Ogq1XX7X31NfHx8XYf95mRPEeMGTMGLVu2REREBI4ePYqZM2fi0qVLWLJkic3nVHSCqis9Pd3lr1Hj1I2GtGUtGEEAAKizb6CpmkWaTnL8XIsiFHu2gt+wAmye/dxNEq+COPYt+j2a8adrWxr4AqTVC6wG+hKvgjBuhkd/Vn86176AzreTNWoEcedGsDeuAAAYUUDTiyehHzQC6enpaJJ1WRbgCXGNEXdvd0/11q949L7D7NmzLRZKmP/bvdvxGqXjx49H9+7dcc8992D48OFYsGAB1qxZg5wc29/QiQ8KCrEoVl2ZMmfsuVPQzBoL9adzKw7wGIZu1fo7SYJy7zabAR79/gmpJpa1KHWm2LEJ+Hf+q8WqWlpw4TQeHckbO3YsnnzySbv7xMTEVPn47dq1AwBcuHABERERVT4O8T7GzvdDcXy/aVtxYAfQupedZwBMzk3w362Act92q4+L4bVgvKcD+N2/lj1HkiAFhjin08QrcYf+AHf2hEU7BXiEOI+haz/wG1aZSpaxBblQHNwJpSoM3Lm/Zfua50QlVefRIC8yMhKRkZEuO/7JkycBgBZi+CFjm66QlLxpojyblYmAaxeAJk0sd9broNzyHfif14LRay0elpQ8DA89Bf2ApwGVBtzFs+CunDc9rty+EboRb7jsZyEepNdBte4TWZPQMAFM3m3oRiVRgEeIs2gCYOj+EPit601Nyt++R3ijlrLdhMbNIUXRXDxn8Zk5eZmZmcjMzMS5c+cAAGlpacjLy0NsbCzCw8Nx8OBBHDp0CN26dUNISAhSUlIwbdo09O/fH7GxsR7uPXE6TQCE1vfKEmuGnzoE9CqXk0mSwB3+E6pvPwFrozKGsUMP6Ia+JHtT0T/+H2iWzDBtK/Zug27IKODfScLEfyi3fAc2K9O0LXEctKOmQqpX386zCCFVYegzEMrfNpjm33GX0hF9M0O2D5Uxcy6fCfI+++wzzJ1btrrxzm3epUuXYtiwYeB5Hj/88APmzp0LvV6P2NhYDB8+HK+88oqnukxczND5fnmQl3oYOlEAWA7s5fPgv/4YChs57oTYRtAPG291pEZo0wViZDTY7NIPf8agh/KPzTA8PMw1PwjxCCbnFvif18raDPcPpACPEBeRateD0LoLFCl/mdoUJYVljzMsjB17eqBn/stngrypU6di6tSpNh9v3bo1tm+3PteK+CehZSdI6gAw2mIAgLIwD+KPX5bO9dj5s0XOOwCQgkKge+JFGHsMADgblz+ngKHPQKjW/c/UpPz9RxgeHAoofOZPhlSAX79SdvteCgqB/vH/eLBHhPg/Q99BsiCvPCGxNaQw103hqokoqyfxXbwKxrb3yZpUP30B5Y6fLAI8iWWhf+AJFM1bC2Pvx2wHeP8ydH8IUrlyVWzOLXBH9ziv78Sj2POnodz7m6xNN+hFIDDYQz0ipGYQmrWFcFcDq4/RrVrnoyCP+DSxXoMK9zE2b4/i2Z9BP2yC4x/iQSEwdn1A1sTbqrlIfIsoQrVWnjtTiGkIY88BHuoQITUIw1ikwAIACYAUQvOenY2CPOKzuNQU8Ju+sPm4GBaJklffh/aN+ZBsfHO0x9BHnteJO3sS7MWzlT4O8S6KfdvBnU+VtemHja9wdJcQUn1cagqUOzdZtDMA1J+8S7XCnYyCPOKzVCuTTcXkrWI5CG26VLn+oRhzN4zN28nalDSa59u0xeC/WyFrMra9D0Kzth7qECE1i733bUavg2plspt75N8oyCM+SzcqSTZvrjyJV0E32vZCHUcZ+j4h21bs3wHGTo1T4t34zd+Azc0ybUsKJXRPjfVgjwipWSp83x6V5OYe+TcK8ojPEhLbQDsx2eINw5mVCoRWnSHWrmfaZowGKHb9Uu3jEvdjsm5A+es6WZuh32BI0Xd5qEeE1DzueN8mZSjIIz7N/A3D6W8ULAtDn4GyJuXvPwJGg3OOT9yGX7fcVCEFAMTQcOgfec6DPSKkZnL5+zYxoSCP+Lw7bxi60AiXvFEYuvWHpNaYttm8HFkSZuL92LQTUB7cKWvTDx4FaAI81CNCajZXv2+TUhTkEb8gJLbB6QlzXfNGERAEw30PypqUv9ECDJ8hCpZr49wQAAAcqUlEQVQpUxo0gdHsd0oIcS+Xvm8TABTkEeIQ81u23IVUsOdPe6g3pDIUu7eAu5Qua9MNGw+w9PZHCPFv9C5HiAOkunEwtuwka/PF0TwuNQUBE4fWnFxUJUXgN6ySNRk69YLYpKWHOkQIIe5DQR4hDjL0lSdHVhzaBeZ2lo29vQ93cBfUH0wGm50J9cKkGhHo8ZvWgM2/bdqWlDz0Q1/yYI8IIcR9KMgjxEHCPR0g1o01bTOCAOWOnzzYI8dxf/0G9dKZYP5dFczodX4f6DGZV6HcukHWZnjoaUiR0R7qESGEuBcFeYQ4imUtSp0pdv4M2Ku64QW41BSoVybDvO6Hvwd6qm8/ASMYTdtieC3oBzzlwR4RQoh7UZBHSCUY7usHSRNo2mYLcqE4sMODPaqYatk7YCTR6mP+WkaIO3UYiqN/ydr0T44BVBobzyCEEP9DQR4hlaEOgKH7Q7Im5baNgCR5qEMVMBoBpfUSQgAgMQx0w191Y4fcQDCCX/uxvKlxcxjv7eOhDhFCiGdQkEdIJRn6DITElN385C6lgz170oM9sk25cxPY7EybjzOSVDqvsNxtTV+n2PULuGsXZW26YRMAxvyGNSGE+DcK8gipJKl2PQitu8ja+G1emE6lMA/8D5/LmiQrueEUx/eXjnx562hkZRTmQ7XxM1mToWs/iA0TPNQhQgjxHAryCKkCwwNPyLa5I7vB2Bkx8wR+4+dgigpM25I6ANpxMyBG1IYQHSPf9/cfody63t1ddDr+xy/AFOabtiWVGvohozzYI0II8RwK8gipAiGxDYSYu03bjChC+fuPHuyRHHv1ApQ7N8na9I8+B6FDTxQv+g7aaYshRtSWPc5/+wm4w7vd2U2nYq5fgvL3H2Rt+keehRRey0M9IoQQz6Igj5CqYBgY+spH85S7fgF0Wg91qBxJAv/1UjBi2YpasXY92eijFBYJ7cRkSOoAUxsjSVAvnw32fKrbuuqsChzc6aMImDFK/jPXqgNDvyHV7SIhhPgsCvIIqSLjvX0gBYaYtpmiAij2bfdgj0pxKXuhOHVE1qZ7ehyg5GVtYmxDaMe/I5unx+h1UH84DcytDNf3MzUF6oVJ1a7AwaWmQL1gChiDXtaue2oswNteWUwIIf5O4ekOEOKzVGoYeg4Av/kbU5Pytw0w9hjguZWcBj1U3y6TNRmbtYXQpqvV3YUWHaD7z0SoP//A1Mbm34ZmYRKKp38MBAa7pJvmgRmj10E9dyLEqLqAuhK57LQlYG9lgDFbNCLENoLQvrszu0wIIT6HgjxCqsFw/+NQ/rrOdJuQu3YRXGoKhGZtPdIf5baNYDOvmbYlhoX+mfF2g05jz4ehv3kd/OavTW3s9UtQL5kB7evzAIXSqX3kju6GeslMMKIga2ckCdzN6055DfbGFXBnjkFIbOOU4xFCiC+i27WEVIMUGQ2hXTdZm/I3z6RTYfJywP/0pazN0PtRiLENK3yufvBIGDr1krUpUlOg+vwD56VWEYxQbtsI9UczLAI8Z2MMer+s5EEIIZVBQR4h1aQ3W4DBHdsLxkkjUpXBf/8pGG2xaVsKCIJ+4POOPZlloRuZBKHxPbJm5Z6tUG5aU+2+cacOQ/PWSKi++sji1qorSLwKulFJLn8dQgjxZnS7lpBqEpu0gFA/HtyldAD/VpH4/Ufonx7ntj6wl9Kh+PP/ZG36gc8DwWGOH4RXoeTV2QiYNQ5suSBVtfEzSFF1YezSt9L9YjKvQfXtMos6stZISh66YRMqlbiYvXAGqrVLZIsuJF4F7cRkulVLCKnxKMgjpLoYBoa+g8CtmmtqUv65uTTIKpeixGUkCaqvlshGyMS6cTD0frzyxwoOQ8mkuQiY9V8wRWVJhVWfzoMYURtiQivHjlNSDP7nr6Dcuh6M0WDZZbUGhs73Q7l3Gxi9rsqBmVg/HlKdGKgXJlXrOIQQ4o/odi0hTmDs1BtiuVEzprgIir9+c8trc4f+AHf2hKxN98x/AUXVvsNJdWJR8spsSOUWXDBGAzQfTQeTcdn+k0URij1bEZD0HPjNX1sN8Az3PYjiuV9B/8Lr0E5MhhgZXa3ATEhs45TjEEKIv6EgjxBn4FUw9npE3rTte6Bccl6X0OugWveJrMnYqjOElp2qdVixaUvoRk6RtTFFBdAsSALyc60+hz1/GprZ/4V65RywudkWjwuNElE84xPoRiVBCossbUtsg+KF66odmDnrOIQQ4k8oyCPESQy9H4PEcaZtNuMKuFOHXfqayl/Xgc0qq5krcVxp4mMnMN7bB7pBI2Rt7K3r0Cx+E9DrTG3M7SyoVsxBwKxx4KxUyxDDakE7ehpKpi+F2CjRKX0jhBBSMZqTR4iTSOG1YOzQE8r9v5va1IunQztprktGmJicW+B/+VrWZugzCFLdOKe9huHR58DevA7lni2mNu7cKag/mIzmGVeA1vdCeeB3MFbKuUlKJQwPDoX+4WfcMzeREEKIDI3kEeJE5evDAqX52tQLplS7Nqs1/PqVYPRlwZUUHAr9Y8Od+yIMA90Lk2A0S+6sSDsOPj8H/J+brQZ4xvbdUfz+F9APHkkBHiGEeAgFeYQ4kdioGQSzkbTSQK/qtVmtYc+dgnKvfGGHbtAI15QhUyihHf8OhHoNKtxViLkbJZMXQDthFqTa9ZzfF0IIIQ6jII8QJ+JSU8DeskyEzBh0UM9/A9zJg9V/EVGE6uuPZU1CbCMYez5c/WPbEhgM/aPPwlYaYwmAvu8glMxaCaF5O9f1gxBCiMMoyCPEiVQrk8EYjVYfYwQj1Aungju6p1qlwhT7tlsscNAPGw+wnI1nOIdq/UrYqoDLAKUJjzma5ksIId6CgjxCnEg3KgkSr7L5OCMK0CyeDvX8N8Be/afyL6AtBv/dClmTsV03t6QOsfezURkxQgjxPhTkEeJEdxLz2gv0AEBx6jA0b70I/quPgMJ8u/uWx2/+BmxulmlbUiihe2pslftbGbZ+NqoyQQgh3omCPEKczDwYkngVDG26QmLkf26MKILfthGBU56F4vefAMH6bV7T/lk3oPx1nazN0G+IWxc4WPvZKMAjhBDvREEeIS5gXmpL9+p7KHl3FYxWgiGmMB/qLxdBM2O03RW4/LrlYAx607YYGgH9I8+6pP/23PnZdKERFOARQogXoyCPEBcxL7UlxjaEdspClEx4F2JUXYv9uasXoEl+DeolM8DcypA9xp45DuXBnbI2/eBRgMYzOeiExDY4PcE1SZ4JIYQ4BwV5hLgTw0Bo3w3F76+GbvBISCq1xS6Kw38iYOpw8BtWAboScKcOQzNvkmwfoUETGO/r565eE0II8UE+EeTdvn0bb7zxBjp06IA6deqgefPmmDhxInJycmT75ebmYvTo0YiLi0NcXBxGjx6N3FzrxdQJ8SheBcMjz6I4eQ0MXR6weJgxGMD//BUCJg6F+oPJYMzm6+mGTQBYn/jzJYQQ4iE+8SmRkZGBjIwMvPPOO9i7dy+WL1+OvXv34sUXX5TtN3LkSJw4cQLr16/Hhg0bcOLECYwZM8ZDvSakYlJEFHRjpqH4raUQ7k6weJwtzAcjirI2Y0IbiE1auKuLhBBCfJRPZC5t1qwZvvrqK9N2w4YNMWvWLAwdOhT5+fkICQlBWloatm/fji1btqBTp04AgEWLFqF///5IT09HfHy8p7pPSIXExs1RMmMZFHt/A//dCrB5OTb35c6fApeaQvPhCCGE2OUTQZ41BQUFUKlUCAgonXh+8OBBBAUFmQI8AOjcuTMCAwNx4MABm0Feenq6y/vqjtcgpXz+XEc3Ajv6Hdzz0RvgdFqruzAGPdhP3sWZCXPd3DlLPn++fQida/ei8+0+dK6rrqIBLJ8M8nJzc/Hee+9h+PDhUChKf4SbN28iMjISDFNWeIlhGNSqVQs3b960eSxXj/DRKKL7+NO51r82B+oFU2QpU+6QeBXEsW95/Gf1p/Pt7ehcuxedb/ehc+1aHp2TN3v2bISFhdn9t3v3btlzioqK8PTTT6Nu3bqYNWuW7LHyAd4dkiRZbSfEmwmJbaCdNJeqSxBCCKkyj47kjR07Fk8++aTdfWJiYkz/LywsxJAhQwAA69atg1pdln6idu3ayMrKkgV1kiQhOzsbUVFRLug9Ia51J+mwemESGL2OAjxCCCGV4tEgLzIyEpGRkQ7tW1BQgCFDhkCSJGzYsAFBQUGyxzt27IjCwkIcPHjQNC/v4MGDKCoqks3TI8SX3An0VCuToRuVRAEeIYQQh/nEnLyCggIMGjQIBQUFWLt2LYqLi1FcXAwACA8PB8/zaNq0Kfr06YPXXnsNixcvhiRJeO2119CvXz+630982p3KGYQQQkhl+ESQd+zYMRw6dAgA0K5dO9ljP//8M7p16wYAWLlyJaZMmYJBgwYBAPr374958+a5t7OEEEIIIV7AJ4K8bt26OVS5Ijw8HCtWrHBDjwghhBBCvJtPVLwghBBCCCGVQ0EeIYQQQogfoiCPEEIIIcQPUZBHCCGEEOKHKMgjhBBCCPFDFOQRQgghhPghCvIIIYQQQvwQk5ubK3m6E4QQQgghxLloJI8QQgghxA9RkEcIIYQQ4ocoyCOEEEII8UMU5BFCCCGE+CEK8gghhBBC/BAFeYQQQgghfoiCPBdZtWoVWrZsiejoaPTo0QN79+71dJf80pw5cxAWFib716RJE093y2/89ddfeOqpp5CYmIiwsDCsXbtW9rgkSZgzZw4SEhJQp04dDBgwAKmpqR7qrW+r6FyPHTvW4lrv06ePh3rr2xYuXIhevXohNjYWjRo1wtChQ3H69GnZPnRtO48j55uub9egIM8FNm7ciKSkJEyaNAl//vknOnbsiCFDhuDKlSue7ppfio+PR1pamukfBdTOU1RUhGbNmiE5ORkajcbi8cWLF2Pp0qWYO3cuduzYgaioKAwcOBAFBQUe6K1vq+hcA0DPnj1l1/r69evd3Ev/sGfPHrz44ovYunUrNm3aBIVCgccffxy3b9827UPXtvM4cr4Bur5dgZIhu8D999+P5s2b46OPPjK1tW3bFo899hjefvttD/bM/8yZMwebNm3Cvn37PN0Vv3fXXXdh3rx5GDZsGIDSkY6EhASMGjUKr7/+OgCgpKQE8fHxePfdd/HCCy94srs+zfxcA6UjHTk5OVi3bp0He+afCgsLERcXh7Vr16J///50bbuY+fkG6Pp2FRrJczK9Xo9jx46hd+/esvbevXvjwIEDHuqVf7t48SISExPRsmVLjBgxAhcvXvR0l2qES5cuITMzU3atazQadOnSha51F9m3bx8aN26Mdu3a4eWXX8atW7c83SW/UFhYCFEUERYWBoCubVczP9930PXtfApPd8DfZGdnQxAEREVFydqjoqJw8+ZND/XKf7Vv3x7Lli1DfHw8srKyMH/+fDzwwAPYv38/IiIiPN09v5aZmQkAVq/1jIwMT3TJr/Xp0wePPPII6tevj8uXL2P27Nl49NFHsWvXLqhUKk93z6clJSWhRYsW6NixIwC6tl3N/HwDdH27CgV5LsIwjGxbkiSLNlJ9ffv2lW23b98erVu3xtdff43x48d7qFc1C13r7vHEE0+Y/t+8eXO0bt0aLVq0wNatW/Hoo496sGe+bdq0adi/fz+2bNkCjuNkj9G17Xy2zjdd365Bt2udLDIyEhzHWYzaZWVlWXwrJM4XFBSEhIQEXLhwwdNd8XvR0dEAQNe6h9StWxf16tWja70apk6diu+//x6bNm1CgwYNTO10bbuGrfNtDV3fzkFBnpPxPI/WrVtj586dsvadO3eiU6dOHupVzaHVapGenm56kyauU79+fURHR8uuda1Wi3379tG17gbZ2dnIyMiga72KpkyZgg0bNmDTpk0WaZfo2nY+e+fbGrq+nYNLSkqa6elO+Jvg4GDMmTMHderUgVqtxvz587F37158/PHHCA0N9XT3/Mr06dPB8zxEUcS5c+fwxhtv4MKFC1i0aBGdaycoLCzEmTNnkJmZiTVr1qBZs2YICQmBXq9HaGgoBEHAokWL0LhxYwiCgDfffBOZmZn48MMPaR5NJdk71xzHYdasWQgKCoLRaMTJkycxYcIECIKA+fPn07mupNdffx3ffvstVq9ejZiYGBQVFaGoqAhA6Rd1hmHo2naiis53YWEhXd8uQilUXGTVqlVYvHgxMjMzkZiYiPfffx9du3b1dLf8zogRI7B3715kZ2ejVq1aaN++Pd58800kJCR4umt+Yffu3XjkkUcs2p9++ml88sknkCQJycnJWL16NXJzc9GuXTt88MEHaNasmQd669vsneuFCxdi2LBhOHHiBPLy8hAdHY1u3brhzTffRExMjAd669vMV3XeMWXKFPx/e/cfU3W9x3H8iVwSUuFbssMPywMCUgmRkKsN2VAb2BCoAJkj49eo6I/IlBXhls2KyDHQwT9AoiQ2f0yjslBzuoqaS4jNDZqOlowtTMoDHUcocO4fd5x5LoKih+u9574e2/mDz/l8P5/397Mz9tr38/2eU1JSAqDPthPdbL2Hhob0+Z4hCnkiIiIiLkj35ImIiIi4IIU8ERERERekkCciIiLighTyRERERFyQQp6IiIiIC1LIExEREXFBCnki8n+hrKwMwzDsPz4/EwoLC4mMjJyx8UVEpkMhT0TuSFNTE4ZhYBgG33zzzQ37rFy5EsMwWLZs2YzWYrVaKSsr49tvv53ReWZCZ2cnZWVlXLhwwanj/i+viYjcGYU8EXEKT09PDhw4MKG9u7ub9vZ2PD09Z7yGK1euUF5eznfffTfjc93Ijh07OHPmzG0d29XVRXl5OT09PU6t6W6viYjcPQp5IuIUCQkJNDc3Mzw87NC+b98+TCYTS5cuvUuV/ed4eHj83/zO5ujoKFevXr3bZYjIFBTyRMQp0tLSsFqttLS0OLQfPHiQ5557jlmzJv67GRsbo6qqipiYGEwmEw8//DDFxcUMDAw49EtKSmLZsmV0d3eTlpZGYGAgYWFhvPPOO4yNjQFw4cIFwsPDASgvL7dvIRcWFjqMZbVa2bBhA8HBwSxYsIDs7Gz+/PNPhz4dHR1kZGQQEhKCv78/UVFRvPTSS/YfVZ/Mje7JMwyDDRs2cPz4ceLi4vDz8yM6OpqDBw/a+zQ1NZGfnw9AcnKyvfampiZ7ny+//JJVq1YREBCA2WwmKyuLc+fOTVnPraxJX18fRUVFPPTQQ5hMJqKjo9m+fTs2m81hHMMwqKyspL6+nujoaEwmE6dPn3Z4b/fu3SxdupSAgACSk5P59ddfAaiuriYyMhJ/f3/S0tLo6+ubsm4RcY5/3O0CRMQ1BAYGEhsby4EDB0hNTQXgzJkz/PLLL6xdu5azZ89OOGbjxo00NDTw9NNP8/LLL9PV1cVHH31EW1sbR48excPDw953cHCQ1NRUVq9eTVJSEl9//TWVlZWYzWZycnLw9fVl27ZtFBcXs2bNGpKTkwEIDg52mDM/Px8/Pz9KS0vp7u6mtrYWDw8P6uvrAejv7+fZZ59l/vz5FBUVYRgGvb29fPXVV1y5coU5c+ZMe21+/PFHjhw5Qm5uLuvXr6exsZEXX3yRyMhIwsPDiY2NpaCggLq6OjZu3MjixYsBeOKJJ4B/BeWCggIiIiIoLS1lcHCQ2tpaEhISOHXqFEFBQTec92ZrcunSJZ566ilGRkbIzs7G39+fH374gbfffpvffvuNDz74wGG8/fv3Y7VaycnJYe7cufj7+9vfO3z4MENDQ+Tl5WG1Wtm+fTtZWVmkpaXx2Wef8corr9DX10d1dTWvv/46e/funfY6isj0KOSJiNNkZGSwadMmLBYLhmGwb98+QkJCiI6OntC3s7OThoYG1q5dS21trb09LCyMkpISPvnkE1544QV7+8WLF9mxY4e9LS8vj+XLl7N7925ycnKYM2cOKSkpFBcXs2TJEjIzM29Y4+LFix3ms9ls1NXVUVFRgY+PD6dPn+by5cscOnTIYYv5rbfeuu11+fnnn2ltbbVfVXvmmWeIiIhgz549bN26laCgIJ588knq6uqIj48nLi7Ofuy1a9coLS0lNDSUlpYWe8hMSkpixYoVvP/++w7nc72brcm7777L8PAwra2tmEwmAHJzc/H396e6uprCwkLMZrO9f09PD21tbQ7hbvxBkd7eXtrb2zEMA4BZs2ZRVlbG33//zffff2/fxrZarezcuZP+/n58fX1ve01F5Oa0XSsiTpOamoqbmxvNzc2MjIzw6aefkpGRccO+R48eBeDVV191aM/Ly8Pb29v+/jhPT0+ysrIc2mJjY+1bgrdqfFv0+jFGR0fp7e0FYN68eQC0tLRw7dq1aY09mbi4OHvAAzCZTISFhd1S7R0dHVy8eJH8/HyHq4hRUVHEx8dz7Ngxh63VW2Wz2WhubiYxMRF3d3f++OMP+2vVqlWMjY3R2trqcExSUpJDwLteSkqKPeABPP744wCkp6c73KcYExODzWZz+lPEIjKRQp6IOI2Pjw8JCQns37+fkydPcunSpUlDXk9PD25uboSFhTm0z549G7PZPOEp08DAQNzd3R3aDMPg8uXL06rxwQcfnDAGYB8nLi6O5ORkysvLWbRoEZmZmezatQur1Tqteaaac3zeW6l9fB3Gt3CvFx4ejsViYXBwcNo19ff3Y7FY2LNnDyEhIQ6v8e32/v5+h2Mm2xYGeOCBBxz+9vb2BmDBggU3bLdYLNOuWUSmR9u1IuJUGRkZZGdnA/+6ahMSEjLtMWw2G25ubg5t/x7wbtdk44xfDXNzc+Pjjz+mra2NlpYWTp06xWuvvUZFRQUnTpywb2s6c87bdSfHjz+wkp6ezvPPP3/DPosWLXL428vLa9LxJjvHmTp3Ebk5hTwRcarExES8vb1pbW2dcOP+9RYuXIjNZuP8+fNERETY269evUpPT4/DfWm36t+D4Z2IiYkhJiaG0tJSjh8/TkZGBo2NjWzatMlpc1xvstoXLlwIwLlz51i5cqXDe+fPn8cwDPvVsemM6+vri7e3NyMjI8THx99e0SLyX03btSLiVLNnz6aiooI33niD9PT0SfslJCQAUFNT49De0NDA4OAgiYmJ05773nvvBe5sK9BisUy4yhQVFXXH497MZLU/9thj+Pn5sXPnToaGhuztZ8+e5eTJkyQkJEwZbicb193dnZSUFL744gs6OjomHDcwMOC0exJF5O7QlTwRcbqpwt24JUuWkJubaw91K1asoKuri4aGBqKjo1m3bt205507dy5hYWEcOnSI0NBQ7r//fsxms/0hgFuxd+9e6uvrWbNmDcHBwQwNDdHU1IS7u7v9XrWZEBUVxaxZs6isrGRgYAAvLy9iYmIICgrivffeo6CggMTERDIzM+1foeLt7X3Tp36nWpMtW7bQ2trK6tWrWb9+PY888gh//fUXnZ2dfP7557S3t+Pn5zdj5ywiM0shT0TumoqKCsxmM42NjRw7doz58+eTn5/P5s2bHb4jbzpqamooKSlh8+bNDA8Ps27dummFvNjYWH766ScOHz7M77//zrx583j00Uf58MMPZ/S3dwMCAqiqqqKqqoqioiJGR0epqakhKCiI9PR0vLy8qKioYOvWrdxzzz0sX76cLVu2TPkwxLjJ1sTX15cTJ06wbds2jhw5wq5du/Dx8SE0NJQ333yT++67b8bOV0RmnpvFYtHdryIiIiIuRvfkiYiIiLgghTwRERERF6SQJyIiIuKCFPJEREREXJBCnoiIiIgLUsgTERERcUEKeSIiIiIuSCFPRERExAUp5ImIiIi4oH8CKEknWg6gPV8AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
@@ -313,8 +315,8 @@
"def plot2(states, dates):\n",
" N = len(dates)\n",
" plt.plot(range(N), [0] * N, label='Net zero', color='darkorange')\n",
- " plt.plot(range(N), [-margin(states, date) for date in dates], label='Margin')\n",
- " plt.plot(range(N), [net_usa[date] for date in dates], label='Country-wide Net')\n",
+ " plt.plot(range(N), [-margin(states, date) for date in dates], 'o-', label='Margin')\n",
+ " plt.plot(range(N), [net_usa[date] for date in dates], 'D-', label='Country-wide Net')\n",
" labels('Months into term', 'Net popularity')\n",
" \n",
"plot2(states, dates)"
@@ -324,7 +326,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "# Month-by-month summary\n",
+ "# Month-by-month summary table\n",
"\n",
"For each month, we show the expected electoral vote total (**EVs**), the swing margin needed to get to 270 (**Margin**), the overall (popular vote) net approval across the whole country (**Country**), and then the total percentage of undecided voters and in parentheses the number of states with at least 5% undecided.\n",
"Note that the country-wide vote is not all that correlated with the state-by-state margin: recently the state-by-state margin has held at 7% while the country-wide net approval has ranged from -10% to -16%, and when the state-by-state margin jumped to 11%, the country-wide measure stayed right in the middle at 12%."
@@ -340,6 +342,7 @@
"text/markdown": [
"|Month|EVs|Margin|Country|Undecided|\n",
"|-|-|-|-|-|\n",
+ "|May 2019|193|7%|-12%|4% (1)|\n",
"|Apr 2019|180|7%|-11%|4% (0)|\n",
"|Mar 2019|193|7%|-11%|4% (2)|\n",
"|Feb 2019|170|7%|-16%|4% (0)|\n",
@@ -395,13 +398,13 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "# State-by-state summary\n",
+ "# State-by-state summary table\n",
"\n",
- "Below is each state sorted by net approval, with the state's maximum expected movement, and electoral vote allotment, followed by the cumulative running total of electoral votes and the percentages of approval, dissaproval, and undecided, and finally the standard deviation of the net approval over the last 12 months. By going down the **Total** column, you can see what it takes to win. \n",
+ "Below is each state sorted by net approval, with the state's maximum expected movement, and electoral vote allotment, followed by the cumulative running total of electoral votes and the percentages of approval, disapprovalsaproval, and undecided, and finally the standard deviation of the net approval over the last 12 months. By going down the **Total** column, you can see what it takes to win. \n",
"\n",
"The **bold state names** are the **swing states**, which I define as states in which the absolute value of net approval is less than two standard deviations of the net approval over time, plus a fifth of the undecided voters. The idea is that if we are just dealing with random sampling variation, you could expect future approval to be within two standard deviations 95% of the time, and if the undecideds split 60/40, then a candidate could get a net fifth of them. So it would be very unusual for the non-bold states to flip, unless some events change perception of the candidates.\n",
"\n",
- "This analysis says that if we consider all and only the bold swing states to be in play, then the total electoral votes for Trump could be anywhere in the range of 79 (if he lost them all) to 248 + 11 = 259 (if he won them all). It would take winning all the swing states plus a three-standard deviation swing in Virgina for Trump to reach 272.\n"
+ "This analysis says that if we consider all and only the bold swing states to be in play, then the total electoral votes for Trump could be anywhere in the range of 76 (if he lost them all) to 253 (if he won them all). It would take winning every single one of the swing states plus a three-standard deviation swing in Pennsylvania for Trump to reach 273.\n"
]
},
{
@@ -414,57 +417,57 @@
"text/markdown": [
"|State|Net|Move|EV|Total|+|-|?|𝝈|\n",
"|-|-|-|-|-|-|-|-|-|\n",
- "|Wyoming|+28%|8%|3|3|62%|34%|4%|3.5%|\n",
- "|Alabama|+26%|8%|9|12|61%|35%|4%|3.4%|\n",
- "|Louisiana|+20%|8%|8|20|58%|38%|4%|3.7%|\n",
- "|Mississippi|+20%|8%|6|26|58%|38%|4%|3.8%|\n",
- "|West Virginia|+20%|8%|5|31|58%|38%|4%|3.6%|\n",
- "|Tennessee|+18%|7%|11|42|57%|39%|4%|3.1%|\n",
- "|Idaho|+17%|4%|4|46|57%|40%|3%|1.8%|\n",
- "|Kentucky|+16%|3%|8|54|56%|40%|4%|1.1%|\n",
- "|Oklahoma|+11%|7%|7|61|54%|43%|3%|3.4%|\n",
- "|Arkansas|+10%|6%|6|67|53%|43%|4%|2.8%|\n",
- "|South Carolina|+10%|5%|9|76|53%|43%|4%|2.2%|\n",
- "|South Dakota|+10%|9%|3|79|53%|43%|4%|4.3%|\n",
- "|**North Dakota**|**+6%**|**6%**|3|82|51%|45%|4%|2.8%|\n",
- "|**Utah**|**+5%**|**8%**|6|88|51%|46%|3%|3.6%|\n",
- "|**Indiana**|**+4%**|**5%**|11|99|50%|46%|4%|2.0%|\n",
- "|**Missouri**|**+4%**|**7%**|10|109|50%|46%|4%|3.0%|\n",
- "|**Nebraska**|**+4%**|**6%**|5|114|50%|46%|4%|2.7%|\n",
- "|**Texas**|**+4%**|**6%**|38|152|50%|46%|4%|2.6%|\n",
- "|**Georgia**|**+3%**|**7%**|16|168|49%|46%|5%|3.2%|\n",
- "|**Montana**|**+3%**|**7%**|3|171|50%|47%|3%|3.4%|\n",
- "|**Kansas**|**+2%**|**7%**|6|177|49%|47%|4%|2.9%|\n",
- "|**Alaska**|**+1%**|**11%**|3|180|48%|47%|5%|5.1%|\n",
- "|**Florida**|**-2%**|**7%**|29|209|47%|49%|4%|3.3%|\n",
- "|**North Carolina**|**-2%**|**5%**|15|224|47%|49%|4%|2.2%|\n",
+ "|Alabama|+27%|8%|9|9|61%|34%|5%|3.3%|\n",
+ "|Wyoming|+22%|9%|3|12|59%|37%|4%|4.1%|\n",
+ "|Idaho|+20%|5%|4|16|58%|38%|4%|2.3%|\n",
+ "|West Virginia|+18%|9%|5|21|57%|39%|4%|4.3%|\n",
+ "|Louisiana|+17%|8%|8|29|56%|39%|5%|3.5%|\n",
+ "|Mississippi|+17%|9%|6|35|56%|39%|5%|3.8%|\n",
+ "|Tennessee|+16%|7%|11|46|56%|40%|4%|3.1%|\n",
+ "|Kentucky|+14%|3%|8|54|55%|41%|4%|1.2%|\n",
+ "|South Carolina|+10%|5%|9|63|53%|43%|4%|2.1%|\n",
+ "|Oklahoma|+9%|8%|7|70|52%|43%|5%|3.5%|\n",
+ "|Arkansas|+8%|7%|6|76|52%|44%|4%|3.0%|\n",
+ "|**Missouri**|**+6%**|**7%**|10|86|51%|45%|4%|3.0%|\n",
+ "|**South Dakota**|**+6%**|**10%**|3|89|51%|45%|4%|4.5%|\n",
+ "|**Indiana**|**+3%**|**5%**|11|100|49%|46%|5%|2.0%|\n",
+ "|**Montana**|**+3%**|**7%**|3|103|50%|47%|3%|3.4%|\n",
+ "|**Texas**|**+3%**|**6%**|38|141|49%|46%|5%|2.7%|\n",
+ "|**Nebraska**|**+2%**|**6%**|5|146|49%|47%|4%|2.8%|\n",
+ "|**Utah**|**+2%**|**8%**|6|152|49%|47%|4%|3.6%|\n",
+ "|**Georgia**|**+1%**|**7%**|16|168|48%|47%|5%|2.9%|\n",
+ "|**Kansas**|**+1%**|**7%**|6|174|48%|47%|5%|3.0%|\n",
+ "|**North Dakota**|**+1%**|**8%**|3|177|48%|47%|5%|3.3%|\n",
+ "|**Alaska**|**+0%**|**12%**|3|180|47%|47%|6%|5.5%|\n",
+ "|**Florida**|**+0%**|**7%**|29|209|48%|48%|4%|3.1%|\n",
+ "|**North Carolina**|**-4%**|**6%**|15|224|46%|50%|4%|2.4%|\n",
"|**Ohio**|**-4%**|**6%**|18|242|46%|50%|4%|2.4%|\n",
- "|**Nevada**|**-6%**|**7%**|6|248|45%|51%|4%|3.1%|\n",
- "|Virginia|-6%|4%|13|261|45%|51%|4%|1.8%|\n",
- "|Pennsylvania|-7%|4%|20|281|45%|52%|3%|1.6%|\n",
- "|**Arizona**|**-8%**|**8%**|11|292|44%|52%|4%|3.7%|\n",
- "|Iowa|-8%|6%|6|298|44%|52%|4%|2.6%|\n",
- "|Michigan|-10%|5%|16|314|43%|53%|4%|2.2%|\n",
- "|New Mexico|-12%|7%|5|319|42%|54%|4%|2.9%|\n",
- "|Colorado|-13%|5%|9|328|42%|55%|3%|2.4%|\n",
- "|Minnesota|-13%|5%|10|338|42%|55%|3%|2.2%|\n",
- "|Wisconsin|-13%|5%|10|348|42%|55%|3%|2.4%|\n",
- "|Delaware|-15%|5%|3|351|41%|56%|3%|2.0%|\n",
- "|Maine|-15%|9%|4|355|41%|56%|3%|4.0%|\n",
- "|New Jersey|-17%|5%|14|369|40%|57%|3%|2.4%|\n",
- "|New Hampshire|-19%|8%|4|373|39%|58%|3%|3.6%|\n",
- "|Illinois|-22%|3%|20|393|37%|59%|4%|1.2%|\n",
- "|Oregon|-22%|5%|7|400|37%|59%|4%|2.0%|\n",
- "|Rhode Island|-22%|6%|4|404|37%|59%|4%|2.8%|\n",
- "|Connecticut|-23%|8%|7|411|37%|60%|3%|3.8%|\n",
- "|New York|-24%|4%|29|440|36%|60%|4%|1.8%|\n",
- "|Washington|-26%|5%|12|452|35%|61%|4%|2.1%|\n",
- "|Massachusetts|-28%|5%|11|463|34%|62%|4%|2.2%|\n",
- "|California|-29%|7%|55|518|34%|63%|3%|3.1%|\n",
- "|Maryland|-30%|8%|10|528|33%|63%|4%|3.5%|\n",
- "|Hawaii|-34%|9%|4|532|31%|65%|4%|4.2%|\n",
- "|Vermont|-37%|10%|3|535|30%|67%|3%|4.8%|\n",
- "|District of Columbia|-60%|7%|3|538|18%|78%|4%|3.1%|"
+ "|**Arizona**|**-6%**|**8%**|11|253|45%|51%|4%|3.4%|\n",
+ "|Virginia|-6%|4%|13|266|45%|51%|4%|1.8%|\n",
+ "|Pennsylvania|-7%|3%|20|286|45%|52%|3%|1.4%|\n",
+ "|Maine|-9%|8%|4|290|44%|53%|3%|3.9%|\n",
+ "|Nevada|-11%|7%|6|296|42%|53%|5%|2.8%|\n",
+ "|Iowa|-12%|6%|6|302|42%|54%|4%|2.7%|\n",
+ "|Michigan|-12%|5%|16|318|42%|54%|4%|2.1%|\n",
+ "|Wisconsin|-13%|5%|10|328|42%|55%|3%|2.4%|\n",
+ "|Colorado|-14%|5%|9|337|41%|55%|4%|2.3%|\n",
+ "|Delaware|-15%|4%|3|340|41%|56%|3%|1.9%|\n",
+ "|New Mexico|-15%|6%|5|345|41%|56%|3%|2.9%|\n",
+ "|Minnesota|-16%|5%|10|355|40%|56%|4%|2.2%|\n",
+ "|New Jersey|-18%|6%|14|369|39%|57%|4%|2.5%|\n",
+ "|New Hampshire|-19%|8%|4|373|39%|58%|3%|3.8%|\n",
+ "|Illinois|-20%|3%|20|393|38%|58%|4%|1.2%|\n",
+ "|Rhode Island|-20%|6%|4|397|38%|58%|4%|2.6%|\n",
+ "|New York|-22%|4%|29|426|37%|59%|4%|1.8%|\n",
+ "|Oregon|-22%|5%|7|433|37%|59%|4%|2.0%|\n",
+ "|Connecticut|-24%|9%|7|440|36%|60%|4%|3.9%|\n",
+ "|Massachusetts|-27%|5%|11|451|35%|62%|3%|2.1%|\n",
+ "|California|-28%|6%|55|506|34%|62%|4%|2.7%|\n",
+ "|Washington|-30%|6%|12|518|33%|63%|4%|2.5%|\n",
+ "|Maryland|-31%|8%|10|528|33%|64%|3%|3.5%|\n",
+ "|Hawaii|-33%|10%|4|532|32%|65%|3%|4.5%|\n",
+ "|Vermont|-34%|10%|3|535|32%|66%|2%|4.9%|\n",
+ "|District of Columbia|-62%|7%|3|538|17%|79%|4%|3.1%|"
],
"text/plain": [
""
@@ -482,7 +485,7 @@
" total += s.ev\n",
" b = '**' if is_swing(s) else ''\n",
" yield (f'|{b}{s.name}{b}|{b}{net(s):+d}%{b}|{b}{movement(s):.0f}%{b}|{s.ev}|{total}'\n",
- " f'|{s.apps[d]}%|{s.diss[d]}%|{undecided(s, now)}%|{𝝈(s):3.1f}%|')\n",
+ " f'|{s.approvals[d]}%|{s.disapprovals[d]}%|{undecided(s, now)}%|{𝝈(s):3.1f}%|')\n",
"\n",
"md(by_state(states))"
]
@@ -493,9 +496,9 @@
"source": [
"# Popularity Above Replacement President\n",
"\n",
- "Fivethirtyeight is a combination sports/politics site, and it has a lot of statistics about soorts players and how much better they are than the average replacement player. Given that, they [decided](https://fivethirtyeight.com/features/the-states-where-trump-is-more-and-less-popular-than-he-should-be/) to rate the president's approval versus each state's overall approval of his party, which is a way of rating the president's performance versus an average replacement candidate from the same party. I'll duplicate that work and keep it up to date.\n",
+ "Fivethirtyeight is a combination sports/politics site, and it has a lot of statistics about sports players and how much better they are than the average replacement player. Given that, they [decided](https://fivethirtyeight.com/features/the-states-where-trump-is-more-and-less-popular-than-he-should-be/) to rate the president's approval versus each state's overall approval of his party (in recent elections), which is a way of rating the president's performance versus an average replacement candidate from the same party. I'll duplicate that work and keep it up to date.\n",
"\n",
- "There are only five states where Trump is exceeding a replacement Republican (i.e., has a positive PARP): two deep-red, deep South states, Mississippi and Lousiana, and three deep-blue coastal states, Rhode Island, Hawaii, and Massachussetts."
+ "There are only four states where Trump is exceeding a replacement Republican (i.e., has a positive PARP): one deep-red, deep South state, Mississippi, and three deep-blue coastal states, Rhode Island, Hawaii, and Massachussetts."
]
},
{
@@ -508,57 +511,57 @@
"text/markdown": [
"|State|PARP|Lean|Net|EV|\n",
"|-|-|-|-|-|\n",
- "|Mississippi|+5|+15|+20|6|\n",
- "|Rhode Island|+4|-26|-22|4|\n",
- "|Louisiana|+3|+17|+20|8|\n",
- "|Hawaii|+2|-36|-34|4|\n",
- "|Massachusetts|+1|-29|-28|11|\n",
- "|Alabama|-1|+27|+26|9|\n",
+ "|Rhode Island|+6|-26|-20|4|\n",
+ "|Hawaii|+3|-36|-33|4|\n",
+ "|Massachusetts|+2|-29|-27|11|\n",
+ "|Mississippi|+2|+15|+17|6|\n",
+ "|Alabama|+0|+27|+27|9|\n",
+ "|Louisiana|+0|+17|+17|8|\n",
+ "|New York|+0|-22|-22|29|\n",
"|Delaware|-1|-14|-15|3|\n",
- "|New York|-2|-22|-24|29|\n",
- "|New Jersey|-4|-13|-17|14|\n",
- "|California|-5|-24|-29|55|\n",
- "|New Mexico|-5|-7|-12|5|\n",
+ "|California|-4|-24|-28|55|\n",
+ "|Maine|-4|-5|-9|4|\n",
+ "|Florida|-5|+5|+0|29|\n",
+ "|New Jersey|-5|-13|-18|14|\n",
"|Virginia|-6|+0|-6|13|\n",
- "|Florida|-7|+5|-2|29|\n",
- "|Kentucky|-7|+23|+16|8|\n",
- "|Maryland|-7|-23|-30|10|\n",
- "|Nevada|-7|+1|-6|6|\n",
- "|North Carolina|-7|+5|-2|15|\n",
+ "|Illinois|-7|-13|-20|20|\n",
"|South Carolina|-7|+17|+10|9|\n",
+ "|Maryland|-8|-23|-31|10|\n",
+ "|New Mexico|-8|-7|-15|5|\n",
"|Pennsylvania|-8|+1|-7|20|\n",
- "|Georgia|-9|+12|+3|16|\n",
- "|Illinois|-9|-13|-22|20|\n",
- "|Michigan|-9|-1|-10|16|\n",
- "|Maine|-10|-5|-15|4|\n",
- "|Tennessee|-10|+28|+18|11|\n",
- "|West Virginia|-10|+30|+20|5|\n",
- "|Minnesota|-11|-2|-13|10|\n",
+ "|Kentucky|-9|+23|+14|8|\n",
+ "|North Carolina|-9|+5|-4|15|\n",
+ "|Vermont|-10|-24|-34|3|\n",
+ "|Georgia|-11|+12|+1|16|\n",
+ "|Michigan|-11|-1|-12|16|\n",
"|Ohio|-11|+7|-4|18|\n",
- "|Colorado|-12|-1|-13|9|\n",
- "|Connecticut|-12|-11|-23|7|\n",
+ "|Nevada|-12|+1|-11|6|\n",
+ "|Tennessee|-12|+28|+16|11|\n",
+ "|West Virginia|-12|+30|+18|5|\n",
+ "|Colorado|-13|-1|-14|9|\n",
+ "|Connecticut|-13|-11|-24|7|\n",
+ "|Missouri|-13|+19|+6|10|\n",
"|Oregon|-13|-9|-22|7|\n",
- "|Texas|-13|+17|+4|38|\n",
- "|Vermont|-13|-24|-37|3|\n",
- "|Alaska|-14|+15|+1|3|\n",
- "|Arkansas|-14|+24|+10|6|\n",
- "|Indiana|-14|+18|+4|11|\n",
- "|Iowa|-14|+6|-8|6|\n",
- "|Washington|-14|-12|-26|12|\n",
+ "|Minnesota|-14|-2|-16|10|\n",
+ "|Texas|-14|+17|+3|38|\n",
"|Wisconsin|-14|+1|-13|10|\n",
- "|Missouri|-15|+19|+4|10|\n",
+ "|Alaska|-15|+15|+0|3|\n",
+ "|Arizona|-15|+9|-6|11|\n",
+ "|Idaho|-15|+35|+20|4|\n",
+ "|Indiana|-15|+18|+3|11|\n",
"|Montana|-15|+18|+3|3|\n",
- "|Arizona|-17|+9|-8|11|\n",
- "|District of Columbia|-17|-43|-60|3|\n",
- "|Idaho|-18|+35|+17|4|\n",
- "|Wyoming|-19|+47|+28|3|\n",
- "|Nebraska|-20|+24|+4|5|\n",
- "|Kansas|-21|+23|+2|6|\n",
+ "|Arkansas|-16|+24|+8|6|\n",
+ "|Iowa|-18|+6|-12|6|\n",
+ "|Washington|-18|-12|-30|12|\n",
+ "|District of Columbia|-19|-43|-62|3|\n",
"|New Hampshire|-21|+2|-19|4|\n",
- "|South Dakota|-21|+31|+10|3|\n",
- "|Oklahoma|-23|+34|+11|7|\n",
- "|Utah|-26|+31|+5|6|\n",
- "|North Dakota|-27|+33|+6|3|"
+ "|Kansas|-22|+23|+1|6|\n",
+ "|Nebraska|-22|+24|+2|5|\n",
+ "|Oklahoma|-25|+34|+9|7|\n",
+ "|South Dakota|-25|+31|+6|3|\n",
+ "|Wyoming|-25|+47|+22|3|\n",
+ "|Utah|-29|+31|+2|6|\n",
+ "|North Dakota|-32|+33|+1|3|"
],
"text/plain": [
""