pytudes/py/ibol.py

194 lines
7.0 KiB
Python
Raw Normal View History

2017-03-01 06:52:46 +01:00
from collections import defaultdict
def get_genomes(fname="byronbayseqs.fas.txt"):
"Return a list of genomes, and a list of their corresponding names."
import re
names, species, genomes = [], [], []
for name, g in re.findall('>(.*?)\r([^\r]*)\r*', file(fname).read()):
names.append(name)
species.append(name.split('|')[-1])
genomes.append(g)
return names, species, genomes
def get_neighbors(fname="editdistances.txt"):
"Return dict: neighbors[i][j] = neighbors[j][i] = d means i,j are d apart."
## Read the data pre-computed from the Java program
neighbors = dict((i, {}) for i in range(n))
for line in file(fname):
i,j,d = map(int, line.split())
neighbors[i][j] = neighbors[j][i] = d
return neighbors
def cluster(neighbors, d, dc):
"""Return a list of clusters, each cluster element is within d of another
and within dc of every other cluster element."""
unclustered = set(neighbors) ## set of g's not yet clustered
return [closure(g, set(), unclustered, d, dc)
for g in neighbors if g in unclustered]
def closure(g, s, unclustered, d, dc):
"Accumulate in set s the transitive closure of 'near', starting at g"
if g not in s and g in unclustered and near(g, s, d, dc):
s.add(g); unclustered.remove(g)
for g2 in neighbors[g]:
closure(g2, s, unclustered, d, dc)
return s
def dist(i, j):
"Distance between two genomes."
if i == j: return 0
return neighbors[min(i, j)].get(max(i, j), max_distance)
def near(g, cluster, d, dc):
"Is g within d of some member of c, and within dc of every member of c?"
distances = [dist(g, g2) for g2 in cluster] or [0]
return min(distances) <= d and max(distances) <= dc
def diameter(cluster):
"The largest distance between two elements of the cluster"
return max([dist(i, j) for i in cluster for j in cluster] or [0])
def margin(cluster):
"The distance from a cluster to the nearest g2 outside this cluster."
return min([d for g in cluster for g2,d in neighbors[g].items()
if g2 not in cluster] or [max_distance])
################################################################ Analysis
def pct(num, den):
"Return a string representing the percentage. "
if '__len__' in dir(den): den = len(den)
if num==den: return ' 100%'
return '%.1f%%' % (num*100.0/den)
def histo(items):
"Make a histogram from a sequence of items or (item, count) tuples."
D = defaultdict(int)
for item in items:
if isinstance(item, tuple): D[item[0]] += item[1]
else: D[item] += 1
return D
def showh(d):
"Show a histogram"
if not isinstance(d, dict): d = histo(d)
return ' '.join('%s:%s' % i for i in sorted(d.items()))
def greport(genomes):
print "Number of genomes: %d (%d distinct)" % (len(genomes), len(set(genomes)))
G = dict((g, set()) for g in genomes)
for i in range(n):
G[genomes[i]].add(species[i])
print "Multi-named genomes:", (
len([s for s in G.values() if len(s) > 1]))
lens = map(len, genomes)
print "Genome lengths: min=%d, max=%d" % (min(lens), max(lens))
print "Character counts: ", showh(c for g in genomes for c in g)
def nreport(neighbors):
NN, NumN = defaultdict(int), defaultdict(int) ## Nearest, Number of neighbors
for n in neighbors:
nn = min(neighbors[n].values() or ['>25'])
NN[nn] += 1
for d2 in neighbors[n].values():
NumN[d2] += 1
print
print "Nearest neighbor counts:", showh(NN)
print "Number of neighbors at each distance:", showh(NumN)
def nspecies(c): return len(set(species[g] for g in c))
def showc(c):
return "N=%d, D=%d, M=%d: %s %s" % (
len(c), diameter(c), margin(c), list(c), showh(species[g] for g in c))
def creport(drange, dcrange):
def table(what, fn):
print "\n" + what
print ' '*8, ' '.join([' '+pct(dc, glen) for dc in dcrange])
for d in drange:
print '%s (%2d)' % (pct(d, glen), d),
for dc in dcrange:
print '%5s' % fn(cluster(neighbors, d, dc)),
print
print '\nNearest neighbor must be closer than this percentage (places). '
print 'Each column: all genomes in cluster within this percentage of each other.'
table("Number of clusters", len)
cluster1 = cluster(neighbors, 8, 15) ## splits Cleora
print '\nNumber of clusters of different sizes:', showh(len(c) for c in cluster1)
M, T = defaultdict(int), defaultdict(int)
for c in cluster1:
M[margin(c)] += 1; T[margin(c)] += len(c)
for x in M: print '%d\t%d\t%d'% (x,M[x],T[x])
print '\nMargins', showh(M)
for c in cluster1:
if margin(c) <= 16:
print showc(c)
print '\nScatter plot of cluster diameter vs. margin.'
for c in cluster1:
if diameter(c) > 0:
pass
#print '%d\t%d' % (diameter(c), margin(c))
print '\nDifference from cluster(neighbors, 11, 14):'
#table(lambda cl: pct(len(cluster1)-compare(cluster1, cl),max(len(cluster1),len(cl))))
print '\nNumber of clusters witth more than one species name:'
#table(lambda cl: sum(nspecies(c) > 1 for c in cl))
def pct_near_another(clusters, P=1.25):
total = 0
for c in clusters:
d = diameter(c)
for g in c:
for g2 in neighbors[g]:
if g2 not in c and dist(g, g2) < P*d:
total += 1
return pct(total, n)
def f(P):
print '\nPercent of individuals within %.2f*diameter of another cluster.'%P
table(lambda cl: pct_near_another(cl, P))
#map(f, [1.2, 1.33, 1.5])
def sreport(species):
SS = defaultdict(int)
print
for s in set(species):
c = [g for g in range(n) if species[g] == s]
d = diameter(c)
if d > 14:
if d==glen: d = '>25'
print 'diameter %s for %s (%d elements)' % (d, s, len(c))
SS[d] += 1
print 'Diameters of %d labelled clusters: %s' % (len(set(species)), showh(SS))
def compare(cl1, cl2):
"Compare two lists of clusters"
return sum(c1==c2 or 0.5*(abs(len(c1)-len(c2))==1 and
(c1.issubset(c2) or c2.issubset(c1)))
for c1 in cl1 for c2 in cl2)
def unit_tests():
assert set(len(g) for g in genomes) == set([glen])
clusters = cluster(neighbors, 11, 11)
assert sum(len(c) for c in clusters) == len(genomes)
assert len(set(g for c in clusters for g in c)) == len(genomes)
assert dist(17, 42) == dist(42, 17)
assert diameter(set()) == 0
assert diameter([17, 42]) == dist(17, 42)
assert pct(1, 2) == '50.0%'
print '\nAll tests pass.\n'
################################################################ Main body
max_distance = 26
names, species, genomes = get_genomes() ## genomes = ['ACT...', ...]
n = len(genomes)
glen = len(genomes[0])
neighbors = get_neighbors() ## neighbor[g] = {g2:d2, g3:g3, ...}
greport(genomes)
nreport(neighbors)
creport(range(6, 15), [glen,16,15,14,13, 12, 11])
#sreport(species)
unit_tests()