62 lines
1.8 KiB
Python
62 lines
1.8 KiB
Python
#!/usr/bin/env python
|
|
"""
|
|
Created on 05 Jan 2019
|
|
|
|
@author: David Doblas Jiménez
|
|
@email: daviddoji@pm.me
|
|
|
|
Solution for problem 023 of Project Euler
|
|
https://projecteuler.net/problem=23
|
|
"""
|
|
|
|
|
|
from utils import timeit
|
|
|
|
|
|
@timeit("Problem 023")
|
|
def compute():
|
|
"""
|
|
A perfect number is a number for which the sum of its proper divisors is
|
|
exactly equal to the number. For example, the sum of the proper divisors
|
|
of 28 would be 1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect
|
|
number.
|
|
|
|
A number n is called deficient if the sum of its proper divisors is less
|
|
than n and it is called abundant if this sum exceeds n.
|
|
|
|
As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest
|
|
number that can be written as the sum of two abundant numbers is 24. By
|
|
mathematical analysis, it can be shown that all integers greater than 28123
|
|
can be written as the sum of two abundant numbers. However, this upper
|
|
limit cannot be reduced any further by analysis even though it is known
|
|
that the greatest number that cannot be expressed as the sum of two
|
|
abundant numbers is less than this limit.
|
|
|
|
Find the sum of all the positive integers which cannot be written as the
|
|
sum of two abundant numbers.
|
|
"""
|
|
|
|
limit = 28124
|
|
divisor_sum = [0] * limit
|
|
for i in range(1, limit):
|
|
for j in range(i * 2, limit, i):
|
|
divisor_sum[j] += i
|
|
|
|
abundant_nums = [i for (i, x) in enumerate(divisor_sum) if x > i]
|
|
|
|
expressible = [False] * limit
|
|
for i in abundant_nums:
|
|
for j in abundant_nums:
|
|
if i + j < limit:
|
|
expressible[i + j] = True
|
|
else:
|
|
break
|
|
|
|
ans = sum(i for (i, x) in enumerate(expressible) if not x)
|
|
|
|
return ans
|
|
|
|
|
|
if __name__ == "__main__":
|
|
print(f"Result for Problem 023: {compute()}")
|