58 lines
1.5 KiB
Python

#!/usr/bin/env python
"""
Created on 15 Sep 2018
@author: David Doblas Jiménez
@email: daviddoji@pm.me
Solution for problem 018 of Project Euler
https://projecteuler.net/problem=18
"""
from utils import timeit
triangle = [
[75],
[95, 64],
[17, 47, 82],
[18, 35, 87, 10],
[20, 4, 82, 47, 65],
[19, 1, 23, 75, 3, 34],
[88, 2, 77, 73, 7, 63, 67],
[99, 65, 4, 28, 6, 16, 70, 92],
[41, 41, 26, 56, 83, 40, 80, 70, 33],
[41, 48, 72, 33, 47, 32, 37, 16, 94, 29],
[53, 71, 44, 65, 25, 43, 91, 52, 97, 51, 14],
[70, 11, 33, 28, 77, 73, 17, 78, 39, 68, 17, 57],
[91, 71, 52, 38, 17, 14, 91, 43, 58, 50, 27, 29, 48],
[63, 66, 4, 68, 89, 53, 67, 30, 73, 16, 69, 87, 40, 31],
[4, 62, 98, 27, 23, 9, 70, 98, 73, 93, 38, 53, 60, 4, 23],
]
@timeit("Problem 018")
def compute():
"""
By starting at the top of the triangle below and moving to adjacent
numbers on the row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle above
"""
for i in reversed(range(len(triangle) - 1)):
for j in range(len(triangle[i])):
triangle[i][j] += max(triangle[i + 1][j], triangle[i + 1][j + 1])
return triangle[0][0]
if __name__ == "__main__":
print(f"Result for Problem 018: {compute()}")