38 lines
980 B
Python
38 lines
980 B
Python
#!/usr/bin/env python3
|
|
"""
|
|
Created on 3 Jan 2020
|
|
|
|
@author: David Doblas Jiménez
|
|
@email: daviddoji@pm.me
|
|
|
|
Solution for problem 29 of Project Euler
|
|
https://projecteuler.net/problem=29
|
|
"""
|
|
|
|
from utils import timeit
|
|
|
|
|
|
@timeit("Problem 29")
|
|
def compute():
|
|
"""
|
|
Consider all integer combinations of ab for 2 ≤ a ≤ 5 and 2 ≤ b ≤ 5:
|
|
|
|
2^2=4, 2^3=8, 2^4=16, 2^5=32
|
|
3^2=9, 3^3=27, 3^4=81, 3^5=243
|
|
4^2=16, 4^3=64, 4^4=256, 4^5=1024
|
|
5^2=25, 5^3=125, 5^4=625, 5^5=3125
|
|
|
|
If they are then placed in numerical order, with any repeats removed, we
|
|
get the following sequence of 15 distinct terms:
|
|
|
|
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
|
|
|
|
How many distinct terms are in the sequence generated by ab for 2≤a≤100
|
|
and 2≤b≤100?
|
|
"""
|
|
terms = set(a**b for a in range(2, 101) for b in range(2, 101))
|
|
return len(terms)
|
|
|
|
if __name__ == "__main__":
|
|
|
|
print(f"Result for Problem 29: {compute()}") |