Solution to problem 18

This commit is contained in:
David Doblas Jiménez 2021-08-01 10:16:06 +02:00
parent eabec2d40d
commit fdcb80da68

56
src/Python/Problem018.py Normal file
View File

@ -0,0 +1,56 @@
#!/usr/bin/env python3
"""
Created on 15 Sep 2018
@author: David Doblas Jiménez
@email: daviddoji@pm.me
Solution for problem 18 of Project Euler
https://projecteuler.net/problem=18
"""
from utils import timeit
triangle = [ # Mutable
[75],
[95,64],
[17,47,82],
[18,35,87,10],
[20, 4,82,47,65],
[19, 1,23,75, 3,34],
[88, 2,77,73, 7,63,67],
[99,65, 4,28, 6,16,70,92],
[41,41,26,56,83,40,80,70,33],
[41,48,72,33,47,32,37,16,94,29],
[53,71,44,65,25,43,91,52,97,51,14],
[70,11,33,28,77,73,17,78,39,68,17,57],
[91,71,52,38,17,14,91,43,58,50,27,29,48],
[63,66, 4,68,89,53,67,30,73,16,69,87,40,31],
[ 4,62,98,27,23, 9,70,98,73,93,38,53,60, 4,23],
]
@timeit("Problem 18")
def compute():
"""
By starting at the top of the triangle below and moving to adjacent
numbers on the row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle above
"""
for i in reversed(range(len(triangle) - 1)):
for j in range(len(triangle[i])):
triangle[i][j] += max(triangle[i + 1][j], triangle[i + 1][j + 1])
return triangle[0][0]
if __name__ == "__main__":
print(f"Result for Problem 18: {compute()}")