Solution to problem 29
This commit is contained in:
parent
116f80ac29
commit
fced3f8930
38
src/Python/Problem029.py
Normal file
38
src/Python/Problem029.py
Normal file
@ -0,0 +1,38 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Created on 3 Jan 2020
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for problem 29 of Project Euler
|
||||
https://projecteuler.net/problem=29
|
||||
"""
|
||||
|
||||
from utils import timeit
|
||||
|
||||
|
||||
@timeit("Problem 29")
|
||||
def compute():
|
||||
"""
|
||||
Consider all integer combinations of ab for 2 ≤ a ≤ 5 and 2 ≤ b ≤ 5:
|
||||
|
||||
2^2=4, 2^3=8, 2^4=16, 2^5=32
|
||||
3^2=9, 3^3=27, 3^4=81, 3^5=243
|
||||
4^2=16, 4^3=64, 4^4=256, 4^5=1024
|
||||
5^2=25, 5^3=125, 5^4=625, 5^5=3125
|
||||
|
||||
If they are then placed in numerical order, with any repeats removed, we
|
||||
get the following sequence of 15 distinct terms:
|
||||
|
||||
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
|
||||
|
||||
How many distinct terms are in the sequence generated by ab for 2≤a≤100
|
||||
and 2≤b≤100?
|
||||
"""
|
||||
terms = set(a**b for a in range(2, 101) for b in range(2, 101))
|
||||
return len(terms)
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
print(f"Result for Problem 29: {compute()}")
|
Loading…
x
Reference in New Issue
Block a user