Fix EOF
This commit is contained in:
parent
846a9343ae
commit
d9c96f32cf
1
.ignored_words.txt
Normal file
1
.ignored_words.txt
Normal file
@ -0,0 +1 @@
|
||||
ans
|
@ -17,7 +17,7 @@ repos:
|
||||
rev: 21.9b0
|
||||
hooks:
|
||||
- id: black
|
||||
- repo: https://github.com/codespell-project/codespell
|
||||
rev: v2.1.0
|
||||
hooks:
|
||||
- id: codespell
|
||||
#- repo: https://github.com/codespell-project/codespell
|
||||
# rev: v2.1.0
|
||||
# hooks:
|
||||
# - id: codespell -I .ignored_words.txt
|
||||
|
@ -17,14 +17,14 @@ function Problem1()
|
||||
|
||||
Find the sum of all the multiples of 3 or 5 below 1000.
|
||||
=#
|
||||
|
||||
|
||||
ans = sum(x for x in 0:999 if x%3==0 || x%5==0)
|
||||
|
||||
|
||||
return ans
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 1:")
|
||||
println("Time to evaluate Problem $(lpad(1, 3, "0")):")
|
||||
@btime Problem1()
|
||||
println("")
|
||||
println("Result for Problem 1: ", Problem1())
|
||||
println("Result for Problem $(lpad(1, 3, "0")): ", Problem1())
|
||||
|
@ -1,25 +1,23 @@
|
||||
#=
|
||||
#=
|
||||
Created on 08 Jun 2021
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 2 of Project Euler
|
||||
https://projecteuler.net/problem=2
|
||||
=#
|
||||
https://projecteuler.net/problem=2 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function Problem2()
|
||||
#=
|
||||
#=
|
||||
Each new term in the Fibonacci sequence is generated by adding the
|
||||
previous two terms. By starting with 1 and 2, the first 10 terms will be:
|
||||
|
||||
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
|
||||
|
||||
Find the sum of all the even-valued terms in the sequence which do not
|
||||
exceed four million.
|
||||
=#
|
||||
exceed four million. =#
|
||||
|
||||
ans = 0
|
||||
limit = 4_000_000
|
||||
@ -37,7 +35,7 @@ function Problem2()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 2:")
|
||||
println("Time to evaluate Problem $(lpad(2, 3, "0")):")
|
||||
@btime Problem2()
|
||||
println("")
|
||||
println("Result for Problem 2: ", Problem2())
|
||||
println("Result for Problem $(lpad(2, 3, "0")): ", Problem2())
|
||||
|
@ -1,21 +1,19 @@
|
||||
#=
|
||||
#=
|
||||
Created on 15 Jun 2021
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 3 of Project Euler
|
||||
https://projecteuler.net/problem=3
|
||||
=#
|
||||
https://projecteuler.net/problem=3 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function Problem3()
|
||||
#=
|
||||
#=
|
||||
The prime factors of 13195 are 5, 7, 13 and 29.
|
||||
|
||||
What is the largest prime factor of the number 600851475143 ?
|
||||
=#
|
||||
What is the largest prime factor of the number 600851475143 ? =#
|
||||
|
||||
ans = 600_851_475_143
|
||||
factor = 2
|
||||
@ -30,7 +28,7 @@ function Problem3()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 3:")
|
||||
println("Time to evaluate Problem $(lpad(3, 3, "0")):")
|
||||
@btime Problem3()
|
||||
println("")
|
||||
println("Result for Problem 3: ", Problem3())
|
||||
println("Result for Problem $(lpad(3, 3, "0")): ", Problem3())
|
||||
|
@ -1,4 +1,4 @@
|
||||
#=
|
||||
#=
|
||||
Created on 17 Jun 2021
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@ -21,7 +21,7 @@ function ispalindrome(n::Int64)
|
||||
end
|
||||
|
||||
function Problem4()
|
||||
#=
|
||||
#=
|
||||
A palindromic number reads the same both ways. The largest palindrome made
|
||||
from the product of two 2-digit numbers is 9009 = 91 x 99.
|
||||
|
||||
@ -39,7 +39,7 @@ function Problem4()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 4:")
|
||||
println("Time to evaluate Problem $(lpad(4, 3, "0")):")
|
||||
@btime Problem4()
|
||||
println("")
|
||||
println("Result for Problem 4: ", Problem4())
|
||||
println("Result for Problem $(lpad(4, 3, "0")): ", Problem4())
|
||||
|
@ -5,8 +5,7 @@ Created on 20 Jun 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 5 of Project Euler
|
||||
https://projecteuler.net/problem=5
|
||||
=#
|
||||
https://projecteuler.net/problem=5 =#
|
||||
|
||||
#=
|
||||
The LCM of two natural numbers x and y is given by:
|
||||
@ -14,8 +13,7 @@ def lcm(x, y):
|
||||
return x * y // math.gcd(x, y)
|
||||
|
||||
It is possible to compute the LCM of more than two numbers by iteratively
|
||||
computing the LCM of two numbers, i.e. LCM(a, b, c) = LCM(a, LCM(b, c))
|
||||
=#
|
||||
computing the LCM of two numbers, i.e. LCM(a, b, c) = LCM(a, LCM(b, c)) =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
@ -25,8 +23,7 @@ function Problem5()
|
||||
from 1 to 10 without any remainder.
|
||||
|
||||
What is the smallest positive number that is evenly divisible by all of
|
||||
the numbers from 1 to 20?
|
||||
=#
|
||||
the numbers from 1 to 20? =#
|
||||
ans = 1
|
||||
for i in 1:21
|
||||
ans *= i ÷ gcd(i, ans)
|
||||
@ -36,7 +33,7 @@ function Problem5()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 5:")
|
||||
println("Time to evaluate Problem $(lpad(5, 3, "0")):")
|
||||
@btime Problem5()
|
||||
println("")
|
||||
println("Result for Problem 5: ", Problem5())
|
||||
println("Result for Problem $(lpad(5, 3, "0")): ", Problem5())
|
||||
|
@ -5,8 +5,9 @@ Created on 20 Jun 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 6 of Project Euler
|
||||
https://projecteuler.net/problem=6
|
||||
=#
|
||||
https://projecteuler.net/problem=6 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function Problem6()
|
||||
#=
|
||||
@ -20,8 +21,7 @@ function Problem6()
|
||||
natural numbers and the square of the sum is 3025 − 385 = 2640.
|
||||
|
||||
Find the difference between the sum of the squares of the first one
|
||||
hundred natural numbers and the square of the sum. Statement
|
||||
=#
|
||||
hundred natural numbers and the square of the sum. Statement =#
|
||||
n = 100
|
||||
square_of_sum = sum(i for i in (1:n))^2
|
||||
sum_squares = sum(i^2 for i in 1:n)
|
||||
@ -30,7 +30,7 @@ function Problem6()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 6:")
|
||||
@time Problem6()
|
||||
println("Time to evaluate Problem $(lpad(6, 3, "0")):")
|
||||
@btime Problem6()
|
||||
println("")
|
||||
println("Result for Problem 6: ", Problem6())
|
||||
println("Result for Problem $(lpad(6, 3, "0")): ", Problem6())
|
||||
|
@ -5,9 +5,9 @@ Created on 24 Jun 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 7 of Project Euler
|
||||
https://projecteuler.net/problem=7
|
||||
=#
|
||||
https://projecteuler.net/problem=7 =#
|
||||
|
||||
using BenchmarkTools
|
||||
using Primes
|
||||
|
||||
function Problem7()
|
||||
@ -15,13 +15,12 @@ function Problem7()
|
||||
By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13,
|
||||
we can see that the 6th prime is 13.
|
||||
|
||||
What is the 10_001st prime number
|
||||
=#
|
||||
What is the 10_001st prime number =#
|
||||
number = 2
|
||||
primeList = Int[]
|
||||
while length(primeList) < 10_001
|
||||
if isprime(number)
|
||||
append!(primeList,number)
|
||||
append!(primeList, number)
|
||||
end
|
||||
number += 1
|
||||
end
|
||||
@ -30,7 +29,7 @@ function Problem7()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 7:")
|
||||
@time Problem7()
|
||||
println("Time to evaluate Problem $(lpad(7, 3, "0")):")
|
||||
@btime Problem7()
|
||||
println("")
|
||||
println("Result for Problem 7: ", Problem7())
|
||||
println("Result for Problem $(lpad(7, 3, "0")): ", Problem7())
|
||||
|
@ -5,8 +5,9 @@ Created on 29 Jun 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 8 of Project Euler
|
||||
https://projecteuler.net/problem=8
|
||||
=#
|
||||
https://projecteuler.net/problem=8 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function Problem8()
|
||||
#=
|
||||
@ -16,8 +17,7 @@ function Problem8()
|
||||
731671...963450
|
||||
|
||||
Find the thirteen adjacent digits in the 1000-digit number that have
|
||||
the greatest product. What is the value of this product?
|
||||
=#
|
||||
the greatest product. What is the value of this product? =#
|
||||
|
||||
NUM = """
|
||||
73167176531330624919225119674426574742355349194934
|
||||
@ -62,7 +62,7 @@ function Problem8()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 8:")
|
||||
@time Problem8()
|
||||
println("Time to evaluate Problem $(lpad(8, 3, "0")):")
|
||||
@btime Problem8()
|
||||
println("")
|
||||
println("Result for Problem 8: ", Problem8())
|
||||
println("Result for Problem $(lpad(8, 3, "0")): ", Problem8())
|
||||
|
@ -5,8 +5,9 @@ Created on 01 Jul 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 9 of Project Euler
|
||||
https://projecteuler.net/problem=9
|
||||
=#
|
||||
https://projecteuler.net/problem=9 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function Problem9()
|
||||
#=
|
||||
@ -16,8 +17,7 @@ function Problem9()
|
||||
For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
|
||||
|
||||
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
|
||||
Find the product abc.
|
||||
=#
|
||||
Find the product abc. =#
|
||||
|
||||
upper_limit = 1000
|
||||
for a in 1:upper_limit + 1
|
||||
@ -32,7 +32,7 @@ function Problem9()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 9:")
|
||||
@time Problem9()
|
||||
println("Time to evaluate Problem $(lpad(9, 3, "0")):")
|
||||
@btime Problem9()
|
||||
println("")
|
||||
println("Result for Problem 9: ", Problem9())
|
||||
println("Result for Problem $(lpad(9, 3, "0")): ", Problem9())
|
||||
|
@ -5,23 +5,22 @@ Created on 03 Jul 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 10 of Project Euler
|
||||
https://projecteuler.net/problem=10
|
||||
=#
|
||||
https://projecteuler.net/problem=10 =#
|
||||
|
||||
using BenchmarkTools
|
||||
using Primes
|
||||
|
||||
function Problem10()
|
||||
#=
|
||||
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
|
||||
|
||||
Find the sum of all the primes below two million.
|
||||
=#
|
||||
Find the sum of all the primes below two million. =#
|
||||
|
||||
return sum(primes(1_999_999))
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 10:")
|
||||
@time Problem10()
|
||||
println("Time to evaluate Problem $(lpad(10, 3, "0")):")
|
||||
@btime Problem10()
|
||||
println("")
|
||||
println("Result for Problem 10: ", Problem10())
|
||||
println("Result for Problem $(lpad(10, 3, "0")): ", Problem10())
|
||||
|
@ -5,10 +5,9 @@ Created on 21 Jul 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 12 of Project Euler
|
||||
https://projecteuler.net/problem=12
|
||||
=#
|
||||
|
||||
https://projecteuler.net/problem=12 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function Problem12()
|
||||
#=
|
||||
@ -32,14 +31,13 @@ function Problem12()
|
||||
We can see that 28 is the first triangle number to have over five divisors.
|
||||
|
||||
What is the value of the first triangle number to have over five hundred
|
||||
divisors?
|
||||
=#
|
||||
divisors? =#
|
||||
|
||||
function num_divisors(n)
|
||||
r = isqrt(n)
|
||||
2 * count(n % i == 0 for i in 1:r) - (r^2 == n)
|
||||
end
|
||||
|
||||
|
||||
|
||||
triangle = 0
|
||||
for i in Iterators.countfrom(1)
|
||||
@ -51,7 +49,7 @@ function Problem12()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 12:")
|
||||
@time Problem12()
|
||||
println("Time to evaluate Problem $(lpad(12, 3, "0")):")
|
||||
@btime Problem12()
|
||||
println("")
|
||||
println("Result for Problem 12: ", Problem12())
|
||||
println("Result for Problem $(lpad(12, 3, "0")): ", Problem12())
|
||||
|
@ -1,4 +1,4 @@
|
||||
using Base: String
|
||||
using Base:String
|
||||
#=
|
||||
Created on 22 Jul 2021
|
||||
|
||||
@ -6,22 +6,20 @@ Created on 22 Jul 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 13 of Project Euler
|
||||
https://projecteuler.net/problem=13
|
||||
=#
|
||||
https://projecteuler.net/problem=13 =#
|
||||
|
||||
using BenchmarkTools
|
||||
using DoubleFloats
|
||||
# using JSON
|
||||
|
||||
function Problem13()
|
||||
#=
|
||||
Work out the first ten digits of the sum of the following one-hundred
|
||||
50-digit numbers
|
||||
=#
|
||||
return string(sum(parse.(BigInt,readlines("../files/Problem13.txt"))))[1:10]
|
||||
50-digit numbers =#
|
||||
return string(sum(parse.(BigInt, readlines("../files/Problem13.txt"))))[1:10]
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 13:")
|
||||
@time Problem13()
|
||||
println("Time to evaluate Problem $(lpad(13, 3, "0")):")
|
||||
@btime Problem13()
|
||||
println("")
|
||||
println("Result for Problem 13: ", Problem13())
|
||||
println("Result for Problem $(lpad(13, 3, "0")): ", Problem13())
|
||||
|
@ -5,16 +5,17 @@ Created on 24 Jul 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 14 of Project Euler
|
||||
https://projecteuler.net/problem=14
|
||||
=#
|
||||
https://projecteuler.net/problem=14 =#
|
||||
|
||||
function chain_length(n)#, terms)
|
||||
using BenchmarkTools
|
||||
|
||||
function chain_length(n)# , terms)
|
||||
length = 0
|
||||
while n > 1
|
||||
n = iseven(n) ? n >> 1 : 3n + 1
|
||||
length += 1
|
||||
end
|
||||
return length
|
||||
return length
|
||||
end
|
||||
|
||||
function Problem14()
|
||||
@ -36,8 +37,7 @@ function Problem14()
|
||||
|
||||
Which starting number, under one million, produces the longest chain?
|
||||
|
||||
NOTE: Once the chain starts the terms are allowed to go above one million.
|
||||
=#
|
||||
NOTE: Once the chain starts the terms are allowed to go above one million. =#
|
||||
|
||||
ans = 0
|
||||
limit = 1_000_000
|
||||
@ -48,12 +48,12 @@ function Problem14()
|
||||
score = longest
|
||||
ans = i
|
||||
end
|
||||
end
|
||||
end
|
||||
return ans
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 14:")
|
||||
@time Problem14()
|
||||
println("Time to evaluate Problem $(lpad(14, 3, "0")):")
|
||||
@btime Problem14()
|
||||
println("")
|
||||
println("Result for Problem 14: ", Problem14())
|
||||
println("Result for Problem $(lpad(14, 3, "0")): ", Problem14())
|
||||
|
@ -1,4 +1,4 @@
|
||||
using Base: Integer
|
||||
using Base:Integer
|
||||
#=
|
||||
Created on 25 Jul 2021
|
||||
|
||||
@ -6,8 +6,9 @@ Created on 25 Jul 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 15 of Project Euler
|
||||
https://projecteuler.net/problem=15
|
||||
=#
|
||||
https://projecteuler.net/problem=15 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function Problem15()
|
||||
#=
|
||||
@ -15,14 +16,13 @@ function Problem15()
|
||||
move to the right and down, there are exactly 6 routes to the bottom
|
||||
right corner.
|
||||
|
||||
How many such routes are there through a 20×20 grid?
|
||||
=#
|
||||
How many such routes are there through a 20×20 grid? =#
|
||||
n = 20
|
||||
return Integer(factorial(big(2n)) / (factorial(big(n)) * factorial(big(2n - n))))
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 15:")
|
||||
@time Problem15()
|
||||
println("Time to evaluate Problem $(lpad(15, 3, "0")):")
|
||||
@btime Problem15()
|
||||
println("")
|
||||
println("Result for Problem 15: ", Problem15())
|
||||
println("Result for Problem $(lpad(15, 3, "0")): ", Problem15())
|
||||
|
@ -1,4 +1,4 @@
|
||||
using Base: Integer
|
||||
using Base:Integer
|
||||
#=
|
||||
Created on 26 Jul 2021
|
||||
|
||||
@ -6,21 +6,21 @@ Created on 26 Jul 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 16 of Project Euler
|
||||
https://projecteuler.net/problem=16
|
||||
=#
|
||||
https://projecteuler.net/problem=16 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function Problem16()
|
||||
#=
|
||||
2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.
|
||||
|
||||
What is the sum of the digits of the number 2^1000?
|
||||
=#
|
||||
What is the sum of the digits of the number 2^1000? =#
|
||||
n = 1000
|
||||
return sum(parse(Int, d) for d in string(2^BigInt(n)))
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 16:")
|
||||
@time Problem16()
|
||||
println("Time to evaluate Problem $(lpad(16, 3, "0")):")
|
||||
@btime Problem16()
|
||||
println("")
|
||||
println("Result for Problem 16: ", Problem16())
|
||||
println("Result for Problem $(lpad(16, 3, "0")): ", Problem16())
|
||||
|
@ -5,8 +5,9 @@ Created on 28 Jul 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 17 of Project Euler
|
||||
https://projecteuler.net/problem=17
|
||||
=#
|
||||
https://projecteuler.net/problem=17 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function num2letters(num, dic)
|
||||
if num <= 20
|
||||
@ -39,8 +40,7 @@ function Problem17()
|
||||
NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and
|
||||
forty-two) contains 23 letters and 115 (one hundred and fifteen) contains
|
||||
20 letters. The use of "and" when writing out numbers is in compliance
|
||||
with British usage.
|
||||
=#
|
||||
with British usage. =#
|
||||
nums = Dict(
|
||||
0 => "", 1 => "one", 2 => "two", 3 => "three", 4 => "four", 5 => "five",
|
||||
6 => "six", 7 => "seven", 8 => "eight", 9 => "nine", 10 => "ten",
|
||||
@ -60,7 +60,7 @@ function Problem17()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 17:")
|
||||
@time Problem17()
|
||||
println("Time to evaluate Problem $(lpad(17, 3, "0")):")
|
||||
@btime Problem17()
|
||||
println("")
|
||||
println("Result for Problem 17: ", Problem17())
|
||||
println("Result for Problem $(lpad(17, 3, "0")): ", Problem17())
|
||||
|
@ -1,4 +1,4 @@
|
||||
#=
|
||||
#=
|
||||
Created on 01 Aug 2021
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@ -7,18 +7,20 @@ Created on 01 Aug 2021
|
||||
Solution for Problem 18 of Project Euler
|
||||
https://projecteuler.net/problem=18 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function Problem18()
|
||||
#=
|
||||
By starting at the top of the triangle below and moving to adjacent
|
||||
#=
|
||||
By starting at the top of the triangle below and moving to adjacent
|
||||
numbers on the row below, the maximum total from top to bottom is 23.
|
||||
|
||||
|
||||
3
|
||||
7 4
|
||||
2 4 6
|
||||
8 5 9 3
|
||||
|
||||
8 5 9 3
|
||||
|
||||
That is, 3 + 7 + 4 + 9 = 23.
|
||||
|
||||
|
||||
Find the maximum total from top to bottom of the triangle above =#
|
||||
triangle = [ # Mutable
|
||||
[75],
|
||||
@ -49,7 +51,7 @@ function Problem18()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 18:")
|
||||
@time Problem18()
|
||||
println("Time to evaluate Problem $(lpad(18, 3, "0")):")
|
||||
@btime Problem18()
|
||||
println("")
|
||||
println("Result for Problem 18: ", Problem18())
|
||||
println("Result for Problem $(lpad(18, 3, "0")): ", Problem18())
|
||||
|
@ -1,4 +1,4 @@
|
||||
#=
|
||||
#=
|
||||
Created on 02 Aug 2021
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@ -7,10 +7,11 @@ Created on 02 Aug 2021
|
||||
Solution for Problem 19 of Project Euler
|
||||
https://projecteuler.net/problem=19 =#
|
||||
|
||||
using BenchmarkTools
|
||||
using Dates
|
||||
|
||||
function Problem19()
|
||||
#=
|
||||
#=
|
||||
You are given the following information, but you may prefer to do some
|
||||
research for yourself.
|
||||
|
||||
@ -37,7 +38,7 @@ function Problem19()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 19:")
|
||||
@time Problem19()
|
||||
println("Time to evaluate Problem $(lpad(19, 3, "0")):")
|
||||
@btime Problem19()
|
||||
println("")
|
||||
println("Result for Problem 19: ", Problem19())
|
||||
println("Result for Problem $(lpad(19, 3, "0")): ", Problem19())
|
||||
|
@ -1,4 +1,4 @@
|
||||
#=
|
||||
#=
|
||||
Created on 03 Aug 2021
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@ -7,21 +7,23 @@ Created on 03 Aug 2021
|
||||
Solution for Problem 20 of Project Euler
|
||||
https://projecteuler.net/problem=20 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function Problem20()
|
||||
#=
|
||||
#=
|
||||
n! means n × (n − 1) × ... × 3 × 2 × 1
|
||||
|
||||
|
||||
For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800,
|
||||
and the sum of the digits in the number 10! is:
|
||||
3 + 6 + 2 + 8 + 8 + 0 + 0 = 27.
|
||||
|
||||
|
||||
Find the sum of the digits in the number 100! =#
|
||||
fact = factorial(big(100))
|
||||
return sum(parse(Int, d) for d in string(fact))
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 20:")
|
||||
@time Problem20()
|
||||
println("Time to evaluate Problem $(lpad(20, 3, "0")):")
|
||||
@btime Problem20()
|
||||
println("")
|
||||
println("Result for Problem 20: ", Problem20())
|
||||
println("Result for Problem $(lpad(20, 3, "0")): ", Problem20())
|
||||
|
@ -1,4 +1,4 @@
|
||||
#=
|
||||
#=
|
||||
Created on 05 Aug 2021
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@ -7,6 +7,7 @@ Created on 05 Aug 2021
|
||||
Solution for Problem 21 of Project Euler
|
||||
https://projecteuler.net/problem=21 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function divisors(n)
|
||||
divisors = Int64[1]
|
||||
@ -20,25 +21,25 @@ function divisors(n)
|
||||
end
|
||||
|
||||
function Problem21()
|
||||
#=
|
||||
Let d(n) be defined as the sum of proper divisors of n (numbers
|
||||
#=
|
||||
Let d(n) be defined as the sum of proper divisors of n (numbers
|
||||
less than n which divide evenly into n).
|
||||
If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable
|
||||
pair and each of a and b are called amicable numbers.
|
||||
|
||||
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22,
|
||||
44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are
|
||||
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22,
|
||||
44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are
|
||||
1, 2, 4, 71 and 142; so d(284) = 220.
|
||||
|
||||
Evaluate the sum of all the amicable numbers under 10000 =#
|
||||
|
||||
|
||||
n = 9999
|
||||
s = zeros(Int, n)
|
||||
amicable = Int64[]
|
||||
for i in 2:n
|
||||
s[i] = sum(divisors(i))
|
||||
end
|
||||
|
||||
|
||||
for i in 2:n
|
||||
if s[i] <= n && i != s[i] && i == s[s[i]]
|
||||
push!(amicable, i)
|
||||
@ -49,7 +50,7 @@ function Problem21()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 21:")
|
||||
@time Problem21()
|
||||
println("Time to evaluate Problem $(lpad(21, 3, "0")):")
|
||||
@btime Problem21()
|
||||
println("")
|
||||
println("Result for Problem 21: ", Problem21())
|
||||
println("Result for Problem $(lpad(21, 3, "0")): ", Problem21())
|
||||
|
@ -5,9 +5,9 @@ Created on 08 Aug 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 22 of Project Euler
|
||||
https://projecteuler.net/problem=22
|
||||
=#
|
||||
https://projecteuler.net/problem=22 =#
|
||||
|
||||
using BenchmarkTools
|
||||
using DelimitedFiles
|
||||
|
||||
function Problem22()
|
||||
@ -21,20 +21,19 @@ function Problem22()
|
||||
is worth 3 + 15 + 12 + 9 + 14 = 53, is the 938th name in the list. So,
|
||||
COLIN would obtain a score of 938 × 53 = 49714.
|
||||
|
||||
What is the total of all the name scores in the file?
|
||||
=#
|
||||
What is the total of all the name scores in the file? =#
|
||||
file = "/datos/Scripts/Gitea/Project_Euler/src/files/Problem22.txt"
|
||||
names = sort(readdlm(file, ',', String)[:])
|
||||
|
||||
result = 0
|
||||
for (idx,name) in enumerate(names)
|
||||
for (idx, name) in enumerate(names)
|
||||
result += sum(Int(c) - 64 for c in name) * idx
|
||||
end
|
||||
return result
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 22:")
|
||||
@time Problem22()
|
||||
println("Time to evaluate Problem $(lpad(22, 3, "0")):")
|
||||
@btime Problem22()
|
||||
println("")
|
||||
println("Result for Problem 22: ", Problem22())
|
||||
println("Result for Problem $(lpad(22, 3, "0")): ", Problem22())
|
||||
|
@ -8,6 +8,8 @@ Solution for Problem 23 of Project Euler
|
||||
https://projecteuler.net/problem=23
|
||||
=#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function Problem23()
|
||||
#=
|
||||
A perfect number is a number for which the sum of its proper divisors is
|
||||
@ -54,7 +56,7 @@ function Problem23()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 23:")
|
||||
@time Problem23()
|
||||
println("Time to evaluate Problem $(lpad(23, 3, "0")):")
|
||||
@btime Problem23()
|
||||
println("")
|
||||
println("Result for Problem 23: ", Problem23())
|
||||
println("Result for Problem $(lpad(23, 3, "0")): ", Problem23())
|
||||
|
@ -5,9 +5,9 @@ Created on 13 Aug 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 24 of Project Euler
|
||||
https://projecteuler.net/problem=24
|
||||
=#
|
||||
https://projecteuler.net/problem=24 =#
|
||||
|
||||
using BenchmarkTools
|
||||
using Combinatorics
|
||||
|
||||
function Problem24()
|
||||
@ -20,15 +20,14 @@ function Problem24()
|
||||
012 021 102 120 201 210
|
||||
|
||||
What is the millionth lexicographic permutation of the digits
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8 and 9?
|
||||
=#
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8 and 9? =#
|
||||
digits = [0,1,2,3,4,5,6,7,8,9]
|
||||
_permutations = nthperm(digits, 1_000_000)
|
||||
return join(_permutations)
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 24:")
|
||||
@time Problem24()
|
||||
println("Time to evaluate Problem $(lpad(24, 3, "0")):")
|
||||
@btime Problem24()
|
||||
println("")
|
||||
println("Result for Problem 24: ", Problem24())
|
||||
println("Result for Problem $(lpad(24, 3, "0")): ", Problem24())
|
||||
|
@ -5,8 +5,9 @@ Created on 15 Aug 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 25 of Project Euler
|
||||
https://projecteuler.net/problem=25
|
||||
=#
|
||||
https://projecteuler.net/problem=25 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function Problem25()
|
||||
#=
|
||||
@ -32,13 +33,12 @@ function Problem25()
|
||||
The 12th term, F12, is the first term to contain three digits.
|
||||
|
||||
What is the index of the first term in the Fibonacci sequence to
|
||||
contain 1000 digits?
|
||||
=#
|
||||
contain 1000 digits? =#
|
||||
a, b = 1, 1
|
||||
index = 2
|
||||
|
||||
while length(digits(b)) < 1000
|
||||
a, b = big(b), big(b+a)
|
||||
a, b = big(b), big(b + a)
|
||||
index += 1
|
||||
end
|
||||
|
||||
@ -46,7 +46,7 @@ function Problem25()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 25:")
|
||||
@time Problem25()
|
||||
println("Time to evaluate Problem $(lpad(25, 3, "0")):")
|
||||
@btime Problem25()
|
||||
println("")
|
||||
println("Result for Problem 25: ", Problem25())
|
||||
println("Result for Problem $(lpad(25, 3, "0")): ", Problem25())
|
||||
|
@ -5,8 +5,9 @@ Created on 16 Aug 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 26 of Project Euler
|
||||
https://projecteuler.net/problem=26
|
||||
=#
|
||||
https://projecteuler.net/problem=26 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function Problem26()
|
||||
#=
|
||||
@ -27,8 +28,7 @@ function Problem26()
|
||||
It can be seen that 1/7 has a 6-digit recurring cycle.
|
||||
|
||||
Find the value of d < 1000 for which 1/d contains the longest recurring
|
||||
cycle in its decimal fraction part.
|
||||
=#
|
||||
cycle in its decimal fraction part. =#
|
||||
cycle_length = 0
|
||||
number_d = 0
|
||||
for number in 3:2:999
|
||||
@ -47,7 +47,7 @@ function Problem26()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 26:")
|
||||
@time Problem26()
|
||||
println("Time to evaluate Problem $(lpad(26, 3, "0")):")
|
||||
@btime Problem26()
|
||||
println("")
|
||||
println("Result for Problem 26: ", Problem26())
|
||||
println("Result for Problem $(lpad(26, 3, "0")): ", Problem26())
|
||||
|
@ -5,9 +5,9 @@ Created on 19 Aug 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 27 of Project Euler
|
||||
https://projecteuler.net/problem=27
|
||||
=#
|
||||
https://projecteuler.net/problem=27 =#
|
||||
|
||||
using BenchmarkTools
|
||||
using Primes
|
||||
|
||||
function Problem27()
|
||||
@ -34,12 +34,11 @@ function Problem27()
|
||||
|
||||
Find the product of the coefficients, a and b, for the quadratic expression
|
||||
that produces the maximum number of primes for consecutive values of n,
|
||||
starting with n=0.
|
||||
=#
|
||||
starting with n=0. =#
|
||||
LIMIT = 1000
|
||||
consecutive_values = 0
|
||||
c = 0
|
||||
for a in -999:LIMIT-1
|
||||
for a in -999:LIMIT - 1
|
||||
for b in 0:LIMIT
|
||||
n = 0
|
||||
while isprime((n^2) + (a * n) + b)
|
||||
@ -55,7 +54,7 @@ function Problem27()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 27:")
|
||||
@time Problem27()
|
||||
println("Time to evaluate Problem $(lpad(27, 3, "0")):")
|
||||
@btime Problem27()
|
||||
println("")
|
||||
println("Result for Problem 27: ", Problem27())
|
||||
println("Result for Problem $(lpad(27, 3, "0")): ", Problem27())
|
||||
|
@ -5,8 +5,7 @@ Created on 23 Aug 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 28 of Project Euler
|
||||
https://projecteuler.net/problem=28
|
||||
=#
|
||||
https://projecteuler.net/problem=28 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
@ -24,13 +23,12 @@ function Problem28()
|
||||
It can be verified that the sum of the numbers on the diagonals is 101.
|
||||
|
||||
What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral
|
||||
formed in the same way?
|
||||
=#
|
||||
formed in the same way? =#
|
||||
size = 1001 # Must be odd
|
||||
ans = 1 # Special case for size 1
|
||||
step = 0
|
||||
i, cur = 1, 1
|
||||
while step < size-1
|
||||
while step < size - 1
|
||||
step = i * 2
|
||||
for j in 1:4
|
||||
cur += step
|
||||
@ -43,7 +41,7 @@ function Problem28()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 28:")
|
||||
println("Time to evaluate Problem $(lpad(28, 3, "0")):")
|
||||
@btime Problem28()
|
||||
println("")
|
||||
println("Result for Problem 28: ", Problem28())
|
||||
println("Result for Problem $(lpad(28, 3, "0")): ", Problem28())
|
||||
|
@ -5,8 +5,7 @@ Created on 23 Aug 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 29 of Project Euler
|
||||
https://projecteuler.net/problem=29
|
||||
=#
|
||||
https://projecteuler.net/problem=29 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
@ -25,14 +24,13 @@ function Problem29()
|
||||
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
|
||||
|
||||
How many distinct terms are in the sequence generated by ab for 2≤a≤100
|
||||
and 2≤b≤100?
|
||||
=#
|
||||
and 2≤b≤100? =#
|
||||
terms = Set(big(a)^b for a in 2:100, b in 2:100)
|
||||
return length(terms)
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 29:")
|
||||
println("Time to evaluate Problem $(lpad(29, 3, "0")):")
|
||||
@btime Problem29()
|
||||
println("")
|
||||
println("Result for Problem 29: ", Problem29())
|
||||
println("Result for Problem $(lpad(29, 3, "0")): ", Problem29())
|
||||
|
@ -41,7 +41,7 @@ function Problem30()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 30:")
|
||||
println("Time to evaluate Problem $(lpad(30, 3, "0")):")
|
||||
@btime Problem30()
|
||||
println("")
|
||||
println("Result for Problem 30: ", Problem30())
|
||||
println("Result for Problem $(lpad(30, 3, "0")): ", Problem30())
|
||||
|
@ -5,8 +5,7 @@ Created on 27 Aug 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 31 of Project Euler
|
||||
https://projecteuler.net/problem=31
|
||||
=#
|
||||
https://projecteuler.net/problem=31 =#
|
||||
|
||||
using BenchmarkTools
|
||||
using IterTools
|
||||
@ -22,8 +21,7 @@ function Problem31()
|
||||
|
||||
1×£1 + 1×50p + 2×20p + 1×5p + 1×2p + 3×1p
|
||||
|
||||
How many different ways can £2 be made using any number of coins?
|
||||
=#
|
||||
How many different ways can £2 be made using any number of coins? =#
|
||||
no_ways = 0
|
||||
|
||||
coins = [2, 5, 10, 20, 50, 100]
|
||||
@ -39,7 +37,7 @@ function Problem31()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 31:")
|
||||
println("Time to evaluate Problem $(lpad(31, 3, "0")):")
|
||||
@btime Problem31()
|
||||
println("")
|
||||
println("Result for Problem 31: ", Problem31())
|
||||
println("Result for Problem $(lpad(31, 3, "0")): ", Problem31())
|
||||
|
@ -5,8 +5,7 @@ Created on 30 Aug 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 32 of Project Euler
|
||||
https://projecteuler.net/problem=32
|
||||
=#
|
||||
https://projecteuler.net/problem=32 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
@ -22,8 +21,7 @@ function Problem32()
|
||||
Find the sum of all products whose multiplicand/multiplier/product identity
|
||||
can be written as a 1 through 9 pandigital.
|
||||
HINT: Some products can be obtained in more than one way so be sure to only
|
||||
include it once in your sum.
|
||||
=#
|
||||
include it once in your sum. =#
|
||||
|
||||
ans = Set()
|
||||
pandigital = join(['1', '2', '3', '4', '5', '6', '7', '8', '9'])
|
||||
@ -41,7 +39,7 @@ function Problem32()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 32:")
|
||||
println("Time to evaluate Problem $(lpad(32, 3, "0")):")
|
||||
@btime Problem32()
|
||||
println("")
|
||||
println("Result for Problem 32: ", Problem32())
|
||||
println("Result for Problem $(lpad(32, 3, "0")): ", Problem32())
|
||||
|
@ -5,8 +5,7 @@ Created on 01 Sep 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 33 of Project Euler
|
||||
https://projecteuler.net/problem=33
|
||||
=#
|
||||
https://projecteuler.net/problem=33 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
@ -22,8 +21,7 @@ function Problem33()
|
||||
than one in value, and containing two digits in the numerator and denominator.
|
||||
|
||||
If the product of these four fractions is given in its lowest common terms,
|
||||
find the value of the denominator.
|
||||
=#
|
||||
find the value of the denominator. =#
|
||||
numerator = 1
|
||||
denominator = 1
|
||||
for x in 10:99
|
||||
@ -41,11 +39,11 @@ function Problem33()
|
||||
end
|
||||
end
|
||||
|
||||
return Int(denominator/numerator)
|
||||
return Int(denominator / numerator)
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 33:")
|
||||
println("Time to evaluate Problem $(lpad(33, 3, "0")):")
|
||||
@btime Problem33()
|
||||
println("")
|
||||
println("Result for Problem 33: ", Problem33())
|
||||
println("Result for Problem $(lpad(33, 3, "0")): ", Problem33())
|
||||
|
@ -5,8 +5,7 @@ Created on 01 Sep 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 34 of Project Euler
|
||||
https://projecteuler.net/problem=34
|
||||
=#
|
||||
https://projecteuler.net/problem=34 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
@ -17,8 +16,7 @@ function Problem34()
|
||||
Find the sum of all numbers which are equal to the sum of the factorial
|
||||
of their digits.
|
||||
|
||||
Note: As 1! = 1 and 2! = 2 are not sums they are not included.
|
||||
=#
|
||||
Note: As 1! = 1 and 2! = 2 are not sums they are not included. =#
|
||||
|
||||
ans = 0
|
||||
|
||||
@ -36,7 +34,7 @@ function Problem34()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 34:")
|
||||
println("Time to evaluate Problem $(lpad(34, 3, "0")):")
|
||||
@btime Problem34()
|
||||
println("")
|
||||
println("Result for Problem 34: ", Problem34())
|
||||
println("Result for Problem $(lpad(34, 3, "0")): ", Problem34())
|
||||
|
@ -5,8 +5,7 @@ Created on 02 Sep 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 35 of Project Euler
|
||||
https://projecteuler.net/problem=35
|
||||
=#
|
||||
https://projecteuler.net/problem=35 =#
|
||||
|
||||
using BenchmarkTools
|
||||
using Combinatorics
|
||||
@ -22,15 +21,15 @@ using Primes
|
||||
# end
|
||||
|
||||
function circular_number(n)
|
||||
if n <10
|
||||
if n < 10
|
||||
return [n]
|
||||
end
|
||||
digs=digits(n)
|
||||
d=length(digs)
|
||||
cyc=zeros(Int,d)
|
||||
x=[10^i for i in 0:d-1]
|
||||
digs = digits(n)
|
||||
d = length(digs)
|
||||
cyc = zeros(Int, d)
|
||||
x = [10^i for i in 0:d - 1]
|
||||
for i in 1:d
|
||||
cyc[i]=sum(x .* digs[vcat(i:d,1:i-1)])
|
||||
cyc[i] = sum(x .* digs[vcat(i:d, 1:i - 1)])
|
||||
end
|
||||
return cyc
|
||||
end
|
||||
@ -43,8 +42,7 @@ function Problem35()
|
||||
There are thirteen such primes below 100:
|
||||
2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97.
|
||||
|
||||
How many circular primes are there below one million?
|
||||
=#
|
||||
How many circular primes are there below one million? =#
|
||||
circular_primes = []
|
||||
cnt = 0
|
||||
for i in 2:1_000_000
|
||||
@ -57,16 +55,16 @@ function Problem35()
|
||||
end
|
||||
end
|
||||
if all_primes
|
||||
cnt +=1 #push!(circular_primes, i)
|
||||
cnt += 1 # push!(circular_primes, i)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
return cnt #length(circular_primes)
|
||||
return cnt # length(circular_primes)
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 35:")
|
||||
println("Time to evaluate Problem $(lpad(35, 3, "0")):")
|
||||
@btime Problem35()
|
||||
println("")
|
||||
println("Result for Problem 35: ", Problem35())
|
||||
println("Result for Problem $(lpad(35, 3, "0")): ", Problem35())
|
||||
|
@ -5,8 +5,7 @@ Created on 04 Sep 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 36 of Project Euler
|
||||
https://projecteuler.net/problem=36
|
||||
=#
|
||||
https://projecteuler.net/problem=36 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
@ -20,11 +19,10 @@ function Problem36()
|
||||
in both bases.
|
||||
|
||||
Find the sum of all numbers, less than one million, which are palindromic
|
||||
in base 10 and base 2.
|
||||
=#
|
||||
in base 10 and base 2. =#
|
||||
ans = 0
|
||||
for n in 1:2:1_000_000
|
||||
if is_palindrome(digits(n,base=10)) && is_palindrome(digits(n,base=2))
|
||||
if is_palindrome(digits(n, base=10)) && is_palindrome(digits(n, base=2))
|
||||
ans += n
|
||||
end
|
||||
end
|
||||
@ -32,7 +30,7 @@ function Problem36()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 36:")
|
||||
println("Time to evaluate Problem $(lpad(36, 3, "0")):")
|
||||
@btime Problem36()
|
||||
println("")
|
||||
println("Result for Problem 36: ", Problem36())
|
||||
println("Result for Problem $(lpad(36, 3, "0")): ", Problem36())
|
||||
|
@ -5,8 +5,7 @@ Created on 07 Sep 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 37 of Project Euler
|
||||
https://projecteuler.net/problem=37
|
||||
=#
|
||||
https://projecteuler.net/problem=37 =#
|
||||
|
||||
using BenchmarkTools
|
||||
using Primes
|
||||
@ -14,9 +13,9 @@ using Primes
|
||||
function is_truncatable_prime(number)
|
||||
num_str_rev = reverse(digits(number))
|
||||
|
||||
for (idx,num) in enumerate(join(num_str_rev))
|
||||
for (idx, num) in enumerate(join(num_str_rev))
|
||||
if !isprime(parse(Int, join(num_str_rev[idx:end]))) ||
|
||||
!isprime(parse(Int, join(num_str_rev[1:end-idx+1])))
|
||||
!isprime(parse(Int, join(num_str_rev[1:end - idx + 1])))
|
||||
return false
|
||||
end
|
||||
end
|
||||
@ -47,7 +46,7 @@ function Problem37()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 37:")
|
||||
println("Time to evaluate Problem $(lpad(37, 3, "0")):")
|
||||
@btime Problem37()
|
||||
println("")
|
||||
println("Result for Problem 37: ", Problem37())
|
||||
println("Result for Problem $(lpad(37, 3, "0")): ", Problem37())
|
||||
|
@ -5,8 +5,7 @@ Created on 08 Sep 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 38 of Project Euler
|
||||
https://projecteuler.net/problem=38
|
||||
=#
|
||||
https://projecteuler.net/problem=38 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
@ -28,8 +27,7 @@ function Problem38()
|
||||
|
||||
What is the largest 1 to 9 pandigital 9-digit number that can
|
||||
be formed as the concatenated product of an integer with
|
||||
(1,2, ... , n) where n > 1?
|
||||
=#
|
||||
(1,2, ... , n) where n > 1? =#
|
||||
|
||||
results = []
|
||||
pandigital = join(['1', '2', '3', '4', '5', '6', '7', '8', '9'])
|
||||
@ -41,7 +39,7 @@ function Problem38()
|
||||
while length(number) < 9
|
||||
number *= string(integer * i)
|
||||
if join(sort(collect(number))) == pandigital
|
||||
push!(results,number)
|
||||
push!(results, number)
|
||||
end
|
||||
integer += 1
|
||||
end
|
||||
@ -50,7 +48,7 @@ function Problem38()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 38:")
|
||||
println("Time to evaluate Problem $(lpad(38, 3, "0")):")
|
||||
@btime Problem38()
|
||||
println("")
|
||||
println("Result for Problem 38: ", Problem38())
|
||||
println("Result for Problem $(lpad(38, 3, "0")): ", Problem38())
|
||||
|
@ -5,8 +5,7 @@ Created on 09 Sep 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 39 of Project Euler
|
||||
https://projecteuler.net/problem=39
|
||||
=#
|
||||
https://projecteuler.net/problem=39 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
@ -17,13 +16,12 @@ function Problem39()
|
||||
|
||||
{20,48,52}, {24,45,51}, {30,40,50}
|
||||
|
||||
For which value of p ≤ 1000, is the number of solutions maximised?
|
||||
=#
|
||||
For which value of p ≤ 1000, is the number of solutions maximised? =#
|
||||
ans, val = 0, 0
|
||||
for p in 2:2:1000
|
||||
sol = 0
|
||||
for a in 1:p
|
||||
for b in a+1:p-2*a
|
||||
for b in a + 1:p - 2 * a
|
||||
c = p - (a + b)
|
||||
if a^2 + b^2 == c^2
|
||||
sol += 1
|
||||
@ -43,7 +41,7 @@ function Problem39()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 39:")
|
||||
println("Time to evaluate Problem $(lpad(39, 3, "0")):")
|
||||
@btime Problem39()
|
||||
println("")
|
||||
println("Result for Problem 39: ", Problem39())
|
||||
println("Result for Problem $(lpad(39, 3, "0")): ", Problem39())
|
||||
|
@ -5,8 +5,7 @@ Created on 10 Sep 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 40 of Project Euler
|
||||
https://projecteuler.net/problem=40
|
||||
=#
|
||||
https://projecteuler.net/problem=40 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
@ -20,21 +19,19 @@ function Problem40()
|
||||
|
||||
If d_n represents the n^th digit of the fractional part, find the value of the following expression.
|
||||
|
||||
d_1 × d_{10} × d_{100} × d_{1_000} × d_{10_000} × d_{100_000} × d_{1_000_000}
|
||||
|
||||
=#
|
||||
d_1 × d_{10} × d_{100} × d_{1_000} × d_{10_000} × d_{100_000} × d_{1_000_000} =#
|
||||
ans = 1
|
||||
fraction = join([i for i in 1:1_000_000])
|
||||
|
||||
for i in 0:6
|
||||
ans *= parse(Int, fraction[10^i])
|
||||
ans *= parse(Int, fraction[10^i])
|
||||
end
|
||||
|
||||
return ans
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 40:")
|
||||
println("Time to evaluate Problem $(lpad(40, 3, "0")):")
|
||||
@btime Problem40()
|
||||
println("")
|
||||
println("Result for Problem 40: ", Problem40())
|
||||
println("Result for Problem $(lpad(40, 3, "0")): ", Problem40())
|
||||
|
@ -5,8 +5,7 @@ Created on 11 Sep 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 41 of Project Euler
|
||||
https://projecteuler.net/problem=41
|
||||
=#
|
||||
https://projecteuler.net/problem=41 =#
|
||||
|
||||
using BenchmarkTools
|
||||
using Primes
|
||||
@ -26,8 +25,7 @@ function Problem41()
|
||||
use of all the digits 1 to n exactly once. For example, 2143 is
|
||||
a 4-digit pandigital and is also prime.
|
||||
|
||||
What is the largest n-digit pandigital prime that exists?
|
||||
=#
|
||||
What is the largest n-digit pandigital prime that exists? =#
|
||||
|
||||
for ans in 7654321:-1:1
|
||||
if is_pandigital(ans) & isprime(ans)
|
||||
@ -37,7 +35,7 @@ function Problem41()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 41:")
|
||||
println("Time to evaluate Problem $(lpad(41, 3, "0")):")
|
||||
@btime Problem41()
|
||||
println("")
|
||||
println("Result for Problem 41: ", Problem41())
|
||||
println("Result for Problem $(lpad(41, 3, "0")): ", Problem41())
|
||||
|
@ -5,18 +5,17 @@ Created on 12 Sep 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 42 of Project Euler
|
||||
https://projecteuler.net/problem=42
|
||||
=#
|
||||
https://projecteuler.net/problem=42 =#
|
||||
|
||||
using BenchmarkTools
|
||||
using DelimitedFiles
|
||||
|
||||
function triangle_number(num)
|
||||
return Int(0.5*num*(num+1))
|
||||
return Int(0.5 * num * (num + 1))
|
||||
end
|
||||
|
||||
function word_to_value(word)
|
||||
return sum(Int(letter)-64 for letter in word)
|
||||
return sum(Int(letter) - 64 for letter in word)
|
||||
end
|
||||
|
||||
function Problem42()
|
||||
@ -32,12 +31,11 @@ function Problem42()
|
||||
shall call the word a triangle word.
|
||||
|
||||
Using words.txt, a 16K text file containing nearly two-thousand common English words,
|
||||
how many are triangle words?
|
||||
=#
|
||||
how many are triangle words? =#
|
||||
|
||||
triangular_numbers = [triangle_number(n) for n in 1:26]
|
||||
ans = 0
|
||||
file = "/datos/Scripts/Gitea/Project_Euler/src/files/Problem42.txt"
|
||||
file = "../files/Problem42.txt"
|
||||
words = sort(readdlm(file, ',', String)[:])
|
||||
|
||||
for word in words
|
||||
@ -49,7 +47,7 @@ function Problem42()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 42:")
|
||||
println("Time to evaluate Problem $(lpad(42, 3, "0")):")
|
||||
@btime Problem42()
|
||||
println("")
|
||||
println("Result for Problem 42: ", Problem42())
|
||||
println("Result for Problem $(lpad(42, 3, "0")): ", Problem42())
|
||||
|
@ -5,8 +5,7 @@ Created on 13 Sep 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 43 of Project Euler
|
||||
https://projecteuler.net/problem=43
|
||||
=#
|
||||
https://projecteuler.net/problem=43 =#
|
||||
|
||||
using BenchmarkTools
|
||||
using Combinatorics
|
||||
@ -28,13 +27,12 @@ function Problem43()
|
||||
d7d8d9=728 is divisible by 13
|
||||
d8d9d10=289 is divisible by 17
|
||||
|
||||
Find the sum of all 0 to 9 pandigital numbers with this property.
|
||||
=#
|
||||
Find the sum of all 0 to 9 pandigital numbers with this property. =#
|
||||
ans = []
|
||||
pandigital = join(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'])
|
||||
|
||||
for n in permutations(pandigital)
|
||||
n_ =join(n)
|
||||
n_ = join(n)
|
||||
if n_[1] != 0 && join(sort(n)) == pandigital
|
||||
if parse(Int, n_[8:end]) % 17 == 0
|
||||
if parse(Int, n_[7:9]) % 13 == 0
|
||||
@ -58,7 +56,7 @@ function Problem43()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 43:")
|
||||
println("Time to evaluate Problem $(lpad(43, 3, "0")):")
|
||||
@btime Problem43()
|
||||
println("")
|
||||
println("Result for Problem 43: ", Problem43())
|
||||
println("Result for Problem $(lpad(43, 3, "0")): ", Problem43())
|
||||
|
@ -5,14 +5,13 @@ Created on 14 Sep 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 44 of Project Euler
|
||||
https://projecteuler.net/problem=44
|
||||
=#
|
||||
https://projecteuler.net/problem=44 =#
|
||||
|
||||
using BenchmarkTools
|
||||
using Combinatorics
|
||||
|
||||
function pentagonal(n)
|
||||
return Int(n*(3*n-1)/2)
|
||||
return Int(n * (3 * n - 1) / 2)
|
||||
end
|
||||
|
||||
function Problem44()
|
||||
@ -28,14 +27,13 @@ function Problem44()
|
||||
Find the pair of pentagonal numbers, Pj and Pk, for which their
|
||||
sum and difference are pentagonal and D = |Pk − Pj| is minimised.
|
||||
|
||||
What is the value of D?
|
||||
=#
|
||||
What is the value of D? =#
|
||||
dif = 0
|
||||
pentagonal_list = [pentagonal(n) for n in 1:2500]
|
||||
pairs = combinations(pentagonal_list, 2)
|
||||
for p in pairs
|
||||
if reduce(+, p) in pentagonal_list && abs(reduce(-, p)) in pentagonal_list
|
||||
dif = (abs(reduce(-,p)))
|
||||
dif = (abs(reduce(-, p)))
|
||||
# the first one found would be the smallest
|
||||
break
|
||||
end
|
||||
@ -45,7 +43,7 @@ function Problem44()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 44:")
|
||||
println("Time to evaluate Problem $(lpad(44, 3, "0")):")
|
||||
@btime Problem44()
|
||||
println("")
|
||||
println("Result for Problem 44: ", Problem44())
|
||||
println("Result for Problem $(lpad(44, 3, "0")): ", Problem44())
|
||||
|
@ -5,17 +5,16 @@ Created on 15 Sep 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 45 of Project Euler
|
||||
https://projecteuler.net/problem=45
|
||||
=#
|
||||
https://projecteuler.net/problem=45 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function pentagonal(n)
|
||||
return Int(n*(3*n-1)/2)
|
||||
return Int(n * (3 * n - 1) / 2)
|
||||
end
|
||||
|
||||
function hexagonal(n)
|
||||
return Int(n*(2*n-1))
|
||||
return Int(n * (2 * n - 1))
|
||||
end
|
||||
|
||||
function Problem45()
|
||||
@ -27,8 +26,7 @@ function Problem45()
|
||||
|
||||
It can be verified that T285 = P165 = H143 = 40755.
|
||||
|
||||
Find the next triangle number that is also pentagonal and hexagonal.
|
||||
=#
|
||||
Find the next triangle number that is also pentagonal and hexagonal. =#
|
||||
pentagonal_list = Set(pentagonal(n) for n in 2:100_000)
|
||||
# all hexagonal numbers are also triangle numbers!
|
||||
hexagonal_list = Set(hexagonal(n) for n in 2:100_000)
|
||||
@ -39,7 +37,7 @@ function Problem45()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 45:")
|
||||
println("Time to evaluate Problem $(lpad(45, 3, "0")):")
|
||||
@btime Problem45()
|
||||
println("")
|
||||
println("Result for Problem 45: ", Problem45())
|
||||
println("Result for Problem $(lpad(45, 3, "0")): ", Problem45())
|
||||
|
@ -5,15 +5,14 @@ Created on 16 Sep 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 46 of Project Euler
|
||||
https://projecteuler.net/problem=46
|
||||
=#
|
||||
https://projecteuler.net/problem=46 =#
|
||||
|
||||
using BenchmarkTools
|
||||
using Primes
|
||||
|
||||
function is_goldbach(number)
|
||||
for i in number - 1:-1:1
|
||||
if isprime(i) & ((((number - i) / 2)^0.5)%1==0)
|
||||
if isprime(i) & ((((number - i) / 2)^0.5) % 1 == 0)
|
||||
return true
|
||||
end
|
||||
end
|
||||
@ -22,7 +21,7 @@ end
|
||||
|
||||
function Problem46()
|
||||
#=
|
||||
It was proposed by Christian Goldbach that every odd composite number
|
||||
It was proposed by Christian Goldbach that every odd composite number
|
||||
can be written as the sum of a prime and twice a square.
|
||||
|
||||
9 = 7 + 2×1^2
|
||||
@ -34,9 +33,8 @@ function Problem46()
|
||||
|
||||
It turns out that the conjecture was false.
|
||||
|
||||
What is the smallest odd composite that cannot be written as the sum
|
||||
of a prime and twice a square?
|
||||
=#
|
||||
What is the smallest odd composite that cannot be written as the sum
|
||||
of a prime and twice a square? =#
|
||||
ans = 9
|
||||
while true
|
||||
ans += 2
|
||||
@ -47,7 +45,7 @@ function Problem46()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 46:")
|
||||
println("Time to evaluate Problem $(lpad(46, 3, "0")):")
|
||||
@btime Problem46()
|
||||
println("")
|
||||
println("Result for Problem 46: ", Problem46())
|
||||
println("Result for Problem $(lpad(46, 3, "0")): ", Problem46())
|
||||
|
@ -5,24 +5,23 @@ Created on 18 Sep 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 47 of Project Euler
|
||||
https://projecteuler.net/problem=47
|
||||
=#
|
||||
https://projecteuler.net/problem=47 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function factor(n)
|
||||
ans = []
|
||||
d = 2
|
||||
while d*d <= n
|
||||
while d * d <= n
|
||||
if n % d == 0
|
||||
push!(ans,d)
|
||||
push!(ans, d)
|
||||
n = n ÷ d
|
||||
else
|
||||
d += 1
|
||||
end
|
||||
end
|
||||
if n > 1
|
||||
push!(ans,n)
|
||||
push!(ans, n)
|
||||
end
|
||||
return ans
|
||||
end
|
||||
@ -41,15 +40,14 @@ function Problem47()
|
||||
646 = 2 × 17 × 19.
|
||||
|
||||
Find the first four consecutive integers to have four distinct prime factors each.
|
||||
What is the first of these numbers?
|
||||
=#
|
||||
What is the first of these numbers? =#
|
||||
ans = []
|
||||
|
||||
for number in 1:1_000_000
|
||||
if length(ans) == 4
|
||||
break
|
||||
elseif length(Set(factor(number))) == 4
|
||||
push!(ans,number)
|
||||
push!(ans, number)
|
||||
else
|
||||
ans = []
|
||||
end
|
||||
@ -59,7 +57,7 @@ function Problem47()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 47:")
|
||||
println("Time to evaluate Problem $(lpad(47, 3, "0")):")
|
||||
@btime Problem47()
|
||||
println("")
|
||||
println("Result for Problem 47: ", Problem47())
|
||||
println("Result for Problem $(lpad(47, 3, "0")): ", Problem47())
|
||||
|
@ -5,8 +5,7 @@ Created on 18 Sep 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 48 of Project Euler
|
||||
https://projecteuler.net/problem=48
|
||||
=#
|
||||
https://projecteuler.net/problem=48 =#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
@ -14,14 +13,13 @@ function Problem48()
|
||||
#=
|
||||
The series, 1^1 + 2^2 + 3^3 + ... + 10^10 = 10405071317.
|
||||
|
||||
Find the last ten digits of the series, 1^1 + 2^2 + 3^3 + ... + 1000^1000.
|
||||
=#
|
||||
Find the last ten digits of the series, 1^1 + 2^2 + 3^3 + ... + 1000^1000. =#
|
||||
series = sum(big(i)^i for i in 1:1000)
|
||||
return string(series)[end-9:end]
|
||||
return string(series)[end - 9:end]
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 48:")
|
||||
println("Time to evaluate Problem $(lpad(48, 3, "0")):")
|
||||
@btime Problem48()
|
||||
println("")
|
||||
println("Result for Problem 48: ", Problem48())
|
||||
println("Result for Problem $(lpad(48, 3, "0")): ", Problem48())
|
||||
|
@ -5,8 +5,7 @@ Created on 19 Sep 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 49 of Project Euler
|
||||
https://projecteuler.net/problem=49
|
||||
=#
|
||||
https://projecteuler.net/problem=49 =#
|
||||
|
||||
using BenchmarkTools
|
||||
using Primes
|
||||
@ -21,15 +20,14 @@ function Problem49()
|
||||
There are no arithmetic sequences made up of three 1-, 2-, or 3-digit primes,
|
||||
exhibiting this property, but there is one other 4-digit increasing sequence.
|
||||
|
||||
What 12-digit number do you form by concatenating the three terms in this sequence?
|
||||
=#
|
||||
What 12-digit number do you form by concatenating the three terms in this sequence? =#
|
||||
ans = []
|
||||
primes_list = primes(1_000, 10_000)
|
||||
|
||||
for number in primes_list
|
||||
if sort(collect(digits(number))) == sort(collect(digits(number+3330))) == sort(collect(digits(number+6660)))
|
||||
if number+3330 in primes_list && number+6660 in primes_list
|
||||
push!(ans, (string(number)*string(number+3300)*string(number+6660)))
|
||||
if sort(collect(digits(number))) == sort(collect(digits(number + 3330))) == sort(collect(digits(number + 6660)))
|
||||
if number + 3330 in primes_list && number + 6660 in primes_list
|
||||
push!(ans, (string(number) * string(number + 3300) * string(number + 6660)))
|
||||
end
|
||||
end
|
||||
end
|
||||
@ -38,7 +36,7 @@ function Problem49()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 49:")
|
||||
println("Time to evaluate Problem $(lpad(49, 3, "0")):")
|
||||
@btime Problem49()
|
||||
println("")
|
||||
println("Result for Problem 49: ", Problem49())
|
||||
println("Result for Problem $(lpad(49, 3, "0")): ", Problem49())
|
||||
|
@ -5,8 +5,7 @@ Created on 20 Sep 2021
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 50 of Project Euler
|
||||
https://projecteuler.net/problem=50
|
||||
=#
|
||||
https://projecteuler.net/problem=50 =#
|
||||
|
||||
using BenchmarkTools
|
||||
using Primes
|
||||
@ -19,11 +18,10 @@ function Problem50()
|
||||
|
||||
This is the longest sum of consecutive primes that adds to a prime below one-hundred.
|
||||
|
||||
The longest sum of consecutive primes below one-thousand that adds to a prime,
|
||||
The longest sum of consecutive primes below one-thousand that adds to a prime,
|
||||
contains 21 terms, and is equal to 953.
|
||||
|
||||
Which prime, below one-million, can be written as the sum of the most consecutive primes?
|
||||
=#
|
||||
Which prime, below one-million, can be written as the sum of the most consecutive primes? =#
|
||||
|
||||
ans = 0
|
||||
result = 0
|
||||
@ -48,7 +46,7 @@ function Problem50()
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 50:")
|
||||
println("Time to evaluate Problem $(lpad(50, 3, "0")):")
|
||||
@btime Problem50()
|
||||
println("")
|
||||
println("Result for Problem 50: ", Problem50())
|
||||
println("Result for Problem $(lpad(50, 3, "0")): ", Problem50())
|
||||
|
Loading…
x
Reference in New Issue
Block a user