Solution to problem 49 in Julia
This commit is contained in:
parent
859c2d8321
commit
c92a9f1178
44
src/Julia/Problem049.jl
Normal file
44
src/Julia/Problem049.jl
Normal file
@ -0,0 +1,44 @@
|
||||
#=
|
||||
Created on 19 Sep 2021
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 49 of Project Euler
|
||||
https://projecteuler.net/problem=49
|
||||
=#
|
||||
|
||||
using BenchmarkTools
|
||||
using Primes
|
||||
|
||||
function Problem49()
|
||||
#=
|
||||
The arithmetic sequence, 1487, 4817, 8147, in which each of the terms
|
||||
increases by 3330, is unusual in two ways:
|
||||
(i) each of the three terms are prime, and,
|
||||
(ii) each of the 4-digit numbers are permutations of one another.
|
||||
|
||||
There are no arithmetic sequences made up of three 1-, 2-, or 3-digit primes,
|
||||
exhibiting this property, but there is one other 4-digit increasing sequence.
|
||||
|
||||
What 12-digit number do you form by concatenating the three terms in this sequence?
|
||||
=#
|
||||
ans = []
|
||||
primes_list = primes(1_000, 10_000)
|
||||
|
||||
for number in primes_list
|
||||
if sort(collect(digits(number))) == sort(collect(digits(number+3330))) == sort(collect(digits(number+6660)))
|
||||
if number+3330 in primes_list && number+6660 in primes_list
|
||||
push!(ans, (string(number)*string(number+3300)*string(number+6660)))
|
||||
end
|
||||
end
|
||||
end
|
||||
# return the second one
|
||||
return ans[2]
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 49:")
|
||||
@btime Problem49()
|
||||
println("")
|
||||
println("Result for Problem 49: ", Problem49())
|
Loading…
x
Reference in New Issue
Block a user