diff --git a/src/Julia/Problem043.jl b/src/Julia/Problem043.jl new file mode 100644 index 0000000..110893c --- /dev/null +++ b/src/Julia/Problem043.jl @@ -0,0 +1,64 @@ +#= +Created on 13 Sep 2021 + +@author: David Doblas Jiménez +@email: daviddoji@pm.me + +Solution for Problem 43 of Project Euler +https://projecteuler.net/problem=43 +=# + +using BenchmarkTools +using Combinatorics + +function Problem43() + #= + The number, 1406357289, is a 0 to 9 pandigital number because + it is made up of each of the digits 0 to 9 in some order, but + it also has a rather interesting sub-string divisibility property. + + Let d1 be the 1st digit, d2 be the 2nd digit, and so on. In this + way, we note the following: + + d2d3d4=406 is divisible by 2 + d3d4d5=063 is divisible by 3 + d4d5d6=635 is divisible by 5 + d5d6d7=357 is divisible by 7 + d6d7d8=572 is divisible by 11 + d7d8d9=728 is divisible by 13 + d8d9d10=289 is divisible by 17 + + Find the sum of all 0 to 9 pandigital numbers with this property. + =# + ans = [] + pandigital = join(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']) + + for n in permutations(pandigital) + n_ =join(n) + if n_[1] != 0 && join(sort(n)) == pandigital + if parse(Int, n_[8:end]) % 17 == 0 + if parse(Int, n_[7:9]) % 13 == 0 + if parse(Int, n_[6:8]) % 11 == 0 + if parse(Int, n_[5:7]) % 7 == 0 + if parse(Int, n_[4:6]) % 5 == 0 + if parse(Int, n_[3:5]) % 3 == 0 + if parse(Int, n_[2:4]) % 2 == 0 + push!(ans, n_) + end + end + end + end + end + end + end + end + end + + return sum(parse(Int, num) for num in ans) +end + + +println("Time to evaluate Problem 43:") +@btime Problem43() +println("") +println("Result for Problem 43: ", Problem43())