Solution to problem 55 in Julia
This commit is contained in:
parent
969109c881
commit
c2f47a8534
73
src/Julia/Problem055.jl
Normal file
73
src/Julia/Problem055.jl
Normal file
@ -0,0 +1,73 @@
|
|||||||
|
#=
|
||||||
|
Created on 03 Oct 2021
|
||||||
|
|
||||||
|
@author: David Doblas Jiménez
|
||||||
|
@email: daviddoji@pm.me
|
||||||
|
|
||||||
|
Solution for Problem 55 of Project Euler
|
||||||
|
https://projecteuler.net/problem=55
|
||||||
|
=#
|
||||||
|
|
||||||
|
using BenchmarkTools
|
||||||
|
|
||||||
|
function is_palindrome(num)
|
||||||
|
return num == reverse(num)
|
||||||
|
end
|
||||||
|
|
||||||
|
function Problem55()
|
||||||
|
#=
|
||||||
|
If we take 47, reverse and add, 47 + 74 = 121, which is palindromic.
|
||||||
|
|
||||||
|
Not all numbers produce palindromes so quickly. For example,
|
||||||
|
|
||||||
|
349 + 943 = 1292,
|
||||||
|
1292 + 2921 = 4213
|
||||||
|
4213 + 3124 = 7337
|
||||||
|
|
||||||
|
That is, 349 took three iterations to arrive at a palindrome.
|
||||||
|
|
||||||
|
Although no one has proved it yet, it is thought that some numbers, like 196,
|
||||||
|
never produce a palindrome. A number that never forms a palindrome through the
|
||||||
|
reverse and add process is called a Lychrel number. Due to the theoretical nature
|
||||||
|
of these numbers, and for the purpose of this problem, we shall assume that a
|
||||||
|
number is Lychrel until proven otherwise. In addition you are given that for
|
||||||
|
every number below ten-thousand, it will either:
|
||||||
|
(i) become a palindrome in less than fifty iterations, or,
|
||||||
|
(ii) no one, with all the computing power that exists, has managed so far to map
|
||||||
|
it to a palindrome.
|
||||||
|
|
||||||
|
In fact, 10677 is the first number to be shown to require over fifty iterations
|
||||||
|
before producing a palindrome:
|
||||||
|
|
||||||
|
4668731596684224866951378664 (53 iterations, 28-digits).
|
||||||
|
|
||||||
|
Surprisingly, there are palindromic numbers that are themselves Lychrel numbers;
|
||||||
|
the first example is 4994.
|
||||||
|
|
||||||
|
How many Lychrel numbers are there below ten-thousand?
|
||||||
|
=#
|
||||||
|
|
||||||
|
ans = 0
|
||||||
|
for n in 11:10_000
|
||||||
|
num = n
|
||||||
|
is_lychrel = true
|
||||||
|
for it in 0:50
|
||||||
|
num += parse(BigInt, reverse(string(num)))
|
||||||
|
if is_palindrome(digits(num, base=10))
|
||||||
|
is_lychrel = false
|
||||||
|
break
|
||||||
|
end
|
||||||
|
end
|
||||||
|
if is_lychrel
|
||||||
|
ans += 1
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
return ans
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
println("Time to evaluate Problem 55:")
|
||||||
|
@btime Problem55()
|
||||||
|
println("")
|
||||||
|
println("Result for Problem 55: ", Problem55())
|
Loading…
x
Reference in New Issue
Block a user